

Lecture Notes in Computer Science 4599
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stamatis Vassiliadis Mladen Bereković
Timo D. Hämäläinen (Eds.)

Embedded Computer
Systems: Architectures,
Modeling, and Simulation

7th International Workshop, SAMOS 2007
Samos, Greece, July 16-19, 2007
Proceedings

13

Volume Editors

Stamatis Vassiliadis
Mladen Bereković
Delft University of Technology
Mekelweg 4, 2628 CD Delft,The Netherlands
E-mail: {s.vassiliadis, m.berekovic}@ewi.tudelft.nl

Timo D. Hämäläinen
Tampere University of Technology
P.O.Box 553, 33101 Tampere, Finland
E-mail: timo.hamalainen@tut.fi

Library of Congress Control Number: 2007930610

CR Subject Classification (1998): C, B

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-73622-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73622-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12090457 06/3180 5 4 3 2 1 0

In Memoriam Stamatis Vassiliadis (1951 - 2007)

Integrity was his compass
Science his instrument

Advancement of humanity his final goal

Stamatis Vassiliadis

Professor at Delft University of Technology
IEEE Fellow - ACM Fellow

Member of the Dutch Academy of Sciences - KNAW

passed away on April 7th, 2007.

He was an outstanding computer scientist and due to his vivid and hearty
manner he was a good friend to all of us.

Born in Manolates on Samos (Greece) he established in 2001 the successful
series of SAMOS conferences and workshops.

These series will not be the same without him.
We will keep him in our hearts and we are with his family in these

mournful days.

Preface

Stamatis Vassiliadis established the SAMOS workshop in the year 2001—an
event which combines his devotion to computer engineering and his pride for
Samos, the island where he was born. The quiet and inspiring northern moun-
tainside of this Mediterranean island together with his enthusiasm and warmth
created a unique atmosphere that made this event so successful. Stamatis Vas-
siliadis passed away on Saturday, April 7, 2007. The research community wants
to express its gratitude to him for the creation of the SAMOS workshop, which
will not be the same without him. We would like to dedicate this proceedings
volume to the memory of Stamatis Vassiliadis.

The SAMOS workshop is an international gathering of highly qualified re-
searchers from academia and industry, sharing their ideas during a 3-day lively
discussion. The workshop meeting is one of two colocated events—the other event
being the IC-SAMOS. The workshop is unique in the sense that not only solved
research problems are presented and discussed but also (partly) unsolved prob-
lems and in-depth topical reviews can be unleashed in the scientific arena. Con-
sequently, the workshop provides the participants with an environment where
collaboration rather than competition is fostered.

SAMOS VII followed the series of workshops started in 2001 in a new ex-
panded program. This year there were also two parallel sessions for current and
foreseen topics. The SAMOS VII workshop attracted a total of 116 papers. We
are grateful to all authors who submitted their papers. They came from 27 coun-
tries and regions: Austria(1), Belgium(4), Brazil(5), Canada(2), China(4), Croa-
tia(1), Czech Republic(3), Finland(11), France(2), Germany(7), Greece(2), Hong
Kong(1), India(4), Ireland(3), Italy(2), Japan(2), The Netherlands(9), Portu-
gal(1), Republic of Korea(21), Republic of Singapore(2), Romania(1), Spain(7),
Sweden(2), Taiwan(1), Turkey(5), UK(2), and USA(9).

All papers went through a rigorous reviewing process and each paper received
at least three individual reviews, with an average of four reviews per paper.
Due to time constraints in the workshop program and the high quality of the
submitted papers, the selection process was very competitive and many qualified
papers could not be accepted. Only 44 out of the 116 submissions could be
accepted, which results in an acceptance rate of 38%. The program also included
two keynote speeches by Willie Anderson, VP DSP Qualcomm, and Jos Huisken
from Silicon Hive, The Netherlands.

A workshop like this cannot be organized without the help of many other
people. Therefore, we thank the members of the Steering and Program Commit-
tees and the external referees for their dedication and diligence in selecting the
technical presentations. The investment of their time and insight is very much
appreciated. We would like to express our sincere gratitude to Sebastian Isaza
and Elena Moscu Panainte for maintaining the Web site and paper submission

VIII Preface

system, and Arjan van Genderen and Carlo Galuzzi for preparing the workshop
proceedings. We thank Lidwina Tromp and Karin Vassiliadis for their support
in organizing the workshop.

We hope that the attendees enjoyed the SAMOS VII workshop in all its
aspects, including many informal discussions and gatherings.

June 2007 Mladen Berekovic
Timo D. Hämäläinen

Organization

The SAMOS VII workshop took place during July 16−19, 2007 at the Research
and Teaching Institute of East Aegean (INEAG) in Agios Konstantinos on the
island of Samos, Greece.

Workshop Chairs

Timo D. Hämäläinen Tampere University of Technology, Finland

Program Chair

Mladen Berekovic Delft University of Technology,
The Netherlands

Proceedings Chair

Arjan van Genderen Delft University of Technology,
The Netherlands

Publicity and Financial Chair

Stephan Wong Delft University of Technology,
The Netherlands

Symposium Board

Shuvra Bhattacharyya University of Maryland, USA
John Glossner Sandbridge Technologies, USA
Andy Pimentel University of Amsterdam, The Netherlands
Jarmo Takala Tampere University of Technology, Finland
Stamatis Vassiliadis Delft University of Technology,

The Netherlands

Steering Committee

Luigi Carro Federal U. Rio Grande do Sul, Brazil
Ed Deprettere Leiden University, The Netherlands
Georgi N. Gaydadijev TU Delft, The Netherlands
Timo D. Hämäläinen Tampere University of Technology, Finland

X Organization

Program Committee

Aneesh Aggarwal Binghamton University, USA
Piergiovanni Bazzana ATMEL, Italy
Jürgen Becker Universität Karlsruhe, Germany
Koen Bertels Delft University of Technology,

The Netherlands
Bruno Bougard IMEC, Belgium
Samarjit Chakraborty University of Singapore, Singapore
Nikitas Dimopoulos University of Victoria, Canada
Lieven Eeckhout Ghent University, Belgium
Paraskevas Evripidou University of Cyprus, Cyprus
Fabrizio Ferrandi Politecnico di Milano, Italy
Gerhard Fettweis Technische Universität Dresden, Germany
Paddy French TU Delft, The Netherlands
Jason Fritts University of Saint Louis, USA
Daniel Gajski UC Irvine, USA
Kees Goossens NxP, The Netherlands
David Guevorkian Nokia Research Center, Finland
Timo D. Hännikäinen Tampere University of Technology, Finland
Victor Iordanov Philips, The Netherlands
Bernard Jakoby Linz University, Austria
Hartwig Jeschke Hannover University, Germany
Chris Jesshope University of Amsterdam, The Netherlands
Wolfgang Karl University of Karlsruhe, Germany
Andreas Koch TU Darmstadt, Germany
Krzysztof Kuchcinski Lund University, Sweden
Johan Lilius Ado Akademi University, Finland
Wayne Luk Imperial College, UK
Kofi Makinwa TU Delft, The Netherlands
John McAllister Queen’s University of Belfast, UK
Guy Meynants IMEC-NL, The Netherlands
Alex Milenkovic University of Utah, USA
Nacho Navarro UPC, Spain
Alex Orailoglu UCSD, USA
Bernard Pottier Université de Bretagne Occidentale, France
Hartmut Schröder Universität Dortmund, Germany
Peter-Michael Seidel SMU University, USA
Mihai Sima University of Victoria, Canada
Leonel Sousa TU Lisbon, Portugal
Juürgen Teich University of Erlangen, Germany
George Theodoridis Aristotle University of Thessaloniki, Greece
Dimitrios Velenis IIT, USA
Jan-Willem Van De Waerdt NxP, USA
Wayne Wolf Princeton University, USA
Stephan Wong TU Delft, The Netherlands

Organization XI

Local Organizers

Lidwina Tromp Delft University of Technology,
The Netherlands

Karin Vassiliadis Delft University of Technology,
The Netherlands

Yiasmin Kioulafa Research and Training Institute of East
Aegean, Greece

Referees

Agarwal, N.
Aggarwal, A.
Ahmadi, M.
Aho, E.
Akesson, B.
Al-Ars, Z.
Angermeier, J.
Ashby, T.
Ayoub, R.
Azevedo, A.
Bazzana, P.
Becker, J.
Becker, T.
Berekovic, M.
Bertels, K.
Bhattacharyya, S. S.
Bougard, B.
Braun, L.
Brisolara, L.
Brito, A.
Buchty, R.
Calderon, H.
Cappelle, H.
Carro, L.
Chakraborty, S.
Chang, Z.
Chaves, R.
Cheung, R.
Coenen, M.
Cope, B.
Deprettere, E.
Derudder, V.
Dimopoulos, N.
Duarte, F.

Eeckhout, L.
Erbas, C.
Falcão, G.
Ferrandi, F.
Fettweis, G.
Filho, A. C. S. B.
Flügel, S.
Flatt, H.
Fossati, L.
French, P.
Fritts, J.
Gaderer, G.
Gadkari, A.
Gaydadjiev, G. N.
Gelado, I.
Germano, J.
Glossner, J.
Goossens, K.
Gruian, F.
Guevorkian, D.
Hämäläinen, T. D.
Hännikäinen, M.
Hansson, A.
Hasan, L.
Heikkinen, J.
Hur, J. Y.
Iordanov, V.
Isaza, S.
Jääskeläinen, P.
Jain, P.
Jakoby, B.
Jayachandran, V. K.
Jeschke, H.
Jesshope, C.

Kühnle, M.
Kakarountas, A.
Karl, W.
Kastensmidt, F. L.
Klussmann, H.
Koch, A.
Koenig, R.
Kozanitis, C.
Kuchcinski, K.
Kulmala, A.
Kumar, S.
Lafond, S.
Langerwerf, J. M.
Lattuada, M.
Lee, K.
Lilius, J.
Loschmidt, P.
Ludovici, D.
Luk, W.
Mäkelä, R.
Mak, T.
Marconi, T.
Mattos, J.
McAllister, J.
McKeown, S.
McLoone, M.
Meena, A.
Meynants, G.
Milenkovic, A.
Milenkovic, M.
Momcilovic, S.
Monchiero, M.
Morra, C.
Mudge, T.

XII Organization

Nachtnebel, H.
Naeem, M. M.
Navarro, N.
Nawaz, Z.
Ng, A.
Nikolaidis, S.
Novo, D.
Obsborne, W.
Orailoglu, A.
Orsila, H.
Palermo, G.
Parekh, V.
Paulsson, K.
Pimentel, A. D.
Pitkänen, T.
Pottier, B.
Pujara, P.
Raghavan, P.
Raman, B.
Ruckdeschel, H.
Säntti, T.
Sabeghi, M.

Salminen, E.
Schlichter, T.
Schröder, H.
Seidel, P.
Septinus, K.
Shabbir, A.
Sigdel, K.
Sima, M.
Sima, M.
Simon-Klar, C.
Sohail, H.
Somisetty, R. K.
Sourdis, I.
Sousa, L.
Specht, E.
Strydis, C.
Suri, T.
Syed, S.
Takala, J.
Tang, H.
Teich, J.
Theodoridis, G.

Thompson, M.
Todman, T.
Treytl, A.
Tumeo, A.
Vainio, O.
van de Waerdt, J.
van Genderen, A.
Vanne, J.
Vassiliadis, N.
Vayá, G. P.
Velenis, D.
Vidyasagar, V.
Weijers, J.
Westermann, P.
Wojcieszak, L.
Wolf, W.
Wong, S.
Yang, C.
Yankova, Y.
Yi, L.
Zhang, Z.

Table of Contents

Keynotes

Software Is the Answer But What Is the Question? 1
Willie Anderson

Integrating VLIW Processors with a Network on Chip 2
Jos Huisken

System Modeling and Simulation

Communication Architecture Simulation on the Virtual Synchronization
Framework . 3

Taewook Oh, Youngmin Yi, and Soonhoi Ha

A Model-Driven Automatically-Retargetable Debug Tool for Embedded
Systems . 13

Max R. de O. Schultz, Alexandre K.I. Mendonça, Felipe G. Carvalho,
Olinto J.V. Furtado, and Luiz C.V. Santos

Performance Evaluation of Memory Management Configurations in
Linux for an OS-Level Design Space Exploration . 24

Sangsoo Park and Heonshik Shin

SC2SCFL: Automated SystemC to SystemCFL Translation 34
Ka Lok Man, Andrea Fedeli, Michele Mercaldi,
Menouer Boubekeur, and Michel Schellekens

VLSI Architectures

Model and Validation of Block Cleaning Cost for Flash Memory 46
Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh

VLSI Architecture for MRF Based Stereo Matching 55
Sungchan Park, Chao Chen, and Hong Jeong

Low-Power Twiddle Factor Unit for FFT Computation 65
Teemu Pitkänen, Tero Partanen, and Jarmo Takala

Trade-Offs Between Voltage Scaling and Processor Shutdown for
Low-Energy Embedded Multiprocessors . 75

Pepijn de Langen and Ben Juurlink

XIV Table of Contents

Scheduling & Programming Models

An Automatically-Retargetable Time-Constraint-Driven Instruction
Scheduler for Post-compiling Optimization of Embedded Code 86

José O. Carlomagno F., Luiz F.P. Santos, and Luiz C.V. dos Santos

Improving TriMedia Cache Performance by Profile Guided Code
Reordering . 96

Norbert Esser, Renga Sundararajan, and Joachim Trescher

A Streaming Machine Description and Programming Model 107
Paul Carpenter, David Rodenas, Xavier Martorell,
Alex Ramirez, and Eduard Ayguadé

Multi-processor Architectures

Mapping and Performance Evaluation for Heterogeneous MP-SoCs Via
Packing . 117

Bastian Ristau and Gerhard Fettweis

Strategies for Compiling µTC to Novel Chip Multiprocessors 127
Thomas A.M. Bernard, Chris R. Jesshope, and
Peter M.W. Knijnenburg

Image Quantisation on a Massively Parallel Embedded Processor 139
Jan Jacobs, Leroy van Engelen, Jan Kuper, and Gerard J.M. Smit

Stream Image Processing on a Dual-Core Embedded System 149
Michael G. Benjamin and David Kaeli

Reconfigurable Architectures

MORA: A New Coarse-Grain Reconfigurable Array for High
Throughput Multimedia Processing . 159

Marco Lanuzza, Stefania Perri, and Pasquale Corsonello

FPGA Design Methodology for a Wavelet-Based Scalable Video
Decoder . 169

Hendrik Eeckhaut, Harald Devos, Philippe Faes,
Mark Christiaens, and Dirk Stroobandt

Evaluating Large System-on-Chip on Multi-FPGA Platform 179
Ari Kulmala, Erno Salminen, and Timo D. Hämäläinen

Design Space Exploration

Efficiency Measures for Multimedia SOCs . 190
Hartwig Jeschke

Table of Contents XV

On-Chip Bus Modeling for Power and Performance Estimation 200
Je-Hoon Lee, Young-Shin Cho, Seok-Man Kim, and Kyoung-Rok Cho

A Framework Introducing Model Reversibility in SoC Design Space
Exploration . 211

Alexis Vander Biest, Alienor Richard, Dragomir Milojevic, and
Frederic Robert

Towards Multi-application Workload Modeling in Sesame for
System-Level Design Space Exploration . 222

Mark Thompson and Andy D. Pimentel

Processor Components

Resource Conflict Detection in Simulation of Function Unit Pipelines . . . 233
Pekka Jääskeläinen, Vladimı́r Guzma, and Jarmo Takala

A Modular Coprocessor Architecture for Embedded Real-Time Image
and Video Signal Processing . 241

Holger Flatt, Sebastian Hesselbarth, Sebastian Flügel, and
Peter Pirsch

High-Bandwidth Address Generation Unit . 251
Humberto Calderón, Carlo Galuzzi, Georgi Gaydadjiev, and
Stamatis Vassiliadis

An IP Core for Embedded Java Systems . 263
Sascha Uhrig, Jörg Mische, and Theo Ungerer

Embedded Processors

Parallel Memory Architecture for TTA Processor . 273
Jarno K. Tanskanen, Teemu Pitkänen, Risto Mäkinen, and
Jarmo Takala

A Linear Complexity Algorithm for the Generation of Multiple Input
Single Output Instructions of Variable Size . 283

Carlo Galuzzi, Koen Bertels, and Stamatis Vassiliadis

Automated Power Gating of Registers Using CoDeL and FSM Branch
Prediction . 294

Nainesh Agarwal and Nikitas J. Dimopoulos

A Study of Energy Saving in Customizable Processors 304
Paolo Bonzini, Dilek Harmanci, and Laura Pozzi

XVI Table of Contents

SoC for SDR

Trends in Low Power Handset Software Defined Radio 313
John Glossner, Daniel Iancu, Mayan Moudgill,
Michael Schulte, and Stamatis Vassiliadis

Design of a Low Power Pre-synchronization ASIP for Multimode SDR
Terminals . 322

Thomas Schuster, Bruno Bougard, Praveen Raghavan,
Robert Priewasser, David Novo, Liesbet Van der Perre, and
Francky Catthoor

Area Efficient Fully Programmable Baseband Processors 333
Anders Nilsson and Dake Liu

The Next Generation Challenge for Software Defined Radio 343
Mark Woh, Sangwon Seo, Hyunseok Lee, Yuan Lin, Scott Mahlke,
Trevor Mudge, Chaitali Chakrabarti, and Krisztian Flautner

Design Methodology for Software Radio Systems . 355
Chia-han Lee and Wayne Wolf

Power Efficient Co-simulation Framework for a Wireless Application
Using Platform Based SoC . 365

Tseesuren Batsuuri, Je-Hoon Lee, and Kyoung-Rok Cho

A Comparative Study of Different FFT Architectures for Software
Defined Radio . 375

Shashank Mittal, Md. Zafar Ali Khan, and M.B. Srinivas

Wireless Sensors

Design of 100 Wireless Sensor Nodes on Energy Scavengers for
Biomedical Monitoring . 385

Lennart Yseboodt, Michael De Nil, Jos Huisken, Mladen Berekovic,
Qin Zhao, Frank Bouwens, and Jef Van Meerbergen

Tool-Aided Design and Implementation of Indoor Surveillance Wireless
Sensor Network . 396

Mauri Kuorilehto, Jukka Suhonen, Marko Hännikäinen, and
Timo D. Hämäläinen

System Architecture Modeling of an UWB Receiver for Wireless Sensor
Network . 408

Aubin Lecointre, Daniela Dragomirescu, and Robert Plana

An Embedded Platform with Duty-Cycled Radio and Processing
Subsystems for Wireless Sensor Networks . 421

Zhong-Yi Jin, Curt Schurgers, and Rajesh Gupta

W�

Table of Contents XVII

SensorOS: A New Operating System for Time Critical WSN
Applications . 431

Mauri Kuorilehto, Timo Alho, Marko Hännikäinen, and
Timo D. Hämäläinen

Review of Hardware Architectures for Advanced Encryption Standard
Implementations Considering Wireless Sensor Networks 443

Panu Hämäläinen, Marko Hännikäinen, and Timo D. Hämäläinen

k+ Neigh: An Energy Efficient Topology Control for Wireless Sensor
Networks . 454

Dong-Min Son and Young-Bae Ko

Author Index . 465

Software Is the Answer But What Is the
Question?

Willie Anderson

Vice President, Engineering for Qualcomm CDMA Technologies

Abstract. Consumer electronics and communications products typi-
cally comprise embedded systems whose complexity dwarfs the super-
computer center of two decades ago. Along with this embedded hardware
capability have come equally complex applications, such as digitally en-
coded video and advanced wireless modulation and protocols, which not
only have to function in a world-wide network, but which must also do
so while using miniscule amounts of energy. The primary constraint for
the deployment of these systems is the availability of the software which
enables them. I will present some of the issues which challenge devel-
opers of such software and the embedded systems themselves, and will
examine some pragmatic approaches to the solution of these engineering
problems.

S. Vassiliadis, M. Berekovic, T.D. Hämäläinen (Eds.): SAMOS 2007, LNCS 4599, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integrating VLIW Processors with a Network
on Chip

Jos Huisken

Silicon Hive

Abstract. Networks are a becoming a necessity to easily integrate mul-
tiple processors on a single chip. A crucial question here is whether it
is good enough to reason about statistical performance as opposed to
hard real-time performance constraints. Today’s processors often do not
allow software design for hard real-time systems, caused by the design
of the bus- and/or memory interfaces, thereby necessitating elaborate
performance analysis through simulation.

In this presentation I will indicate what options a processor designer
has, using Silicon Hive processor design tools, in specifying the interfaces
and local memory sub-system in a processor. It allows a multitude of
communication options to build either type of system: statistically bound
or hard real-time bound performance.

Additionaly I will describe the multi-processor simulation and proto-
typing environment and touching on the processor design methodology.

S. Vassiliadis, M. Berekovic, T.D. Hämäläinen (Eds.): SAMOS 2007, LNCS 4599, p. 2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Communication Architecture Simulation on the
Virtual Synchronization Framework�

Taewook Oh1, Youngmin Yi2, and Soonhoi Ha3

1 Embedded Systems Solution Lab, Samsung Advanced Institute of Technology,
Mt. 14-1, Nongseo-dong, Giheung-gu, Yongin-si Gyunggi-do, 446-712 South Korea

taewook.oh@samsung.com
2 Embedded software institute, Korea University,

5 Ga, Anam-Dong, Seongbuk-Gu, Seoul, 136-701 South Korea
ymyi@korea.ac.kr

3 School of EECS, Seoul National University,
San 56-1, Sinlim-dong, Gwanak-gu, Seoul, 151-744 South Korea

sha@iris.snu.ac.kr

Abstract. As multi-processor system-on-chip (MPSoC) has become an
effective solution to ever-increasing design complexity of modern embed-
ded systems, fast and accurate HW/SW cosimulation of such system
becomes more important to explore wide design space of communication
architecture. Recently we have proposed the trace-driven virtual syn-
chronization technique to boost the cosimulation speed while accuracy
is almost preserved, where simulation of communication architectures
is separated from simulation of the processing components. This paper
proposes two methods of simulation modeling of communication archi-
tectures in the trace-driven virtual synchronization framework: SystemC
modeling and C modeling. SystemC modeling gives better extensibility
and accuracy but lower performance than C modeling as confirmed by
experimental results. Fast reconfiguration of communication architecture
is available in both methods to enable efficient design space exploration.

1 Introduction

System-on-chip (SoC) designers are dealing with ever increasing design complex-
ity. Moreover, as multi-processor system-on-chip (MPSoC) architecture becomes
more and more popular, SoC designers encounters the challenge of finding the
optimal communication architecture for the target platform. Since faster vali-
dation of the system performance promises wider design space exploration, fast
and accurate cosimulation has been a major focus in HW/SW codesign research.

Trace-driven virtual synchronization [2] has been proposed as a cosimulation
technique that increases cosimulation speed by reducing the synchronization
� This work was supported by Brain Korea 21 project, SystemIC 2010 project funded

by Korean MOCIE, and Samsung Electronics. This work was also partly sponsored
by ETRI SoC Industry Promotion Center, Human Resource Development Project
for IT SoC Architect. The ICT and ISRC at Seoul National University and IDEC
provide research facilities for this study.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 3–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 T. Oh, Y. Yi, and S. Ha

overhead between component simulators to almost zero and by removing the
unnecessary simulation of idle period in the processing components. The main
characteristic of the virtual synchronization technique is to separate simulation
of processing components and communication architecture unlike conventional
cosimulation approaches where the communication architecture is modeled with
other hardware components.

In the trace-driven virtual synchronization, component simulators generate
event traces and the cosimulation kernel aligns them and performs trace-driven
architecture simulation. This characteristic makes virtual synchronization tech-
nique useful for fast design space exploration of communication architectures. In
the conventional cosimulation approaches, cosimulation of the entire system is
needed for each architecture candidate since simulation of processing components
and communication architecture is tightly coupled. However, in the virtual syn-
chronization cosimulation, traces obtained from a single execution of component
simulator can be reused to simulation of various communication architectures.

This paper proposes two methods of simulation modeling of communication
architectures in the trace-driven virtual synchronization framework: One is to use
SystemC modeling of communication architecture and to integrate SystemC [3]
simulation kernel to the cosimulation kernel of the proposed cosimulation frame-
work. The other is to use cycle-accurate transaction level C model(hereafter, we
call it ’C model’ in this paper) in the cosimulation kernel of the framework. Sys-
temC modeling has advantages on extensibility and accuracy by reusing the pre-
verified communication IPs in SystemC. On the other hand, C modeling enables
much faster cosimulation speed with a little degradation on accuracy. Experi-
mental results reveal such trade-offs and proves the usefulness of the proposed
technique.

This paper is organized as follows. In the next section, we overview some
related work. Section 3 briefly reviews the trace-driven virtual synchronization
technique. In section 4 we present the first approach of SystemC modeling and
SystemC simulation of communication architecture in the virtual synchroniza-
tion framework. Section 5 explains the second approach of using cycle accurate
transaction level C model in the cosimulation kernel. Experimental results and
conclusions will follow in section 6 and 7 respectively.

2 Related Work

Performance analysis method for communication architecture proposed by Lahiri
et al.[4] has a similarity with our study in that trace-driven simulation is used.
However, this approach has a limitation on accuracy since it only uses transac-
tion level architecture specification described in C for performance estimation.
On the contrary, we provide both BCA (Bus Cycle Accurate) SystemC model
and transaction-level C model considering transaction order inversion caused by
bridge delay, which was not considered in Lahiri’s method.

Baghdadi et al. [5] modeled communication overhead with a simple linear
equation : Tcomm(n) = λTStartUp + TTrans(n) + TSynch. TStartUp, TTrans(n),

Communication Architecture Simulation 5

and TSynch represent interface initialization time, data transmission time, and
synchronization time respectively. λ is set to 0 or 1 depending on the type of com-
munication. This formula is too simple to estimate the communication overhead
so their approach is not accurate enough for reliable design space exploration.

Recently novel techniques of abstracion level modeling have been proposed
for faster simulation. Pasricha et al. [6] and Schirner et al. [7] proposed new
abstraction level for communication architecture named CCATB (Cycle Count
Accurate at Transaction Boundaries) and ROM (Result Oriented Modeling),
respectively. Both of them focus on preserving timing accuracy of BCA model
while achieving the speed of TLM (Transaction Level Model) simulation. In order
to do so, they abstract out detailed signal modeling inside each transaction and
only provide accurate timing information at the transaction boundaries. Our
proposed C model is similar to their approaches in principle. Since we do not
need external simulation engine like SystemC or SpecC, however, we achieve
better performance. CCATB or ROM model is complementary to our SystemC
based approach to increase the simulation speed.

3 Virtual Synchronization Technique

The core of virtual synchronization technique is that it does not synchronize
component simulators for every single cycle unlike conventional cosimulation
approaches. It synchronizes component simulators only when synchronization is
necessary to maintain the accuracy: start and end times of the task, and data
exchange between tasks. They are global events, shortly events, that affect the
other components. This synchronization overhead reduction induces significant
improvement on cosimulation speed. As simulation speed of component simu-
lator itself increases, effect of synchronization reduction becomes more evident.
Moreover, with virtual synchronization technique, component simulators do not
have to advance its local clock merely in order to synchronize with the global
clock during the idle period. This also increases the cosimulation performance
significantly.

In the trace-driven virtual synchronization, events occurred by component
simulators are represented as a form of trace. Conventional trace-driven sim-
ulation consists of trace collection and trace processing, and these steps are
separated and performed without any feedback in most cases [1]. It saves traces
generated from initial cosimulation in a file, and executes trace-driven simula-
tion. As a result, it suffers from performance overhead of file I/O, requiring huge
storage, and inaccurate modeling of dynamic behavior like OS scheduling. How-
ever, in the trace-driven virtual synchronization, traces are saved in the memory
and the accumulated traces are consumed when synchronizing the component
simulators. So it solves those problems.

Fig.1(a) shows structure of cosimulation environment that adapts trace-driven
virtual synchronization technique. It consists of two parts. The first part is trace
generation part in which traces are generated by component simulators. As
shown in the upper side of Fig.1(a), each component simulator is connected

6 T. Oh, Y. Yi, and S. Ha

Fig. 1. Trace-driven virtual synchronization framework (a) previous framework (b)
combined with SystemC

to the cosimulation kernel (backplane) with the simulation interface. The sim-
ulation interface is in charge of communication between a component simulator
and the cosimulation kernel.

In the second part of simulation, cosimulation kernel reconstructs the global
time information of each event that comes from component simulators and ad-
vances the global clock performing trace-driven architecture simulation. Trace-
driven architecture simulation concerns not only communication architecture of
the target platform but also OS behavior. It simulates the communication archi-
tecture considering latency and resource contention using the transaction level
architecture model. Since the previous transaction level model assumes simple
communication architecture as a single shared bus or does not account for the
dynamic behavior such as transaction order inversion, we propose more general
methods of communication modeling in the context of virtual synchronization
framework in this paper.

4 Communication Architecture Simulation Using
SystemC with Virtual Synchronization

We propose to replace the architecture simulation part in the virtual synchroniza-
tion cosimulation kernel with SystemC based simulation. While a SystemC based
simulation environment is in charge of communication architecture simulation,
each processing component simulator is still attached to virtual synchroniza-
tion cosimulation kernel. Therefore, only communication architecture modules
are needed in the SystemC simulation environment. And a new wrapper module,
called a ’virtual master module’ is added between the SystemC simulation kernel
and the cosimulation kernel. The virtual master module gets traces from virtual

Communication Architecture Simulation 7

synchronization cosimulation kernel and triggers simulation of communication
architecture module associated with these traces.

Fig.1(b) shows the modified framework of the proposed cosimulation environ-
ment that combines SystemC simulation kernel with the virtual synchronization
cosimulation kernel through virtual master modules. There exists a one-to-one
mapping between virtual master modules and component simulators attached
to cosimulation kernel, so each virtual master module gets traces from its corre-
sponding component simulator.

In the previous cosimulation framework the cosimulation kernel itself is in
charge of communication architecture simulation. However, in the modified
framework, the cosimulation kernel delivers traces generated from the compo-
nent simulators to virtual master modules, and the SystemC simulation kernel
actually performs communication architecture simulation.

The behavior of a virtual master module consists of the following four steps;
First, the virtual master module translates address information in the trace to

target address by referencing the address map of the communication architecture.
The address map is provided separately by the designer.

Second, the virtual master module determines the type of transaction and
calls the corresponding transaction start function that is defined in the master
interface module. If the target platform uses the different type of communication
architecture, the designer only needs to modify the transaction start function for
the new target communication architecture.

Third, after simulating the communication architecture module, it determines
the time difference between the current trace and the next trace. A virtual
master module uses wait() function defined in SystemC library to reflect this
time difference in the next invocation of the module.

Fourth and the last, it may resume the blocked tasks after memory trace sim-
ulation. For example, if a write transaction to the memory causes the resuming
of a blocked task, the virtual master module simulates this behavior.

The role of virtual master module is only to call a transaction start function
and to resume blocked tasks if any and it does not simulate any internal pro-
cessing of a component at all. Therefore, it is much simpler than the processing
component module that had been attached to a conventional SystemC simula-
tion environment. So SystemC based simulation part in the proposed framework
gives faster simulation speed than the other SystemC simulation frameworks.

5 Communication Architecture Simulation Using C
Model with Virtual Synchronization

While the SystemC modeling technique induces extensible and accurate cosim-
ulation, it suffers from low performance of SystemC simulation kernel as the
BCA model of communication architecture becomes more complex. So, we pro-
pose another modeling technique of the communication architecture: C modeling.
Compared with other C modeling approaches, the proposed C model increases
accuracy by providing more accurate architecture models while not sacrificing

8 T. Oh, Y. Yi, and S. Ha

the simulation speed much. For accurate simulation of architecture, we let the
designer specify the communication architecture details in a textual form, an
XML file, which will be read by the model. The XML file has information about
the list of components in the target platform, attributes of each component, the
address map, and the topology that how components are connected. By ana-
lyzing the XML file, the simulation model can determine which components are
involved in the current transaction: First it reads the address in the transaction,
and finds out the component it is trying to access referencing the address maps.
Then, it figures out the path from the requesting component to the destination
component analyzing the topology information given in the XML file. Finally,
by adding the time consumed on each communication component that is in-
volved in the transaction, the total communication time is obtained. Since the
cosimulation kernel manages all outstanding transactions and the status of all
communication components, it can find out the precise location of the contention
between the transactions and simulates the contention related timing accurately.

Fig. 2. Scenario of transaction order inversion

The proposed simulated model handles the transaction order inversion cor-
rectly while the abstraction level is maintained at transaction level. In a conven-
tional transaction level model, a new transaction begins only after the previous
transaction is completed. This scheme works correctly only for a simple archi-
tecture such as a single shared bus. Fig.2 is an example that shows a scenario
of transaction order inversion. We assume that the target platform is as shown
in Fig.2(a) where there are two buses connected to each other via a bus bridge.
Fig.2(b) describes the start time and the target memory of the transactions
requested by two processing components assuming an ideal communication ar-
chitecture : PE0 makes two transactions at global times 2 and 9 with target
memory 1 and memory 0, respectively. PE 1 also makes two transactions at
global times 4 and 9, and both of them take memory 1 as their target memory.

Fig.2(c) shows the granted master of each data bus during the transactions in
case of transactions are accurately simulated. The first transaction made by PE
0 at time 2 should go through both bus 0 and bus 1 to access memory 1. Since it
has to cross the bridge to get bus 1, the bridge delay is experienced. Because of
the bridge delay, the arbiter of the bus 1 gives grant to PE 1 before PE 0, even

Communication Architecture Simulation 9

though PE 0’s transaction starts earlier than PE 1’s transaction. However, if
each transaction is simulated atomically as shown in Fig.2(d), such transaction
order inversion may not be observed in bus 1.

In order to solve this problem, the proposed model maintains a trace queue
for each bus. It changes the granularity of atomicity from processing component
trace to bus level trace. If a transaction described in a processing component
trace goes through multiple buses, the transaction is split into multiple bus level
traces. Each bus level trace has information about the transaction start time on
the bus considering the bridge delay. Changing the granularity of atomic simula-
tion enables more accurate simulation of grant order for each bus, which results
in the accurate simulation of parallel transactions in a complex architecture.
Since the overhead of splitting a transaction into bus-level traces is not signifi-
cant, the proposed method does not give burden to the cosimulation kernel while
it enhances the accuracy of communication architecture models.

6 Experimental Results

In this section, we present the experimental results and demonstrate the accu-
racy and efficiency of the proposed methods. In the first set of experiments, it
is shown that combing the virtual synchronization framework with a SystemC
cosimulation environment improves cosimulation performance significantly com-
pared with conventional SystemC simulation environments. Next, by comparing
the cosimulation results of the SystemC model simulation and the C model sim-
ulation, we demonstrate that the C model gives much faster simulation speed
with about 3% accuracy loss.

6.1 Comparing Lock-Step Approach and Virtual Synchronization
Technique Applied to SystemC Based Simulation Environment

The objective of this experiment is to examine the performance comparison
between virtual synchronization framework with SystemC model of communi-
cation architecture and a conventional SystemC-based TLM simulation, where
the communication architecture is modeled at the BCA level. This conventional
framework provides the maximum accuracy at the TLM level since it conserva-
tively synchronizes at every cycle by using lock-step approace.

In the experiment, the target platform consists of two processors and one
shared bus. We disabled cache memory and used a JPEG decoder as the target
application for both processors, in order to examine the simulation capability in
case of extensive contention on the communication architecture. Table 1 shows
the experimental results.

As shown in table 1, applying virtual synchronization technique does not de-
teriorate simulation accuracy at all while improving the simulation performance
by 75%. Table 2 shows the partition of the simulation times between the compo-
nent simulators and the communication architecture simulators. As shown in the
table, since SystemC model is made at the BCA level, it becomes the simulation

10 T. Oh, Y. Yi, and S. Ha

Table 1. Comparing Lock-step approach and Virtual Synchonization method

Configuration Lock-step + SystemC Virtual Sync. + SystemC
Simulated Cycles 34,724,826 34,724,826

Simulation Time(sec.) 1551.402 886.99
Error Rate 0% 0%

Performance Improvement 1 1.75

Table 2. Comparing the portion of component simulator and SystemC simulator in
total simulation time

Lock-step + SystemC Virtual Sync. + SystemC
Time(sec.) Portion(%) Time(sec.) Portion(%)

Component Simulator 419.54 27.04 40.57 4.58
SystemC Simulator 1131.86 72.96 846.42 95.42

Total 1551.402 100.00 886.99 100.00

bottleneck in the proposed framework. If we implement the SystemC module at
a higher level of abstraction, simulation speed enhancement will be increased. It
motivates the use of C model in the virtual synchronization framework.

6.2 Comparing C Model and SystemC Model for Communication
Architecture Simulation

The second set of experiments compares the simulation speed and the accuracy
of the proposed C model with those with the SystemC model. The experiment
is divided into two parts. First, we show that the C model provides high degree
of accuracy. Second, C model shows much faster simulation speed than SystemC
model with real-life multimedia applications.

To confirm the accuracy of the C model, we have performed two experiments.
First, we assumed that the target architecture consists of four processors and a
single shared bus. As the number of processors running a JPEG decoder appli-
cation increased from one to four, we observed the increase of contention delay
on the proposed simulation environment. We disabled the cache memory of pro-
cessors to see the contention effect more clearly. Table 3 shows the result of
experiment.

Table 3. Result of experiment on contention modeling accuracy

Number of Master(s)
SystemC Model C Model

Cycles Cycles Error Rate(%)
1 20,997,500 20,531,185 2.22
2 26,008,700 26,136,879 0.49
3 37,808,400 37,868,814 0.16
4 49,286,200 50,514,368 2.49

Communication Architecture Simulation 11

The result shows that the proposed C model has error rate of less than 3%,
compared to the SystemC model(error rate is defined as (simulated cycles[C
model] - simulated cycles[SystemC model])/simulated cycles[SystemC model]).
The result also shows that the total simulation time due to contention on the
bus increases as the number of processors increases.

In addition, we set up the experiments that may have transaction order inver-
sion between concurrent transactions on multiple buses. We make four processors
to execute the identical JPEG decoder application and make three different con-
figurations on the communication architecture. In the first configuration, a single
shared bus and a single memory are shared by four processors. In the second
configuration, a pair of processors shares a bus and a memory so that there are
two buses and two memory components in the platform. In the third configu-
ration, each processor has their own memory through dedicated bus. We also
disabled the cache memory for this experiment. The experimental results are
shown in Table 4.

Table 4. Result of experiment on split bus modeling accuracy

Number of Bus(es)
SystemC Model C Model

Cycles Cycles Error Rate(%)
1 49,286,200 50,514,368 2.49
2 25,460,800 26,102,775 2.52
4 20,531,300 21,085,048 2.49

The simulation result demonstrates that the proposed C model correctly re-
flects the reduction of the contention between transactions by bus splitting. The
error rate of experiment was also less than 3%, and it means that decrease of
accuracy caused by using a higher abstracted model is not that serious.

Second, we carried out an experiment to measure the performance improve-
ment by using C model instead of SystemC model for communication archi-
tecture simulation. We enabled cache memory for this experiment, since the
performance improvement should be measured on a more realistic situation.

We used two applications for this experiment. One is a JPEG decoder and
four processors execute the identical JPEG decoder application on the platform
with a single shared bus. The other is an H.263 decoder, and we partitioned and
mapped DCT and Dequantization of U, V frame to two processors and the other
processors took charge of the other tasks. Table 5 shows the results.

Table 5. Comparing simulation performance of SystemC model and C model

Application H.263 Decoder JPEG Decoder
Architecture Model SystemC C Model SystemC C Model
Simulated Cycles 19,725,900 19,749,850 5,220,570 5,220,525

Simulation Time(Sec.) 332.129 20.359 92.438 14.26
Error Rate(%) 0.00 0.12 0.00 0.00

Performance Improvement 1.00 16.31 1.00 6.48

12 T. Oh, Y. Yi, and S. Ha

Table 5 shows that using C model for communication architecture simulation
improves simulation performance drastically while maintaining the error rate less
than 0.2%. Therefore, communication architecture simulation using C model is
useful for exploring wide design space with reasonable accuracy.

7 Conclusion

This paper proposes two communication architecture simulation methods in
the virtual synchronization cosimulation framework. We proposed two methods:
SystemC modeling and C modeling. The former method has an advantage for ex-
tensibility and accuracy by reusing the already verified simulation models, com-
mercial SystemC simulation environment. The latter method is advantageous
when exploring wider range of design space since it induces faster simulation
speed.

Since the current implementation of C model only supports AMBA AHB
bus, future research will be focused on the modeling of other communication
architectures including bus matrix and network-on-chip architecture. We also
need to simulate various peripheral devices like interrupt or memory controllers
in the proposed framework.

References

1. Uhlig, R., Mudge, T.: Trace-Driven Memory Simulation: A Survey. ACM Computing
Surveys 29(2) (1997)

2. Kim, D., Yi, Y., Ha, S.: Trace-Driven HW/SW cosimulation using virtual synchro-
nization technique. In: DAC. Proc. Design Automation Conference (2005)

3. SystemC initiative, http://www.systemc.org
4. Lahiri, K., Raghunathan, A., Dey, S.: System-level performance analysis for design-

ing on-chip communication architectures. IEEE Transactions on CAD of Integrated
Circuits and Systems 20(6), 768–783 (2001)

5. Baghdadi, A., Zergainoh, N., Cesario, W.O., Jerraya, A.A.: Combining a perfor-
mance estimation methodology with a hardware/software codesign flow supporting
multiprocessor systems. IEEE Transactions on Software Engineering 28(9), 822–831
(2002)

6. Pasricha, S., Dutt, N., Ben-Romdhane, M.: Fast exploration of bus-based on-chip
communication architectures. CODES+ISSS (2004)

7. Schirner, G., Dömer, R.: Accurate yet fast modeling of real-time communication.
CODES+ISSS (2006)

http://www.systemc.org

A Model-Driven Automatically-Retargetable Debug Tool
for Embedded Systems

Max R. de O. Schultz, Alexandre K.I. Mendonça, Felipe G. Carvalho,
Olinto J.V. Furtado, and Luiz C.V. Santos

Federal University of Santa Catarina, Computer Science Department,
Florianópolis, SC, Brazil

{max, mendonca, fgcarval, olinto, santos}@inf.ufsc.br

Abstract. Contemporary SoC designs ask for system-level debugging tools suit-
able to heterogeneous platforms. Such tools will have to rely on some low-level
model-driven debugging engine that must be retargetable, since embedded code
may run on distinct processors within the same platform. This paper describes
a technique for automatically retargeting debugging tools for embedded code in-
spection. The technique relies on two key ideas: automatic extraction of machine-
dependent information from a formal model of the processor and reuse of a
conventional binary utility package as implementation infrastructure. The re-
targetability of the technique was experimentally validated for targets MIPS,
SPARC, PowerPC and i8051.

1 Introduction

Modern embedded systems are often implemented as systems-on-chip (SoCs) whose
optimization requires design space exploration. Alternative CPUs may be explored so as
to minimize code size and power consumption, while ensuring enough performance to
fulfill real-time constraints. Therefore, design space exploration requires the generation,
inspection and evaluation of embedded code for distinct target processors. Besides, con-
temporary SoC designs ask for system-level debugging tools suitable to heterogeneous
platforms. Such tools will have to rely on some low-level model-driven debugging en-
gine that must be retargetable, since embedded code may run on distinct processors
within the same platform.

As manually retargeting is unacceptable under the time-to-market pressure, auto-
matically retargetable tools are mandatory. Retargetable tools [1] automatically extract
machine-dependent information from a processor model, usually written in some archi-
tecture description language (ADL).

To prevent the tools from being tied to a given ADL, an abstract processor model
could be envisaged. To be practical, such a model should be synthesizable from a de-
scription written in some ADL. Figure 1 describes a typical model-driven tool chain. It
summarizes distinct classes of information flow (tool generation, code generation, code
inspection and code evaluation). Exploration consists of four major steps, as follows.

First, given a target processor model, code generation tools (compiler backend, as-
sembler and link editor), code inspection tools (dissassembler and debugger) and an
instruction-set simulator are automatically generated.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 13–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 M.R. de O. Schultz et al.

Fig. 1. Model-driven tool flows

Then, the application source code can be compiled, assembled and linked, resulting
in executable code.

In a third step, the executable code can be run on the instruction-set simulator and
its functionality can be observed with the help of disassembling and debugging tools.
These tools allow the code to be executed incrementally (step) or to be stopped at certain
code locations (breakpoints) so as to monitor program values (watchpoints).

Finally, as soon as proper functionality is guaranteed by removing existent bugs,
continuous execution on the simulator allows the evaluation of code quality with respect
to design requirements. If some requirement isn’t met, an alternative instruction set-
architecture (ISA) may be envisaged to induce a new solution. If the current processor
is an application-specific instruction-set processor (ASIP), its ISA may deserve further
customization. Otherwise, a new candidate processor may be selected.

This paper focuses on a technique for generating debugging tools from an arbitrary
processor model. The technique relies on two key ideas. First, ISA-dependent infor-
mation is automatically extracted from the model of the target processor. Second, the
well-known GNU Binutils [2] and GNU debugger [3] packages are employed as im-
plementation infrastructure: ISA-independent libraries are reused, while target-specific
libraries are automatically generated.

A Model-Driven Automatically-Retargetable Debug Tool for Embedded Systems 15

The remainder of this paper is organized as follows. Section 2 briefly reviews related
work. Section 3 formalizes the processor model that drives tool retargeting. Section 4
discusses implementation aspects. Experimental results are provided in Section 5. In
Section 6, we draw our conclusions and comment on future work.

2 Related Work

2.1 Manually Retargetable Tools

Manually retargetable binary utilities are available within the popular GNU Binutils
package [2]: assembler (gas), linker (ld), debugger (gdb) [3] and disassembler (obj-
dump). Essentially, the Binutils package consists of an invariant ISA-independent core
library and a few ISA-dependent libraries that must be rewritten for each new target
CPU. Among the ISA-dependent libraries, there are two main libraries, namely Op-
codes and BFD, which require retargeting.

The Opcodes library describes the ISA of a CPU (instruction encoding, register en-
coding, assembly syntax). Unfortunately, there is no standard for ISA description within
this library.

The BFD library provides a format-independent (ELF, COFF, A.OUT, etc.) object
file manipulation interface. It is split into two blocks: a front-end, which is the library’s
abstract interface with the application and a back-end, which implements that abstract
interface for distinct object file formats.

2.2 Automatically Retargetable Tools

A great deal of contemporary retargetable tools rely on automatic generation from a
CPU model, written in some ADL, such as nML [4], ISDL [5], and LISA [6].

Although disassembler and debugger are available for most ADLs, it is unclear to
which extent they are automatically generated or simply hand-retargeted. For instance,
once a simulator is generated in the LISA tool chain, it can be linked to a debugging
graphical user interface, but there is no clue on how the underlying mechanism actually
works.

It has been acknowledged that novel assembly-level optimization approaches, like
SALTO [7] and PROPAN [8], deserve further investigation [1]. Such techniques allow
conventional compiler infrastructure to be reused by enabling post-compiling machine-
dependent optimizations to further improve code quality.

Although such post-compiling optimizations are promising, they may inadvertently
introduce flaws. Code inspection tools could loose track of breakpoints and watchpoints
due to optimizations not connected to the source code (in face of new locations and
distinct register usage). Therefore, conventional debuggers are likely to overlook flaws
introduced by post-compiling optimizations.

A technique for retargeting assemblers and linkers to the GNU package was pre-
sented in [9]. It relies on a formal notation to describe both the target ISA and its re-
location information. Although the formalism is solid, experimental results are scarce.
Besides, it is not possible to foresee if the proposed framework is able to address retar-
getable debugging tools.

16 M.R. de O. Schultz et al.

Two facts motivated the work described in this paper: first, the lack of information
reporting how code inspection tools are made retargetable and at which extent this is
performed automatically; second, the scanty experimental results providing evidence of
proper retargetability.

Although we pragmatically reuse a conventional binary-utility package as imple-
mentation infrastructure (like in [9]), we rely on an ADL-independent processor model.

3 Processor Model

This section formalizes the ISA aspects of the processor model in the well-known BNF
notation. To ease its interpretation, an example is also provided. Figure 2 specifies the
formal structure for the information typically available in processor manuals, which
relies on the notions of instruction, operand and modifiers.

A modifier is a function that transforms the value of a given operand. It is written
in C language and it has four pre-defined variables to specify the transformation: input
is the original operand value, address represents the instruction location, parm is a
parameter that may contain an auxiliary value (such as required for evaluating the target
address for PC-relative branches), output returns the transformed operand value.

An operand type oper-type specifies the nature of an instruction field and it is tied
to a binary value encoded within a given field. Examples of operand types are imm
for immediate values, addr for symbolic addresses and exp for expressions involving
immediate values and symbols.

Figure 3 shows an illustrative example of the processor model, according to the spec-
ified syntax. Lines 1 to 5 describe the mapping for the operand reg, where the symbols
$0, $1, ..., $90 are mapped to the values 0, 1, ..., 90. Note that many-to-one mappings
are allowed. For instance, the symbols $sp $fp, $pc and $ra are mapped to values al-
ready mapped in line 1. Lines 7 to 8 define the modifier R, which defines a function to
be applied for PC-relative transformations. The modifier’s results (output) is evaluated
by adding the current location (address) to the operand value (input) and to an offset
(parm). Lines 10 to 15 define the instruction beq. Line 11 defines its instruction for-
mat as a list of fields and its associated bit sizes. Line 12 defines its assembly syntax:
reg, reg and exp are tied to instruction fields rs, rt and imm (beq is the instruction
mnemonic). The modifier R (whose offset is 2) is applied to operand type imm, thereby
specifying that the resulting value is PC-relative and shifted 2 bits to the left. Finally, in
line 14, the constant value 0x04 is assigned to the instruction’s op field.

From the processor model, a table of instructions is generated as a starting point for
the retargeting algorithms. Each table entry is a tuple defined as follows:

table-entry = (mnemonic , opinfo, image, mask , pseudo, format-id)

Let’s illustrate the meaning of its elements by means of an example. From the model
in Figure 3, the following table entry would be generated for the instruction beq:

{"beq", "%reg:1:,%reg:2:,%exp:3:", 0x10000000 , 0xFC000000 , 0, Type_I}

The first element is the instruction’s mnemonic (beq). The second stores information
like type (reg, reg, exp) and instruction field location (1, 2, 3). The third element stores
the partial binary image of the instruction (0x10000000). The fourth element stores a

A Model-Driven Automatically-Retargetable Debug Tool for Embedded Systems 17

<isa-def > ::= <list -operand > <list -modifier > <list -instruction >

<list -operand > ::= <operand -def > <list -operand > | <operand -def>

<operand -def> ::= operand oper -id { "mapping definition" }

<list -modifier > ::= <modifier -def> <list -modifier > | empty

<modifier -def> ::= modifier modifier -id { "modifier code" }

<list -instruction > ::= <instruction -def> <list -instruction >
| <instruction -def>

<instruction -def> ::= instruction insn -id { <format-desc > ; (<syntax-desc >) :
(<operand-decoding >) ; <opcode-decoding > }

<format-desc > ::= field-id : constant , <format-desc > | field-id : constant

<syntax-desc > ::= mnemonic -id <oper -type -list >

<oper -type -list > ::= <qualifier > <oper -type > , <oper -type -list >
| <qualifier > <oper -type >

<oper -type > ::= oper -id | imm | addr <modifier > | exp <modifier >

<modifier > ::= << modifier -id (constant) | empty

<operand -decoding > ::= field-id , <operand -decoding > | field-id

<opcode-decoding > ::= field-id = constant , <opcode-decoding >
| field-id = constant

<qualifier > ::= # | $ | empty

Fig. 2. Processor model specification

1. operand reg { $[0..90] = [0..90];
2. $sp = 29;
3. $fp = 30;
4. $ra = 31;
5. $pc = 37; }
6.
7. modifier R { output = input + address + parm; }
8.
9. instruction beq {

10. op:6, rs:5, rt:5, imm:16,
11. (beq reg, reg, exp << R(2)) : (rs, rt, imm);
12. op=0x04
13. }

Fig. 3. A segment of the MIPS model

mask (0xFC000000) to be used by the dissassembling algorithm in order to identify the
instruction. The fifth element specifies whether the entry refers to a pseudo-instruction
or not (0 = not). Finally, the last element stores the instruction format identifier (Type_I,
in this case).

18 M.R. de O. Schultz et al.

4 Implementation

Our generation technique reuses the GNU Binutils and the GNU gdb packages as much
as possible. The structure of the disassembling and debugging tools is depicted in Figure
4, where the generated machine-dependent libraries are marked with an asterisk.

Observe that both tools share the BFD and Opcodes libraries. Besides, note that
each tool consists of a target-specific library and a machine-independent core library.
Therefore, the key to automatic tool retargeting is to generate both libraries and both
target-specific libraries automatically, as will be described in the next subsections. The
ISA-dependent information is automatically extracted from the model of the target
CPU.

Note that a retargeted tool is obtained by simply compiling the generated target-
specific libraries together with the respective core library. Each generated library
consists of a few files, whose organization is summarized in Figure 5, where [arch]
represents a given ISA. The remaining of this section focuses on the main generated
files.

Fig. 4. Tools structure

4.1 Generation of Library Opcodes

The file include/opcodes/[arch].h declares three data structures supporting in-
struction decoding and encoding, the mapping between register names and actual en-
codings, and pseudo-instruction manipulation. (It should be noted that disassembling
doesn’t make use of pseudo-instructions to avoid ambiguity).

The corresponding opcodes/[arch]-opc.c file contains the above mentioned data
structures, which are fed with the information extracted from the processor model.

4.2 Generation of Library BFD

ISA attributes extracted from the processor model are encoded within this library. Since
we have adopted the ELF format, only the ELF-related files are generated. Among
them, the most important file is bfd/cpu-[arch].c, which contains information such
as architecture name, word length and address lenght.

A Model-Driven Automatically-Retargetable Debug Tool for Embedded Systems 19

- binutils // GNU Binutils
- bfd // library BFD

. cpu -[arq].c

. elf32-[arq].c
- opcodes // library Opcodes

. [arq]-opc.c

. [arq]-dis.c
- include // general files include

- elf
. [arq].h

- opcode
. [arq].h

- gdb // GNU Debugger
- bfd // library BFD

. cpu -[arq].c

. elf32-[arq].c
- opcodes // library Opcodes

. [arq]-opc.c

. [arq]-dis.c
- include // general files include

- elf
. [arq].h

- opcode
. [arq].h

- gdb // files of debugger
. [arq]-tdep.c
- config

- [arq]
. [arq].mt

Fig. 5. Generated file tree

4.3 Target-Specific Disassembler Library

The main file for the disassembling process is opcodes/[arch]-dis.c. It manipulates
the data structures mentioned in Section 4.1 and invokes BFD interface methods to read
object files.

4.4 Target-Specific Debugger Library

Within this library, the most important file is gdb/[arch]-tdep.c. It contains func-
tions handling subroutine calls and giving access to general-purpose and specific regis-
ters (e.g. program counter, stack pointer and frame pointer), so as to allow breakpoint
control and value watching.

5 Experimental Results

For the sake of tool validation, we have adopted the well-known Mibench [10] bench-
mark. In order to validate our tool generators, conventional manually-retargeted tools
were used to set reference files and values. Then, we compared results produced by the
generated tools with the reference values obtained from conventional tools.

Tool validation is achieved, not only by observing proper functionality of the gener-
ated tools, but also by observing the retargetability of the generating tool. To check for

20 M.R. de O. Schultz et al.

retargetability, the validation procedures described in the following subsections were
repeated for four distinct targets: PowerPC, MIPS, SPARC and i8051.

5.1 Validation of Disassembling Tools

To validate generated disassembling tools, we employed the following key idea: given
a reference object file, if it is disassembled and then re-assembled, the resulting file
should match the reference file. Figure 6 shows the adopted validation flow. Rectangles
represent tools and ellipses denote files. The procedure starts from a reference object
file, which is fed to the generated disassembler (to be validated), giving rise to an output
assembly file. Then, this file is submitted to an assembler, resulting in an object output
file. In the end, the input file (reference) and output file (under validation) are compared
to check whether they matched or not.

Fig. 6. Validation flow for disassembling

It could be argued that such a validation procedure should compare assembly codes,
instead of object codes. However, the direct comparison of assembly codes is hampered
by the presence of pseudo-instructions or instructions admitting multiple assembly syn-
taxes. For instance, the MIPS instruction "jump at register" can be written in two dif-
ferent ways: "jr 1”or” j1". That’s why reversed matching was used instead of direct
matching, without loss of generality. We repeated the validation procedure for each tar-
get CPU and for every benchmark program. As a result, all the comparisons matched,
therefore providing evidence of proper functionality.

5.2 Validation of Debugging Tools

To validate generated debugging tools, we defined a set of breakpoints and watchpoints
for a given executable file and observed the resulting values and control for both conven-
tional and generated debuggers. Figure 7 shows the adopted validation flow. Rectangles
represent tools, while ellipses represent either a file or a set of observed values. The

A Model-Driven Automatically-Retargetable Debug Tool for Embedded Systems 21

Fig. 7. Validation flow for debugging

procedure starts from a given executable file, which is run on an instruction-set simula-
tor of the target CPU. First, breakpoints and watchpoints are inserted in the code by a
conventional debugger. As a result of running the instrumented code, watch point values
are set as a reference. Then, a generated debugger was used to repeat the procedure for
exactly the same breakpoints and watch points. In the end, the values under validation
were compared to the reference values.

We repeated the validation procedure for each target CPU and for every benchmark
program. Since all comparisons matched, they indicate that the generated debuggers are
equivalent to their manually retargeted counterparts.

5.3 Tool Efficiency

We provide some quantitative evidence of tool efficiency by showing the relation be-
tween program size and runtime for the disassembling tool. Since the debugging tool
intensively invokes the disassembling engine, those results serve to assess the efficiency
of both tools.

To check for proper retargetability of the generating tool, the procedure above was
repeated for RISC (PowerPC, MIPS, SPARC) and CISC (i8051) targets, whose results
are shown in Tables 1 and 2, respectively. The first two columns show the benchmark

Table 1. Results for RISC targets

Program Files Size [Kb]
Runtime [s] (our | objdump)

MIPS SPARC PowerPC

typeset 1 29.7 32.6 25.3
0.049 0.035 0.071 0.031 0.050 0.039

bitcount 9 4.9 4.1 4.1
0.010 0.006 0.010 0.009 0.009 0.008

susan 1 64.7 59.4 52.7
0.099 0.074 0.139 0.057 0.104 0.095

jpeg 60 284.8 239.8 228.2
0.442 0.317 0.537 0.219 0.437 0.406

fft 3 5.9 5.5 5.3
0.010 0.007 0.014 0.010 0.012 0.012

22 M.R. de O. Schultz et al.

Table 2. Results for CISC target (i8051)

Program Files Size [b] Runtime [s]

int2bin 1 188 0.002
cast 1 213 0.002
sort 1 425 0.003
xram 1 214 0.003

programs and respective number of files. The remaining columns show the sizes of
".text" sections and disassembling runtimes for each distinct target processor. On aver-
age, our disassembling runtimes are 1.15 times slower than the GNU native disassem-
bling tool (objdump). Although this could be seen as the price to pay for the benefit of
achieving automatic retargetability, we already detected opportunities to optimize the
prototype tool so as to reduce our runtimes.

6 Conclusions

The relevance of the proposed technique lies in the tracks opened by promising
assembly-level post-compiling optimizations and by the need of contemporary system-
level debugging tools in heterogeneous platforms. The proposed technique fits in a prag-
matic approach for automatic tool retargeting. Its underlying mechanism was clearly
described, as opposed to related work.

Experimental validation gives evidence of proper functionality and actual retargetabil-
ity for all tested cases. In particular, our technique was able to generate a disassembling
tool for a processor with no pre-existent GNU porting (the i8051).

We first intend to improve the code of the prototype tool so as to reduce runtimes and
then perform experiments with new targets like Motorola ColdFire and Altera Nios2.
As future work, we intend to elaborate an API to the retargeting engine so as to enable
tool generation from an arbitrary ADL. Also, we want to address mechanisms to tie the
retargetable debugger to a system-level debugging tool.

References

1. Leupers, R., Marwedel, P.: Retargetable Compiler Technology for Embedded Systems -
Tools and Applications. Kluwer Academic Publishers, Dordrecht (2001)

2. Pesch, R.H., Osier, J.M.: The GNU binary utilities. Free Software Foundation, Inc. (1993)
3. GNU: The GNU Project Debugger, http://www.gnu.org/software/gdb
4. Hartoog, M.R., Rowson, J.A., Reddy, P.D., Desai, S., Dunlop, D.D., Harcourt, E.A., Khullar,

N.: Generation of software tools from processor descriptions for hardware/software codesign.
In: Proceedings of the 34th Annual Conference on Design Automation, pp. 303–306. ACM
Press, New York (1997)

5. Hadjiyiannis, G., Hanono, S., Devadas, S.: ISDL: an instruction set description language for
retargetability. In: Proceedings of the 34th Annual Conference on Design Automation, pp.
299–302. ACM Press, New York (1997)

6. Pees, S., Hoffmann, A., Zivojnovic, V., Meyr, H.: LISA – machine description language
for cycle-accurate models of programmable DSP architectures. In: Proceedings of the 36th
ACM/IEEE Conference on Design Automation, pp. 933–938. ACM Press, New York (1999)

http://www.gnu.org/software/gdb

A Model-Driven Automatically-Retargetable Debug Tool for Embedded Systems 23

7. SALTO Project, http://www.irisa.fr/caps/projects/Salto
8. Kästner, D.: Propan: A retargetable system for postpass optimizations and analyses. In: Pro-

ceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embed-
ded Systems, pp. 63–80. ACM Press, New York (2000)

9. Abbaspour, M., Zhu, J.: Retargetable binary utilities. In: Proceedings of the 39th Conference
on Design Automation, pp. 331–336. ACM Press, New York (2002)

10. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B: A free,
commercially representative embedded benchmark suite. In: Proceedings of the 4th Annual
IEEE Workshop on Workload Characterization, pp. 3–14 (2001)

http://www.irisa.fr/caps/projects/Salto

Performance Evaluation of Memory Management
Configurations in Linux for an OS-Level Design Space

Exploration

Sangsoo Park1 and Heonshik Shin2

1 University of Michigan, Department of Electrical Engineering and Computer Science
2260 Hayward St., Ann Arbor, MI 48109 USA

ssoopark@eecs.umich.edu
2 Seoul National University, School of Computer Science and Engineering

San 56-1, Sinlim, Gwanak, Seoul 151744 Korea
shinhs@snu.ac.kr

Abstract. The objective of this paper is to analyze how the memory management
configuration in Linux influences run-time performance of embedded
systems. Extensive experiments confirm that the configuration of the memory
management subsystem significantly affects the overall execution time, the mem-
ory performance, and the system call overhead. Our quantitative experimental re-
sults will help embedded systems designers to understand the effect of memory
management configurations on the applications within a system, and contribute to
the design of more efficient systems with an OS-level design space exploration.

1 Introduction

For many years, the majority of small-scale embedded systems have been implemented
without an operating system (OS). Traditionally, such embedded systems have per-
formed multitasking using various programming techniques such as a polled loop,
co-routines, and interrupt-driven scheduling. As embedded systems grow in size and
complexity, however, an OS has become essential to simplify their design. Today, any
serious embedded software employs a real-time multitasking executive, or a fully
fledged OS such as embedded Linux. The OS provides an effective development and
execution environment for application programmers, enabling them to develop target
systems with ease and efficiency.

During the design of an embedded system, small variations in a few parameters may
exert significant effects on its performance and cost. It is therefore important to explore
the design space carefully, and to examine different implementation choices, in order to
determine appropriate trade-offs among conflicting objectives [1].

Most modern computer systems now support virtual memory, which provides a dis-
tinct virtual address space for each process and also offers hardware-assisted memory
protection for multi-programming. A virtual memory system is maintained by the mem-
ory management subsystem of the OS, and requires hardware support from an MMU
(memory management unit) in the CPU. The presence of the MMU greatly helps the
OS to control memory use at run-time, which improves functionality, productivity, and

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 24–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Performance Evaluation of Memory Management Configurations in Linux 25

maintainability [2]. However, a significant increase in computational overhead is in-
evitable with an MMU, as resources are required to manage the virtual memory system
as well as the MMU hardware, which of course also consumes power and incurs man-
ufacturing cost. In this sense, how to configure the memory management subsystem in
an OS becomes one of the important design parameters for embedded systems.

In this paper, we investigate how the memory management configuration influences
its performance at run-time. We will do this by quantitatively evaluating the perfor-
mance of various embedded applications running under different memory management
configurations in embedded Linux. We will define four memory management configura-
tions that are adopted and developed for the evaluations and describe the pros and cons
of their architectures. Experimental results for various embedded applications, such as
execution time, memory performance, and system call overhead will be presented and
their effect on performance analyzed.

The rest of this paper is organized as follows: Section 2 introduces the four memory
management configurations. Section 3 describes our methodology, experimental envi-
ronments, the experimental results and their analysis. Section 4 concludes this paper.

2 Memory Management Configurations

2.1 VM (Virtual Memory)

In general, the introduction of virtual memory has made many tasks simpler, and this is
also true for embedded systems. Benefits include memory protection and the provision
of distinct virtual address spaces for the kernel and for each user process. However,
there is an inevitable computational overhead in managing the virtual memory system.

Translating virtual to physical address requires one or more memory accesses from
the page tables which are managed by the memory management subsystem. But most
modern CPUs include a TLB (translation lookaside buffer) to cache recently used trans-
lations to speed up the process [3]. But the TLB contains a fixed number of entries.
When it cannot supply the required translation, additional memory accesses by the
memory management subsystem of the OS are required to translate the address and
then to load it into the TLB. The TLB miss ratio is a measure of the frequency of this
event, and is therefore an important criterion for assessing the performance overhead
incurred by a virtual memory system. This will be evaluated in Section 3.3.

2.2 VM+KMT (VM & Kernel-Mode Thread)

A simple but effective approach to reduce the overhead of virtual address translation
is to modify the memory management configuration so as to share the virtual address
space between the kernel and the process, by running a program as a KMT (kernel-
mode thread) [2], as shown in Fig. 1. By sharing address space, the burden of memory
management is reduced. For instance, separate page tables for kernel and process are
merged into one page table. To support sharing address space, we have modified the C
library to run in the kernel-mode thread by replacing all the system calls, and the glue
code with corresponding function calls in the kernel. The idea of running a program as

26 S. Park and H. Shin

Kernel
0x00000000

0xFFFFFFFF

Process 1
0x00000000

0xFFFFFFFF

MMU

Physical memory

0x00000000

0xFFFFFFFF

MMU

Physical memory

K
ernel

P
rocess

1

Fig. 1. Kernel-mode thread comparisons

a kernel thread is not new. Many researchers have been using this approach in various
applications to improve performance [4]. However, previous work has focused on just
one of its side-effects, the reduced overhead for system call. But there are actually three
major side-effects of adopting VM+KMT, as follows.

1. System call overhead - It is well known that system calls are a significant overhead
for user processes. The software trap and context switch are known to involve a
severe performance penalty [5]. But the overhead for processing OS services is
minimized by the VM+KMT, because both the kernel and the user process run in
kernel mode because system calls are replaced with function calls. We will evaluate
the overhead of a system call in Section 3.4.

2. Memory performance - Most microprocessors with an MMU use virtual addressing
for the cache tag. This is because virtual addressing eliminates address translation
after a cache hit. However, a context switch implies a change to the virtual address
mappings in the page tables; thus, all the TLB and cache entries have to be flushed
to make sure that they do not contain stale data after the switch [6]. Therefore, fre-
quent context switches are necessarily incurring high overheads and leading to poor
cache performance. It seems reasonable to expect that the cache hit ratio could be
improved by minimization of the context switching that occurs with the VM+KMT,
and this possibility will be evaluated in Section 3.3.

3. Memory protection - In the VM+KMT, the kernel and the user program share the
virtual address space in kernel mode. This raises a memory protection problem
because the MMU, which is responsible for memory protection, can no longer dif-
ferentiate between references by the kernel and by the user program. The VM+KMT
has sacrificed automatic memory protection to reduce the overhead of system calls
and to improve cache performance.

2.3 FM (Flat Memory)

The VM+KMT requires a virtual memory system and therefore a hardware MMU must
be in place. Many small embedded systems have severe restrictions on their power con-
sumption or manufacturing cost, making the inclusion of an MMU infeasible. The FM
shares physical addresses between the kernel and user processes, like the VM+KMT,
but FM does not require an MMU. The differences between the two configuratons are

Performance Evaluation of Memory Management Configurations in Linux 27

in the cache tags and in the use of system call. Using the FM, cache entries are indexed
by their physical addresses. The effect on memory performance of physical and vir-
tual addressing in cache tags will be evaluated in Section 3.3. The FM also needs to
use system calls, and therefore incurs the overhead of context switching, because user
programs are running as user-level processes.

In a system without an MMU, the memory management subsystem of the OS has
the advantage that it does not need to handle per-process page tables (or TLB misses)
and the associated protection required by the virtual memory system. But this intro-
duces restrictions on the use of some APIs such as the fork() system call, and on
handling memory-related features. Application programmers are still able to allocate
non-overlapping memory regions to the application, but with caution, because implicit
restrictions are placed on memory usage as depicted in Fig. 2 [7]. For example, the pro-
grammer must define the stack size carefully in order to avoid an overflow. Overwriting
the stack with data or code will also lead to a system crash.

Virtual
memory

Stack

Heap

Static
data

Text

Top addr.
D000-0000

(virtual)

Virtual gap
~ 256 MB

Gaps round
to next page

Base addr.
C000-0000

(virtual)

Flat
memory

Stack

Heap

Static
data

Text

Top addr.
00EA-6000
(physical)

Base addr.
00E8-0000
(physical)

Fixed-size
stack

No gap

Fig. 2. Virtual memory vs. flat memory

2.4 FM+KMT (FM & Kernel-Mode Thread)

Changing from either the VM or the VM+KMT to the FM simplifies memory manage-
ment but requires more stringent discipline in using memory. Any comparison between
the FM and VM+KMT must be skewed, because the FM suffers from the overhead of
system calls, whereas the VM+KMT can call OS services much more efficiently when
it is implemented as a function. We will now apply the kernel-mode thread to the FM ,
and the resulting FM+KMT can be more fairly compared with VM+KMT.

3 Performance Evaluation

3.1 Experimental Environment

In order to experiment with varying hardware design parameters, we used the
ARM926EJ-S as the CPU with an MMU, and the ARM946E-S without [8]. We used

28 S. Park and H. Shin

the ARMulator, a highly configurable system simulator, which can not only simulate
various CPU cores but can also model different types of memory, a range of cache
architectures, and also external hardware. We configured the ARMulator with the min-
imum set of components that are required to run an OS which includes an interrupt
controller and a timer together with a CPU and RAM. Also, we configured the cache
as follows: 32KB size data and instruction cache with 4-way associative and 32-byte
line. We have ported Linux to ARMulator and used it to run the embedded applications.
Table 1 summarizes the experimental environment.

Table 1. Summary of the experimental environment

CPU MMU Kernel Library Compiler
ARM926EJ-S Yes linux-2.4.21-rmk1 uClibc-0.9.19 gcc-2.95.3 (-Os)
ARM946E-S No linux2.4.21-uc0 uClibc-0.9.19 gcc-2.95.3 (-Os)

To evaluate the performance of an embedded system, we need to determine which
embedded applications are under consideration. In this paper, we have used MiBench
[9]. This benchmark suite contains representative embedded applications in seven cat-
egories as in Fig. 3. We have ported the embedded applications to our platform so that
they will run with our four memory management configurations. We selected two ap-
plications in each category, and measured their execution times, cache miss ratios, and
TLB miss ratios, for each of the four memory management configurations. Also, we
used lat syscall and lat ctx applications in the lmbench benchmark suite [10] to mea-
sure the system call overhead.

Note that the programming methodologies of the four configurations we have se-
lected do not deviate from the generic Linux programming methodology, except for a
few restrictions on memory usage and on the APIs. However, it should be aware that the
DSA (dynamic storage allocation) algorithm is quite different in the VM and the FM.
That is because DSA relies on the sbrk() system call, which utilizes the virtual mapping
features provided by the MMU in the VM, but which is implemented in FM through
the mmap() [7]. We would expect the execution time and memory performance of an
embedded application to be affected by these changes to the DSA. In order to identify
its impact, we measured the proportion of the execution time used by the DSA for each
application in VM as shown in Fig. 3.

3.2 Execution Time

The experimental execution times are shown in Fig. 4. For the purposes of compar-
ison, the results for the VM+KMT, FM, and FM+KMT are presented as percentage
reductions compared with the execution time for the VM. As shown in Fig. 4, the re-
duction in execution time varies between 0.10% (adpcm.decode under VM+KMT) and
23% (rijndael.decode under FM+KML) depending on the application and the memory
management configuration.

We observe that the execution times for each configuraton obey the inequalities,
VM > FM, VM > VM+KMT, FM > FM+KMT. However, when VM+KMT is com-
pared with FM, the results for some applications (qsort, tiff2rgba, patricia, ispell, and

Performance Evaluation of Memory Management Configurations in Linux 29

0

5

10

15

20

25

30

35

40

45

50

ba
si

cm
at

h

bi
tc

ou
nt

qs
or

t

su
sa

n.
co

rn
er

s

su
sa

n.
ed

ge
s

su
sa

n.
sm

oo
th

in
g

jp
eg

.d
ec

od
e

jp
eg

.e
nc

od
e

m
ad

tif
f2

bw

tif
f2

rg
ba

tif
fd

ith
er

tif
fm

ed
ia

n

ty
pe

se
t

di
jk

st
ra

pa
tr

ic
ia

gh
os

ts
cr

ip
t

is
pe

ll

rs
yn

th

st
rin

gs
ea

rc
h

bl
ow

fis
h.

de
co

de

bl
ow

fis
h.

en
co

de

pg
p.

de
co

de

pg
p.

en
co

de

rij
nd

ae
l.d

ec
od

e

rij
nd

ae
l.e

nc
od

e

sh
a

C
R

C
32

F
F

T
.in

ve
rs

e

F
F

T

ad
pc

m
.d

ec
od

e

ad
pc

m
.e

nc
od

e

gs
m

.d
ec

od
e

gs
m

.e
nc

od
e

Automotive and
industrial control

Consumer devices Network Office
automation

Security Telecommunications

D
S

A
 e

xe
cu

tio
n

tim
e

ra
tio

 (
%

)

Fig. 3. Execution time ratio for dynamic storage allocation in MiBench applications

gsm.decode) are characterized by VM+KMT < FM, although the rest of the applica-
tions show the more general tendency VM+KMT > FM. This variation occurs because
the trade-off between the overhead of system calls and that of managing the MMU
differs from application to application. However, in general, the experimental results
indicate that the performance of these benchmark embedded applications improves as
we simplify the memory management configuration. This is obvious, however, such
quantitative results would be useful for determining the configuration while exploring
design space. On the basis of these results, we are now going to identify and character-
ize opportunities for improving the design of embedded operating systems in terms of
memory performance and related OS services.

3.3 Memory Performance

Table 2 summarizes the memory performance; instruction cache miss ratio, data cache
miss ratio, and TLB miss ratio for each experiment. These results suggest that the TLB
miss ratio decreases substantially, as described in Section 2.2, when the memory man-
agement configuration is changed from VM to VM+KMT. The absence of an overhead
for managing the virtual memory system is apparent in the results for the FM.

Using the VM+KMT, the memory management subsystem manages one common
page table, instead of separate tables for kernel and process. The number of context
switches, which change the virtual address mapping in the page tables and TLB, and
the frequency of cache flushing, are minimized by VM+KMT. As a result, the cache
miss ratios for the VM+KMT are less than those for the VM. But this observation can-
not be extended to a comparison between the FM and FM+KMT. The cache miss ratio
is higher using the FM+KMT than it is with the FM, for applications such as tiff2rgba,
adpcm.decode, and gsm.decode. However, FM+KMT gains because fewer memory ref-
erences are required, since the CPU instructions required for a function call is much

30 S. Park and H. Shin

0

5

10

15

20

25

30

bi
tc

nt
s

qs
or

t

jp
eg

.d
ec

od
e

tif
f2

rg
ba

di
jk

st
ra

pa
tr

ic
ia

is
pe

ll

st
rin

gs
ea

rc
h

rij
nd

ae
l.d

ec
od

e

sh
a

ad
pc

m
.d

ec
od

e

gs
m

.d
ec

od
e

Automotive and
industrial control

Consumer
devices

Network Office automation Security Telecommunications

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

ra
tio

 (
%

)

VM VM+KMT FM FM+KMT

Fig. 4. Comparisons of execution time for each memory management configuration

smaller than that for a system call. Any comparison between the cache miss ratios for
physical addressing (FM) and for virtual addressing (VM) of the cache tags is highly
dependent on the application.

All these experimental results are affected by memory references incurred by the ker-
nel and by the user process. To identify the extent to which the kernel affects the perfor-
mance, further results were obtained to characterize the behavior of the OS and the way
that its impact varies between applications with the results reported elsewhere [11]. The
experimental results shows that a significant number of memory references are made
by the kernel, especially when compared with the number of instructions executed. We
deduce that the OS kernel has a poor memory performance in these benchmark appli-
cations. This implies that the OS has a significant impact on overall performance [12],
a fact which we cannot ignore in our evaluation.

3.4 System Call Overhead

To identify the extent to which KMT actually contributes to the improved performance
in Section 3.2, we used the lat syscall benchmark, which measures the latency of system
calls for certain OS services.

The results of this test are presented in Fig. 5. They show that the latency for pro-
cessing OS services is significantly reduced by adopting KMT. For example, the latency
of the simplest system call, getpid(), is reduced by between 72% and 75%. We can also
see that the absence of an MMU reduces the latency by between 12% and 26%, which
is due to the reduced overhead of context switching. This suggests that there is potential
for significant performance improvements in applications which frequently request OS
services.

On the other hand, the benchmark lat ctx measures the context switching time for
different numbers of processes and sizes of processes, i.e. size of local memory region
for computation. Using more and larger processes leads to a more realistic measure
of latency, because a large number of data accesses cause cache misses. As shown in
Fig. 6, the latencies of context switching for the FM are shorter than those for the VM

Performance Evaluation of Memory Management Configurations in Linux 31

0

10

20

30

40

50

60

70

80

getpid() read() write() stat() open/close()

La
te

nc
y

re
du

ct
io

n
ra

tio
 (

%
)

VM VM+KMT FM FM+KMT

Fig. 5. Comparison of system call latency for each memory management configuration

when the size of processes is 0KB and thus the number of data accesses to local memory
region which in turn generate memory bus traffic is negligible. But, if the size of the
processes is increased to 32KB, the latencies of context switching for the FM are longer
than those for the VM, when there are more than six processes.

To delve more deeply into these results, we conducted additional experiments to
measure the data cache miss ratio for the cases identified by dotted lines in Fig. 6. If
the average size of a process multiplied by the number of processes exceeds the 32KB
cache size, a context switch is triggered and the cache is flushed, regardless of the mem-
ory management configuration. With 32KB processes, the cache miss ratio is higher for
FM than for VM, which causes longer latencies during context switching, as shown in
Table 3.

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16 18 20

Number of processes

C
on

te
xt

 s
w

itc
hi

ng
 ti

m
e

(u
se

c)

FM-0KB FM-16KB FM-32KB VM-0KB VM-16KB VM-32KB

`

Fig. 6. Latency of context switching

32 S. Park and H. Shin

Table 2. Miss ratio (%) of the instruction cache (I-$), data cache (D-$), and TLB

VM VM+KMT FM FM+KMT
I-$ 0.003 0.002 0.002 0.002

bitcount D-$ 0.006 0.006 0.007 0.003
TLB 0.000 0.000
I-$ 0.033 0.032 0.056 0.009

qsort D-$ 3.534 2.949 2.593 2.408
TLB 0.044 0.000
I-$ 0.119 0.114 0.107 0.088

jpeg.decode D-$ 5.936 4.595 4.771 4.472
TLB 0.064 0.000
I-$ 0.039 0.025 0.038 0.040

tiff2rgba D-$ 15.370 13.809 15.477 13.355
TLB 0.022 0.004
I-$ 0.008 0.003 0.004 0.004

dijkstra D-$ 0.621 0.578 0.573 0.563
TLB 0.030 0.000
I-$ 0.083 0.064 0.079 0.070

patricia D-$ 0.278 0.176 0.254 0.174
TLB 0.023 0.000
I-$ 0.167 0.156 0.051 0.041

ispell D-$ 11.057 8.580 10.008 8.300
TLB 0.592 0.125
I-$ 0.142 0.052 0.055 0.050

stringsearch D-$ 4.373 3.693 3.634 3.845
TLB 0.034 0.000
I-$ 0.202 0.105 0.074 0.043

rijndael.decode D-$ 1.829 1.559 1.547 1.505
TLB 0.215 0.000
I-$ 0.019 0.016 0.016 0.011

sha D-$ 3.439 3.256 3.064 3.018
TLB 0.002 0.000
I-$ 0.099 0.086 0.044 0.033

adpcm.decode D-$ 7.152 7.070 6.877 6.918
TLB 0.010 0.000
I-$ 0.038 0.034 0.038 0.030

gsm.decode D-$ 0.758 0.756 0.435 0.608
TLB 0.019 0.000

Table 3. Data cache miss ratio for lat ctx (%)

Num. of proc. 2 20
Size of proc. VM VM+KMT FM FM+KMT

0KB 0.181 0.076 0.649 0.393
32KB 0.438 0.556 2.679 3.190

4 Conclusions

We have shown how the performance of an embedded application is affected by the
configuration of memory management in Linux. We observe that the performance of
embedded applications is highly dependent on the memory management configuration.
The overall execution time can be reduced by up to 23%, depending on the applica-
tion, by using a less complicated memory management configuration, which also im-
proves the memory performance. The system call overhead shows significant variations
as well, depending on the OS services. However, the OS would no longer provide the

Performance Evaluation of Memory Management Configurations in Linux 33

rigorous memory management such as automatic memory protection and extendable
stack which may require additional verifications of memory usage in the design time.
By providing data that quantifies the effect of the memory management subsystem on
the overall performance, the application-specific configuration of the memory manage-
ment subsystem in Linux will contribute to the design of more efficient systems by
enabling an OS-level design space exploration.

Acknowledgement

This work was supported by the Korea Research Foundation Grant funded by the Ko-
rean Government(MOEHRD). (KRF-2006-214-D00127)

References

1. Rosa, A.L., Lavagno, L., Passerone, C.: Hardware/software design space exploration for a
reconfigurable processor. In: Proceedings of IEEE Design, Automation and Test in Europe,
March 2003, pp. 570–575. IEEE Computer Society Press, Los Alamitos (2003)

2. Crowley, C.: Operating Systems: A Design-Oriented Approach. Irwin (1997)
3. Stallings, W.: Operating Systems: Internals and Design Principles. Prentice-Hall, Englewood

Cliffs (2001)
4. King, R., Neves, R., Russinovich, M., Tracey, J.M.: High-performance memory-based web

servers: kernel and user-space performance. In: Proceedings of USENIX Annual Technical
Conference, June 2001, pp. 175–188 (2001)

5. Maeda, T.: Safe execution of user programs in kernel mode using typed assembly language.
Master’s thesis, University of Tokyo (2002)

6. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, San Francisco (1996)

7. de Blanquier, J.: Supporting new hardware environment with uclinux. Journal of Linux Tech-
nology 1(3), 20–28 (2000)

8. Furber, S.: ARM System-on-Chip Architecture. Addison-Wesley, Reading (2000)
9. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench:

A free, commercially representative embedded benchmark suite. In: Proceedings of IEEE
Annual Workship on Workload Characterization, December 2001, IEEE Computer Society
Press, Los Alamitos (2001)

10. McVoy, L., Staelin, C.: lmbench: portable tools for performance analysis. In: Proceedings of
USENIX Technical Conference, January 1996, pp. 279–295 (1996)

11. Park, S.: Operating system performance and its effect on embedded systems. Technical report
Available at http://cslab.snu.ac.kr/∼sspark/paper/tr-osmp.pdf

12. Park, S., Lee, Y., Shin, H.: An experimental analysis of the effect of the operating system on
memory performance in embedded multimedia computing. In: Proceedings of ACM Interna-
tional Conference on Embedded Software, September 2004, pp. 26–33 (2004)

http://cslab.snu.ac.kr/~sspark/paper/tr-osmp.pdf

SC2SCFL: Automated SystemC to SystemCFL

Translation

Ka Lok Man1, Andrea Fedeli2, Michele Mercaldi3, Menouer Boubekeur1,
and Michel Schellekens1

1 Centre for Efficiency-Oriented Languages (CEOL), Department of Computer Science,
University College Cork (UCC), Cork, Ireland

SystemCFL@gmail.com, m.boubekeur@cs.ucc.ie, m.schellekens@cs.ucc.ie
2 STMicroelectronics, Agrate (Milan), Italy

andrea.fedeli@st.com
3 M.O.S.T., Turin, Italy

michele.mercaldi@most.it

Abstract. SystemCFL is the formalisation of a reasonable subset of SystemC
based on classical process algebras. During the last few years, SystemCFL has
been successfully used to give formal specifications of SystemC designs. For
formal analysis purposes, so far, users have been required to transform manu-
ally their SystemC codes into corresponding SystemCFL specifications. To ver-
ify some desired properties of SystemCFL specifications using existing formal
verification tools (e.g. NuSMV and SPIN), similarly, manual translations have
been needed for turning SystemCFL specifications into corresponding terms of
the input language (e.g. SMV and PROMELA) of the selected formal verifica-
tion tool. Since manual transformation and translations between SystemC codes,
SystemCFL specifications, and various formalisms are quite laborious and there-
fore error-prone, these translations have to be made as much automatic as
possible. The first step of the research in these directions is to automate the trans-
formation from SystemC codes to SystemCFL specifications. In this paper, we
present SC2SCFL (an automatic translation tool), which converts SystemC codes
into corresponding SystemCFL specifications.

1 Introduction

SystemC [1] is a modelling language consisting of C++ class library and a simulation
kernel for HDL designs, encompassing system-level behavioural descriptions down to
Register Transfer Level (RTL) representations. Nowadays, SystemC is becoming the
de-facto standard for system level modelling and design. Although SystemC has been
successfully applied in many different industrial areas, and some attempts to apply for-
mal methods to verify SystemC descriptions have been made, it still does miss the
possibility of formal reasoning of descriptions.

SystemCFL (SCFL in ASCII format) [2,3,4] is the formalisation of a reasonable sub-
set of SystemC based on the classical process algebras Algebra of Communicating Pro-
cesses (ACP) [5] and A Timed Process Algebra for Specifying Real-Time Systems (ATP)
[6]. The semantics of SystemCFL has been defined by means of deduction rules in a

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 34–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

SC2SCFL: Automated SystemC to SystemCFL Translation 35

Structured Operational Semantics (SOS) [7] style that associates a time transition sys-
tem (TTS) with a SystemCFL process. The introduction of SystemCFL (since three years
ago) initiated an attempt to extend the knowledge and experience collected in the field
of process algebras to system level modelling and design.

SystemCFL is aimed at giving formal specifications of SystemC designs and to per-
form formal analysis of SystemC processes. Furthermore, SystemCFL is a single for-
malism that can be used for specifying concurrent systems, finite state systems and
real-time systems (as in SystemC). Desired properties of these systems specified in
SystemCFL can be verified with existing formal verification tools by translating them
into different formats that are the input languages of formal verification tools. Hence,
SystemCFL can be purportedly used for formal verification of SystemC designs. For in-
stance, safety properties of concurrent systems specified in SystemCFL can be verified
(see [8]) by translating those systems to PROMELA [9], which is the input language of
the SPIN Model Checker [9]. Similarly, [10] reported that some desired properties of fi-
nite state systems specified in SystemCFL can be fed into the SMV Model Checker [11]
to verify them. Furthermore, a formal translation was defined in [12] from SystemCFL

to a variant (with very general settings) of timed automata [13]. The practical benefit of
the formal translation from a SystemCFL specification (describing real-time systems) to
a timed automaton is to enable verification of timing properties of the SystemCFL spec-
ifications using existing verification tools for timed automata, such as UPPAAL [14].

During the last few years, SystemCFL has been successfully used to give formal spec-
ifications of SystemC designs (see also [3,4,15]). For formal analysis purposes, so far,
users have been required to manually transform their SystemC codes into correspond-
ing SystemCFL specifications. To verify some desired properties of SystemCFL specifi-
cations using existing formal verification tools (see also [8,10,12]), similarly, manual
translations have been needed for turning SystemCFL specifications into correspond-
ing terms of the input language of the selected formal verification tool. Since manual
transformation and translations between SystemC codes, SystemCFL specifications and
various formalisms are quite laborious and therefore error-prone, these translations have
to be automated.

For the sake of simplicity, our first goal (of the research in these directions as already
reported in [16]) is to develop an automatic translation tool which converts SystemC
codes (mainly untimed) into corresponding SystemCFL specifications that can be fur-
ther mapped to the input languages of several formal verification tools (e.g. SPIN and
NuSMV). SC2SCFL is such an automatic translation tool.

Over the years, automatic translation tools from SystemC to other description lan-
guages have been developed (e.g. [17]). To our knowledge, this is the first article to re-
port an automatic translation tool from SystemC to a formal language (i.e. SystemCFL).

This paper is organised as follows. In Section 2, we give a brief overview of a subset
of SystemCFL formalism that is relevant for the use in this paper. Section 3 captures the
main ideas of our proposed translation from SystemC to SystemCFL. Section 4 describes
the architectures of the automatic translation tool SC2SCFL. A translation example
of using SC2SCFL is given in Section 5. We also illustrate our practical interest of
verification of SystemCFL specifications, in Section 6, by translating the SystemCFL

specification shown in Section 5 to the equivalent NuSMV [18] specification which is

36 K.L. Man et al.

further validated by the NuSMV Model Checker [18]. Finally, concluding remarks are
made in Section 7 and the direction of future work is pointed out in the same section.

2 SystemCFL

An overview of SystemC is not given in this paper. Some familiarity with SystemC
is required. The desirable background can, for example, be found in [1]. In this sec-
tion we give, just for illustration purposes, an overview of a small subset of SystemCFL

(that is relevant for the use of this paper); a more extensive treatment can be found in
[3] and [4].

2.1 Data Types

To define the semantics of SystemCFL processes, we need to make some assumptions
about the data types. Let Var denote the set of all variables (x0, . . . ,xn), and Value denote
the set of all possible values (v0, . . . ,vm) that contains at least B (booleans) and R (reals).
A valuation is a partial function from variables to values (e.g. x0 �→ v0). The set of all
valuations is denoted by Σ. The set Ch of all channels and the set S of all sensitivity
lists with clocks may be used in SystemCFL processes that are assumed. Notice that the
above proposed data types are the fundamental ones. Several extensions of data types
(e.g. “sc bit” and “sc logic”) were already introduced in [15].

2.2 Syntax

To ease the handling of SystemCFL specifications, the syntax of SystemCFL is now given,
in ASCII format, (see [3] and [4] for the same syntax in LATEXversion). P denotes the sets
of process terms in SystemCFL and p ∈ P are the core elements of SystemCFL. Notice
that the syntax of the equality, relational and logical operators of SystemCFL (in ASCII
format) is defined in an exact way as such operators in SystemC. We also choose, in
ASCII format, the following symbols:

->, {}, ?

to represent mapping (�→, i.e. pair correspondence in the relation graph), empty ele-
ment and the undefinedness respectively. The formal language SystemCFL is defined
according to the following grammar for process term p ∈ P:

p ::= deadlock | skip | x := e | cond(b) p p | b watch p | p ; p
| p ‘‘|’’ p | rep p | p merge p

The operators are listed in descending order of their binding strength as follows :
{watch, ;, rep},{cond, |, merge}. The operators inside the braces have equal bind-
ing strength. In addition, operators of equal binding strength associate to the left, and
parentheses may be used to group expressions. SystemCFL has the following syntax:

– the deadlock process term “deadlock” is introduced as a constant, which represents
no behaviour;

– the skip process term “skip” performs the internal action “tau”;

SC2SCFL: Automated SystemC to SystemCFL Translation 37

– the assignment process term “x:=e”, which assigns the value of expression “e” to
“x” (modelling a SystemC assignment statement);

– the conditional composition “cond(b) p q” operates as a SystemC if then else
statement, where “b” denotes a boolean expression; and “p” and “q” are process
terms;

– the watch process term “b watch p” is used to model a SystemC construct of event
control;

– the sequential composition “p ; q” models the process term that behaves as “p”, and
upon termination of “p”, continues to behave as process term “q”;

– the alternative composition “p | q” models a non-deterministic choice between
process terms “p” and “q”;

– the repetition process term “rep p” (modelling a SystemC loop construct) executes
“p” zero or more times;

– the parallel composition “p merge q” is used to express parallelism.

2.3 Formal Semantics

A SystemCFL process is a quintuple [p,gb,gc,s,m], where p ∈ P is a process term; gb,gc
∈ Σ are valuations; s ∈ S is a sensitivity list with clocks; and m ∈ Ch is a channel. We
give a formal semantics for SystemCFL processes (see [3] and [4] for details) in terms
of a TTS. Three kinds of transition relations are defined for SystemCFL processes. They
can be explained as follows:

1. An action transition [p,gb,gc,s,m] -a- [p’,gc,ga,s,m] is that the process [p,gb,gc,s,m]
executes a (discrete) action “a” starting with the current valuation gc (at the moment
of the transition taking place) and by this execution p evolves into p’; notice that gb
represents the previous accompanying valuation of the process, and ga represents
the accompanying valuation of the process after the action “a” is executed.

2. Similarly, a termination [p,gb,gc,s,m] -a- [@,gc,ga,s,m] is that the process executes
the action “a” followed by termination, where @ is used to indicate a successful
termination, and @ is not a process term.

3. A time transition [p,gb,gc,s,m] -d- [p’,gc,ga,s,m] is that the process [p,gb,gc,s,m]
may idle during a time d and then behaves like [p’,gc,ga,s,m].

The above transition relations are defined through deduction rules in a SOS style.
These rules (of the form premises

conclusions) have two parts: on the top of the bar we put premises
of the rule, and below them the conclusions. If the premises hold, then we infer that the
conclusions hold as well. Rules for operational semantics, congruence result and the set
of properties of SystemCFL are not given in this paper; see [3,4] for more details.

3 SystemC to SystemCFL Translation

In this section, due to reasons of space, we briefly outline the main concepts and ideas
of the translation from a reasonable subset of SystemC to SystemCFL (that is relevant
for the use in this paper). A more detailed account of such a translation can be found
in [19].

38 K.L. Man et al.

3.1 Simplifications and Restrictions

In order to simplify the implementation of SC2SCFL, we make the following simplifi-
cations/restrictions:

– Since the translation of a SystemC design to the corresponding SystemCFL process
is only relevant for the development of SystemCFL simulator and other translation
tools like SCFL2NuSMV, SCFL2SPIN and SCFL2UPP as reported in [16], simula-
tor and different verification tools have different data type restriction. The develop-
ment of SC2SCFL is just our first step. It is not our intention to include all possible
data type conversion between SystemC, SystemCFL and other formalisms in such a
tool. Hence, no data type conversion is implemented in SC2SCFL. This also leads
to the conversion of the data types of variables from SystemC to SystemCFL be-
coming irrelevant.

– Due to the above mentioned facts that SC2SCFL purely focuses on the translation at
the syntactical level from SystemC modules to the corresponding SystemCFL pro-
cess terms without any consideration of data type conversion.

– Also, we can write a SystemC module in many different ways, for the sake of sim-
plicity, we restrict ourselves to use only the construct of a SystemC module as
shown in Subsection 3.2. This is not a strong restriction, since most of SystemC
modules are usually written using this kind of construct, as we have seen in all
SystemC User’s Guides (e.g. [20]).

– At this moment, SC2SCFL does not support the translation of the synchronisation
and communication mechanism between SystemC concurrent processes to the cor-
responding SystemCFL processes in a parallel context.

3.2 SystemC Module

The following construct of the SystemC module (illustrated by means of a simple ex-
ample: a synchronous D flip-flop) is supported by SC2SCFL:

SC_MODULE(dff) {
sc_in<bool> din;
sc_in<bool> clock;
sc_out<bool> dout;
void doit() {
dout = din;

};
SC_CTOR(dff) {
SC_METHOD(doit);
sensitive_pos << clock;

}
};

3.3 Translation Procedure

Based on the SystemC module given in Subsection 3.2, the translation procedure is
implemented in SC2SCFL as follows:

SC2SCFL: Automated SystemC to SystemCFL Translation 39

1. Each method process is translated to the corresponding SystemCFL sub-process
term in which renaming mechanism is applied (if necessary) to the local variables
of the method process in such a way that name conflict problem is avoided (i.e. the
local variables of method processes are unique after the translation).

2. The elements in the sensitivity list of a SystemC module are placed in the set of
the sensitivity list with clocks associating to the corresponding SystemCFL process
term (of the SystemC module).

3. The SystemC constructor of a SystemC module is translated to the corresponding
watch process term in a specified way as indicated in Subsection 3.5.

4. Following the above mentioned procedures and translating each method process
of a SystemC module to the corresponding SystemCFL sub-process term according
to the translation rules and the translation of SystemCFL constructor as defined in
Subsection 3.4 and Subsection 3.5, respectively, then the corresponding SystemCFL

process term of the SystemC module is generated.
5. When more than one SystemC module is translated, the parallel composition opera-

tor of SystemCFL is applied to connect the corresponding SystemCFL process terms
(of the SystemC modules translated) together.

3.4 Translation Rules

The following translation rules define the functionality of SC2SCFL for some gb, gc
and s, where gb and gc are valuations, and s is a sensitivity list with clocks. For sim-
plicity and for the use in this paper, we illustrate several translation rules by means of
examples. A more detailed set of translation rules for SC2SCFL can be found in [19].
The syntax of the equality, relational and logical operators of SystemCFL is defined in
an exact way as such operators in SystemC. Hence, the translation rules of the equality,
relational and logical operators are omitted.

trans. SystemC SCFL
assig. x = 3 x := 3
seq. x = 3; y = 7 x := 3 ; y := 7
if if (x == 3) {x = 1;} cond (x == 3) x := 1 deadlock

i t e if (y <= 3) {y = 1;} else {y = 7;} cond (y <=3) y := 1 y := 7
while while (true) {y = 1; x = 5;} true watch rep (y := 1 ; x := 5)

for for (int i = 0; i <= 8; i++) {x = y;} i := 0 ; (i <= 8 watch (rep (x := y ; i := i + 1)))

3.5 SystemCFL Constructor

SystemC:
void f1() {
x = y;

};

SC_CTOR(f1) {
SC_METHOD(f1);
sensitive << s1;
sensitive_pos << clk1;

40 K.L. Man et al.

}

SCFL:
SEN(s1) || SEN_p(clk1) watch x := y

SEN(s1) is defined as a function that returns a boolean expression “true” if the val-
uation of s1 in gc has changed with respect to the valuation in gb. In a similar way,
SEN p(clk1) is defined as a function that returns a boolean expression “true” if a posi-
tive edge occurs on the clock clk1. The formal definitions of these auxiliary functions
used for the watch process term can be found in [3]. Also, || is used to represent the
logical operator “OR”.

4 Architectures of SC2SCFL

SC2SCFL is an automatic translator which converts a reasonable subset of SystemC
to SystemCFL. It is entirely developed in the Java language (jdk 1.5.0) using JavaCC
4.0 as a parser generator. JavaCC enables one to extract the structures of SystemC files
with a comprehensive interpretation of general C++ constructs. The choice of using the
Java language and JavaCC as a parser generator is immaterial and other programming
language and parser may be used as well.

The input format of SC2SCFL is a file of SystemC codes. In the current release of
SC2SCFL, only one SystemC module can be declared in each input file. The translation
process is divided into three steps:

1. According to the grammar rules used by JavaCC to build the parser, the input file
is first divided in tokens and then parsed.

2. In order to generalise the translation process, an Abstract Syntax Tree (AST) is cre-
ated (as a preprocessing step for the translation). In the future version of SC2SCFL,
the AST could be dumped to have an abstract representation of SystemCFL con-
structs. This will be also useful for the development of other translation tools (e.g.
SCFL2NuSMV).

3. The last step implements the visit of the AST and produces SystemCFL specifica-
tions according to the translation rules as defined in [19].

5 Case Study: Scalable Synchronous Bus Arbiter

In this section we show by means of a case study the use of SystemCFL to verify the
correctness of a digital circuit written in SystemC. We transform a SystemC design into
the corresponding SystemCFL specification and then further translate it to the equivalent
NuSMV specification.

For this purpose we choose a synchronous scalable n-cells bus arbiter controlling the
access to n-clients deciding which of them gets access grants to the shared resource. It
has request inputs and acknowledgements, and no restriction is applied to inputs, hence
at any clock cycle any possible subset of the requests can be high (i.e. their logical values
are “1”). The task of the arbiter is to set at most one of the corresponding acknowledge-
ments high. This circuit has been already used for formal verification exemplification,

SC2SCFL: Automated SystemC to SystemCFL Translation 41

Fig. 1. Single arbiter cell and the interconnection between cells

as in [11] and [21]. Figure 1 shows a single arbiter cell and the interconnection of arbiter
cells.

The SystemC code for one cell of the arbiter is given below. Based on the inter-
connection diagram, we can build such an arbiter with multiple inputs using positional
connection.

#include "systemc.h"
SC_MODULE(Cell)
{
sc_in<bool> clk;
sc_in<bool> req_in, tok_in, gra_in, ove_in;
sc_out<bool> ack_out, gra_out, tok_out, ove_out;
sc_signal<bool> persistent;

void calc_token() {
tok_out = tok_in;
cout << "@end calc_token " << tok_out << endl;

}

void calc_persistent() {
persistent = (persistent || tok_out) && req_in;
cout << "@end calc_persistent " << persistent << endl;

}

void comb() {
ove_out = (persistent && tok_out) || ove_in;
gra_out = !req_in && gra_in;
ack_out = req_in && (persistent && tok_out || gra_in);
cout << "@end Cell " << req_in << ack_out << endl;

}

SC_CTOR(Cell) {
SC_METHOD(calc_token);
sensitive << clk.pos();
SC_METHOD(calc_persistent);
sensitive << clk.pos();

42 K.L. Man et al.

SC_METHOD(comb);
sensitive << persistent << tok_out << ove_in << req_in << gra_in;

}
};

5.1 Translation of the Scalable Arbiter Using SC2SCFL

The SC2SCFL tool is applied on the SystemC design of the arbiter. The following
SystemCFL specification is obtained after executing SC2SCFL on the SystemC code
of the one-cell arbiter. We can easily observe the correspondences between them (also
with some initial conditions of variables that are assumed for illustration purposes).

[(SEN_p(clk) watch tok_out := tok_in)
merge
(SEN_p(clk) watch persistent := (persistent || tok_out) && req_in)

merge
ove_out = (persistent && tok_out) || ove_in;
gra_out = !req_in && gra_in;
ack_out = req_in && (persistent && (tok_out || gra_in)),

{req_in->?, gra_in->?, ove_in->?, tok_in->?,
persistent->?, ack_out->?, gra_out->?, ove_out->?,
tok_out->?, clk->true},

{req_in->?, gra_in->?, ove_in->?, tok_in->?,
persistent->false, ack_out->?, gra_out->?, ove_out->?,
tok_out->true, clk->false},

{clk}, {}]

6 Verification of SystemCFL Specification Using NuSMV

In order to proceed to the formal verification phase, the obtained SystemCFL speci-
fication is translated into the equivalent NuSMV specification. As the SystemCFL→
NUSMV translator is not available yet, we manually translated the single arbiter cell
from the original SystemC code, taking into account the translation rules defined above
for SystemC→SystemCFL.

For the composition of two arbiter cells, each of which would be an instance of the
SC2SCFL-produced specification, we write according to the translation rules the fol-
lowing NuSMV specification. Due to reasons of space, we only give parts of the spec-
ification.

MODULE arbiter_cell(
req_in, ack_out, tok_in, tok_out,
ove_in, ove_out, gra_in, gra_out, init_token

)

SC2SCFL: Automated SystemC to SystemCFL Translation 43

VAR
persistent : boolean;

SCFLpt_1 : SCFLpt_1(tok_out, tok_in);
SCFLpt_2 : SCFLpt_2(persistent, tok_out, req_in);
SCFLpt_3 : SCFLpt_3(
ove_out, persistent, tok_out, ove_in,
gra_out, req_in, gra_in, ack_out

);

ASSIGN
init(persistent):=0;

MODULE SCFLpt_1(tok_out, tok_in)
ASSIGN
next(tok_out):=tok_in;

MODULE SCFLpt_2(persistent, tok_out, req_in)
ASSIGN
next(persistent):=(persistent | tok_out) & req_in;

MODULE SCFLpt_3(
ove_out, persistent, tok_out, ove_in, gra_out, req_in, gra_in, ack_out)

ASSIGN
ove_out := (persistent & tok_out) | ove_in;
gra_out := !req_in & gra_in;
ack_out := req_in & (persistent & (tok_out | gra_in));

// Manually added to represent the whole verification context

MODULE main
VAR
req1_in: boolean; req2_in: boolean;
ack1_out: boolean; ack2_out: boolean;
g1: boolean; g2: boolean;
o0: boolean; o1: boolean;
t1: boolean; t2: boolean;

e1 : arbiter_cell(req1_in, ack1_out, t2, t1, o1, o0,!o0, g1, 1);
e2 : arbiter_cell(req2_in, ack2_out, t1, t2, 0, o1, g1, g2, 0);

ASSIGN
init(t1):=!t2;

ASSIGN
next(req1_in):=case
req1_in & !ack1_out : req1_in;
1: {0,1};

esac;

44 K.L. Man et al.

next(req2_in):=case
req2_in & !ack2_out : req2_in;
1: {0,1};

esac;

SPEC AG (req1_in -> AF(ack1_out))
SPEC AG !(ack1_out & ack2_out)

We have verified a liveness and a safety property of the above NuSMV specification
using the NuSMV Model Checker. As a liveness property, the arbiter satisfied the fol-
lowing CTL formula: AG (req1 in → AF (ack1 out)). Such a property states that if the
request (req1 in) is continuously held high, eventually there will be an acknowledge-
ment (ack1 out). The safety property that was also satisfied by the arbiter is as follows
(described in CTL): AG !(ack1 out &ack2 out). It expresses the mutual exclusion be-
tween the acknowledgements. The above-mentioned properties were also verified for 2
and 3-cells arbiters.

7 Conclusions and Future Work

In this paper, we presented an automatic tool SC2SCFL which converts a reasonable
subset of SystemC to SystemCFL. The main features of SC2SCFL were explained and
illustrative examples for the use of SC2SCFL were given. To show our practical interest
of verification of SystemCFL specifications, we also translated a SystemCFL specification
to the equivalent NuSMV specification, which was further validated by the NuSMV
Model Checker.

SC2SCFL is in a continuous improving process by adding new features and cor-
recting bugs. New features and improvements will be included in the next release of
SC2SCFL are as follows: instantiation of SystemC modules, positional connections in
SystemC and support for more C++ constructors. Furthermore, we also plan to have a
prototype SCFL2NuSMV, which translates a significant subset of SystemCFL to
NuSMV, working before the end of 2007.

Acknowledgements

Ka Lok Man wishes to thank Jos Baeten, Bert van Beek, MohammadReza Mousavi,
Koos Rooda, Ramon Schiffelers, Pieter Cuijpers, Michel Reniers, Kees Middelburg,
Uzma Khadim and Muck van Weerdenburg for many stimulating and helpful discus-
sions (focusing on process algebras for distinct systems) in the past few years.

References

1. IEEE: IEEE Standard for SystemC Language Reference Manual (IEEE STD 1666TM-
2005). IEEE. (2005)

2. SystemCFL: SystemCFL homepage http://digilander.libero.it/systemcfl/.

SC2SCFL: Automated SystemC to SystemCFL Translation 45

3. Man, K.L.: SystemCFL: Formalization of SystemC. In: the 12th Mediterranean Electrotech-
nical Conference MELECON, Dubrovnik, Croatia, IEEE (2004)

4. Man, K.L.: Formal communication semantics of SystemCFL. In: the 8th Euromicro Con-
ference on Digital System Design DSD, Porto, Portugal, IEEE (2005)

5. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Volume 18 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, Cambridge, United Kingdom (1990)

6. Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: Theory and application.
Information and Computation 114 (1994) 131–178

7. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DIAMI
FN-19, Computer Science Department, Aarhus University (1981)

8. Man, K.L.: Formal verification of SystemCFL specifications using SPIN. In: the 5th WSEAS
International Conference on Microelectronics, Nanoelectronics and Optoelectronics MINO,
Prague, Czech Republic, WSEAS (2006)

9. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison Wesley
Professional, Boston (2003)

10. Man, K.L.: Verifying SystemCFL designs using the SMV model checker. In: the 8th IEEE
Workshop on Design and Diagnostics of Electronic Circuits and Systems DDECS, Sopron,
Hungary (2005)

11. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publisher (1993)
12. Man, K.L.: Analyzing SystemCFL designs using timed automata. In: the 9th IEEE Baltic

Electronics Conference BEC, Tallinn, Estonia (2004)
13. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126 (1994)

183–236
14. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. Journal on Software Tools

for Technology Transfer 1(1–2) (1997) 134–152
15. Man, K.L.: Modeling with the formal language of SystemC: Case studies. In: the 11th

IEEE International Conference Mixed Design of Integrated Circuits and Systems MIXDES,
Szczecin, Poland (2004)

16. Man, K.L., Fedeli, A., Mercaldi, M., Schellekens, M.P.: SystemCFL: An infrastructure for a
tlm formal verification proposal (with an overview on a tool set for practical formal verifi-
cation of systemc descriptions). In: the 2nd East-West Design & Test Workshop EWDTW,
Sochi, Russia, IEEE (2006)

17. J. Castillo, J., Huerta, P., Martnez, J.: An open-source tool for SystemC to Verilog automatic
translation. Journal of Latin American Applied Research (2007) accepted for publication.

18. NuSMV: NuSMV Model Checker User Manual. (2006) http://nusmv.irst.itc.it/.
19. Man, K.L.: An overview on sc2scfl. Draft paper (2007) http://digilander.libero.it/systemcfl/.
20. SystemC: SystemC Users Guide and SystemC Language Reference Manual (Version 2.0).

http://www.systemc.org.
21. Drechsler, R., Große, D.: Formal verification of ltl formulas for SystemC designs. In: Int.

Symposium on Circuits and Systems ISCAS, Bangkok, Thailand, IEEE (2003)

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 46–54, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model and Validation of Block Cleaning Cost for Flash
Memory*,**

Seungjae Baek1, Jongmoo Choi1, Donghee Lee2, and Sam H. Noh3

1 Division of Information and Computer Science, Dankook University, Korea,
Hannam-Dong, Yongsan-Gu, Seoul, 140-714 Korea
{ibanez1383,choijm}@dankook.ac.kr

2 Department of Computer Science, University of Seoul, Korea,
Jeonnong-Dong, Dongdaemun-Gu, Seoul, 130-743 Korea

dhlee@venus.uos.ac.kr
3 School of Computer and Information Engineering, Hongik University, Korea,

Sangsu-Dong, Mapo-Gu, Seoul, 121-791, Korea
samhnoh@hongik.ac.kr

Abstract. Flash memory is a storage medium that is becoming more and more
popular. Though not yet fully embraced in traditional computing systems, Flash
memory is prevalent in embedded systems, materialized as commodity
appliances such as the digital camera and the MP3 player that we are enjoying
in our everyday lives. The cost of block cleaning is an important factor that
strongly influences Flash memory file system performance analogous to the
seek time in disk storage based systems. We show that three performance
parameters, namely, utilization, invalidity, and uniformity characteristics of
Flash memory strongly effect this block cleaning cost and present a model for
the block cleaning cost based on these parameters. We validate this model using
synthetic workloads on commercial Flash memory products.

Keywords: Flash memory, model, validation, block cleaning.

1 Introduction

Recent developments in Flash memory technology have brought about numerous
products that make use of Flash memory. While still controversial, optimists envision
Flash memory will replace much of the territory that disk storage has been occupying.
Whether this will happen or not will have to be seen [1]. However, one sure thing is
that Flash memory is a storage medium that is being more and more widely used in
everyday commodity embedded systems and is bringing about significant changes to
the computing environment.

In view of these developments, in this paper, we explore and identify the
characteristics of Flash memory and analyze how they influence the latency of data

* This work was supported in part by grant No. R01-2004-000-10188-0 from the Basic

Research Program of the Korea Science & Engineering Foundation.
** This work was supported in part by MIC & IITA through IT Leading R&D Support Project.

 Model and Validation of Block Cleaning Cost for Flash Memory 47

access. We identify the cost of block cleaning as the key characteristic that influences
latency. A performance model for analyzing the cost of block cleaning is presented
based on three parameters that we derive, namely, utilization, invalidity, and
uniformity, which we define clearly later. We find that the cost of block cleaning is
strongly influenced by uniformity just like seek is a strong influence for disk based
storage.

The rest of the paper is organized as follows. In Section 2, we elaborate on the
characteristics of Flash memory and on block cleaning, in particular. Then, we present
the block cleaning cost model in Section 3. In Section 4, we present the experimental
setting and results that are used to validate the model. We briefly discuss related
works in Section 5 and conclude in Section 6.

2 Flash Memory and Block Cleaning

Flash memory that is most widely used today is either of the NOR type or the NAND
type. Other types of Flash memory such as OR type or AND type do exist, but are not
popular. One key difference between NOR and NAND Flash memory is the access
granularity. NOR Flash memory supports word-level random access, while NAND
Flash memory supports page-level random access. Hence, in embedded systems,
NOR Flash memory is usually used to store code, while NAND Flash memory is used
as storage for the file system. NOR and NAND Flash memory also differ in density,
operational time, and bad block marking mechanisms.

Flash memory is organized as a set of blocks, each block consisting of a set of
pages. According to the block size, NAND Flash memory is further divided into two
classes, that is, small block NAND and large block NAND. In small block NAND
Flash memory, each block has 32 pages, where the page size is 528 bytes. A 512-byte
portion of these bytes is the data area used to store data, while the remaining 16-byte
portion is called the spare area, which is generally used to store ECC and/or
bookkeeping information. In large block NAND Flash memory, each block has 64
pages of 2112 bytes (2048 bytes for data area and 64 bytes for spare area).

Flash memory as a storage medium has characteristics that are different from
traditional disk storage. These characteristics can be summarized as follows [2].

1. Access time in Flash memory is location independent similar to RAM. There is
no “seek time” involved.

2. Overwrite is not possible in Flash memory. Flash memory is a form of
EEPROM (Electrically Erasable Programmable Read Only Memory), so it
needs to be erased before new data can be overwritten.

3. Execution time for the basic operations in Flash memory is asymmetric.
Traditionally, three basic operations, namely, read, write, and erase, are
supported. An erase operation is used to clean a used page so that the page may
be written to again. In general, a write operation takes an order of magnitude
longer than a read operation, while an erase operation takes another order or
more magnitudes longer than a write operation.

4. The unit of operation is also different for the basic operations. While the erase
operation is performed in block units, read/write operations are performed in
page units.

48 S. Baek et al.

5. The number of erasures possible on each block is limited, typically, to 100,000
or 1,000,000 times.

Let us now consider the specific operations used in Flash memory. Reading data

from Flash memory is simply like reading from disk. The distinction from a disk is
that all reads take a constant amount of time. For a write operation, a distinction has
to be made between a new write and a write that is modifying existing data. When
totally new data is being written, this is almost identical to a disk write, that is, a page
is allocated and written to. However, there are occasions when no free pages are
available to be written to. In such a case, an erase operation must precede the write
operation. This will result in considerable delay in writing out the data.

For writes that update existing data, the story is totally different. As overwrite to
the updated page is not possible, various mechanisms for non-in-place update have
been developed [3,4,5,6]. Though specific details differ, the basic mechanism is to
allocate a new page, write the updated data onto the new page, and then, invalidate
the original page that holds the (now obsolete) original data. The original page now
becomes a dead or invalid page. Likewise, in this situation, an erase operation may
have to precede the write operation.

Fig. 1. Page state transition diagram

Note that from the above discussions that a page can be in three different states. A
page holding legitimate data is in a valid state. If the page is deleted or updated, the
page becomes an invalid page and transitions into an invalid state. Note that a page in
this state cannot be written to until the block it resides in is first erased. Finally, if the
page has not been written to in the first place or the block in which the page resides
has just been erased, then the page is clean, and this page is in a clean state. Figure 1
shows the state transition diagram of pages in Flash memory.

Note from the tri-state characteristics that the number of clean pages diminishes
not only as new data is written, but also as existing data is updated. In order to store
more data and even to make updates to existing data, it is imperative that invalid
pages be continually cleaned. Since, cleaning is done via erase operation, which is

 Model and Validation of Block Cleaning Cost for Flash Memory 49

done in block units, valid pages in the block to be erased must be copied to a clean
block. This exacerbates the already large erase overhead needed for cleaning a block.

3 Block Cleaning Cost Model

In this section, we identify the parameters that affect the cost of block cleaning. We
formulate a cost model based on these parameters and analyze their effects on the
cost.

3.1 Performance Parameters

Two types of block cleaning are possible in Flash memory. The first is when valid
and invalid pages coexist within the block that is to be cleaned. Here, the valid pages
must first be copied to a clean page in a different block before the erase operation on
the block can happen. We shall refer to this type of cleaning as ‘copy-erase cleaning’.
The other kind of cleaning is where no valid page exists in the block to be erased. All
pages in this block are either invalid or clean. This cleaning imposes only a single
erase operation, and we shall refer to this type of cleaning as ‘erase-only cleaning’.

Observe that for copy-erase cleaning the number of valid pages is a key factor that
affects the cost of cleaning as all the valid pages need to be moved to another block
before cleaning may happen. For erase-only cleaning, the way in which the invalid
pages are distributed plays a key role. From these observations, we identify three
parameters that affect the cost of block cleaning. They are defined as follows:

 Utilization (u): the fraction of valid pages in Flash memory
 Invalidity (i): the fraction of invalid pages in Flash memory
 Uniformity (p): the fraction of uniform blocks in Flash memory,

where a uniform block is a block that does not contain both valid and invalid blocks
simultaneously.

Fig. 2. Situation where utilization (u=0.2) and invalidity (i=0.2) remains unchanged, while
uniformity (p) changes (a) p = 0.2 (b) p = 0.6 (c) p = 1

50 S. Baek et al.

Figure 2 shows three page allocation situations where utilization and invalidity are
the same, but uniformity is different. Since there are four valid pages and four invalid
pages among the 20 pages for all three cases utilization and invalidity are both 0.2.
However, there are one, three, and five uniform blocks in Figure 2(a), (b), and (c),
hence uniformity is 0.2, 0.6, and 1, respectively.

Utilization determines, on average, the number of valid pages that need to be
copied for copy-erase cleaning. Invalidity determines the number of blocks that are
candidates for cleaning. Finally, uniformity refers to the fraction of uniform blocks. A
uniform block is a block with zero or more clean pages and the remainder of the
pages in the block are uniformly valid or uniformly invalid pages. Another definition
of uniformity would be “1 – the fraction of blocks that have both valid and invalid
pages.” Of all the uniform blocks, only those blocks containing invalid pages are
candidates for erase-only cleaning.

From these observations, we can formulate the cost of block cleaning as follows:

Cost of Block Cleaning

= Cost of copy-erase cleaning + Cost of erase-only cleaning

= ((1-p)·min(B, i·P))·((rt + wt)·(P/B·u)+et)) + ((p·B·i) ·et)

where
u: utilization (0 ≤ u ≤ 1)
i : invalidity (0 ≤ i ≤ 1- u)
p: uniformity (0 ≤ p ≤ 1)
P: number of pages in Flash memory
(P=capacity/size of page)
B: number of blocks in Flash memory
(P/B: # of pages in a block)
rt : read operation execution time
wt: write operation execution time
et : erase operation execution time

The formula for cost of block cleaning consists of two terms. The first term is the

cost for copy-erase cleaning of non-uniform blocks, where P/B·u denotes the number
of valid pages in a block, and hence, need to be copied. Each copy is associated with a
read and a write operation denoted by rt and wt, respectively, after which an erase
operation is performed, denoted by et. (Note that instead of using (rt + wt) as the copy
overhead, as some Flash memory controllers support the copy-back operation, that is,
copying of a page to another page internally [7], this copy-back operation execution
time could be used. In general, the copy-back execution time is similar to the write
operation execution time.) This cleaning action is executed only on blocks that have
invalid pages, denoted by min(B, i·P), and of those, that are non-uniform blocks,
represented by (1-p).The second term is the cost of cleaning uniform blocks that have
invalid pages denoted by (p·B·i) costing et erase time for each block.

 Model and Validation of Block Cleaning Cost for Flash Memory 51

4 Model Validation

In this section, we discuss the experimental environment used to validate the model
and also present the validation results.

4.1 Platform and Workload

We use an embedded hardware platform to validate the block cleaning cost model.
Hardware components of the system include a 400MHz XScale PXA CPU, 64MB
SDRAM, 0.5MB NOR Flash memory, and embedded controllers. A small block 64MB
NAND Flash memory that has 128K pages and 4096 blocks is used for Flash memory
[7]. Table 1 summarizes the hardware components and their specifications [8].

Table 1. Hardware component and specification

Hardware Components Specification

CPU 400MHz XScale PXA 255
RAM 64MB SDRAM
Flash 64MB NAND, 0.5MB NOR
Interface CS8900, USB, RS232, JTAG

The Linux kernel 2.4.19 was ported on the hardware platform and YAFFS is used
to manage the NAND Flash memory [3]. YAFFS uses the open(), read(), write()
interface provided by the VFS layer. Below the YAFFS layer, the MTD layer uses the
readchunkfromnand(), writechunktonand(), and eraseblockinnand() interface to
actually access and control Flash memory [3].

The workload that we use in the experiments is the Postmark benchmark. This is a
popular benchmark widely used for measuring file system performance [18,19]. This
benchmark creates a large number of randomly sized files. It then executes read,
write, delete, and append transactions on these files. We create 500 files (the default
number) and perform 500 transactions (again, the default value) for our experiments.

To measure the block cleaning cost, we developed a tool that sets the state of Flash
memory based on the three parameter values, which may be manually designated.
Based on these settings, block cleaning is performed. Another tool that we developed
is used to measure the actual cost of block cleaning. Both tools are implemented
within YAFFS to validate our model. For space reasons, we do not elaborate on the
details of these tools.

Another issue that must be clarified is the level at which the model is to be
validated. In the model, the read, write, and erase times are used to estimate the block
cleaning cost. The times used for these operations will drastically influence the model
estimation time. The simplest way to determine these values is by using the data sheet
provided by the Flash memory chip vendor. However, through experiments we
observe that the values reported in the datasheet and the actual time seen at various
levels of the system differ considerably. Figure 3 shows these results. The results
shows that while the datasheet reports read, write, and erase times of 0.01ms, 0.2ms,

52 S. Baek et al.

Fig. 3. Execution time at each level

and 2ms, respectively, for the Flash memory used in our experiments, the times
observed for directly accessing Flash memory at the device driver level is 0.19ms,
0.3ms, and 1.7ms, respectively. Furthermore, when observed just above the MTD
layer, the read, write, and erase times are 0.2ms, 1.03ms, and 1.74ms, respectively.
Which values are used in the model will drastically influence the accuracy of the
model. In our study, we use the observations made just above the MTD layer as this
level is where the block cleaning cost is measured.

4.2 Validation Results

Figure 4 compares the measured block cleaning cost and the cost estimated by the
model. In each figure, the initial values of the three parameters are all set to 0.5. Then,
we decrease utilization in Figure 4(a), increase uniformity in Figure 4(b), and
decrease invalidity in Figure 4(c). The measured values and the estimated values
show similar results as well as similar trends. The results indicate that the block
cleaning model that we derived is fairly accurate.

Fig. 4. Performance comparison of block cleaning cost model and experimental measurements

 Model and Validation of Block Cleaning Cost for Flash Memory 53

Also, from these figures, we find that the impact of utilization and uniformity on
block cleaning cost is higher than that of invalidity. Since utilization is not
controllable by the system, this implies that to keep cleaning cost down, keeping
uniformity high may be a better approach.

5 Related Works

The issue of block cleaning has been considered for both Flash memory and disk
based systems. For disk based systems, segment cleaning in the Log-structured File
System (LFS) is closely related to block cleaning for Flash memory. LFS writes data
to a clean segment and performs segment cleaning to reclaim space occupied by
obsolete data [9,10,11,12,13].

In the Flash memory arena, studies related to block cleaning have been conducted
in many studies [4,14,15,16,17]. Among these Kawaguchi et al. propose using two
separate segments for cleaning: one for newly written data and the other for data to be
copied during cleaning [4]. Wu and Zwaenepoel present a hybrid cleaning scheme
that combines the FIFO algorithm for uniform access and locality gathering algorithm
for highly skewed access distribution [16].

These works, however, generally take an algorithmic approach to improve block
cleaning. The focus of this paper is in identifying and modeling the key ingredients
that affect block cleaning cost in Flash memory.

6 Conclusion

In this paper, we identify three performance parameters from features of Flash
memory and derive a performance model for block cleaning cost based on these
parameters. We validate the model through experimental measurements of block
cleaning cost of a 64MB NAND Flash memory chip on an embedded board. The
results show that the model that we propose accurately captures the block cleaning
cost observed at the MTD layer.

Using this model, we are able to observe the factors that strongly influence block
cleaning cost. These observations form the basis for our next step, which is to develop
a new page allocation scheme. The new page allocation scheme should take into
consideration the factor that most strongly influences block cleaning, namely, the
uniformity factor.

References

1. Goldstein, H.: Too little, too soon [solid state flash memories]. IEEE Spectrum 43(1), 30–
31 (2006)

2. Sharma, A.K.: Advanced Semiconductor Memories: Architectures, Designs, and
Applications, WILEY Interscience (2003)

3. Aleph One,YAFFS: Yet another Flash file system, www.aleph1.co.uk/yaffs/
4. Kawaguchi, A., Nishioka, S., Motoda, H.: A Flash-memory based file system. In:

Proceedings of the 1995 USENIX Annual Technical Conference, pp. 155–164 (1995)

54 S. Baek et al.

5. Gal, E., Toledo, S.: A transactional Flash file system for microcontrollers. In: Proceedings
of the 2005 USENIX Annual Technical Conference, pp. 89–104 (2005)

6. Woodhouse, D.: JFFS: The journaling Flash file system, Ottawa Linux Symposium (2001),
http://source.redhat.com/jffs2/jffs2.pdf

7. Samsung Electronics, NAND Flash Data Sheet,
http://www.samsung.com/Products/Semiconductor/NANDFlash

8. EZ-X5, www.falinux.com/zproducts
9. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-structured file

system. ACM Transactions on Computer Systems 10(1), 26–52 (1992)
10. Blackwell, T., Harris, J., Seltzer, M.: Heuristic cleaning algorithms in log-structured file

systems. In: Proceedings of the 1995 Annual Technical Conference, pp. 277–288 (1993)
11. Matthews, J., Roselli, D., Costello, A., Wang, R., Anderson, T.: Improving the

performance of log-structured file systems with adaptive methods. In: ACM Symposiums
on Operating System Principles (SOSP), pp. 238–251 (1997)

12. Wang, J., Hu, Y.: WOLF - a novel reordering write buffer to boost the performance of log-
structured file systems. In: Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), pp. 46–60 (2002)

13. Wang, W., Zhao, Y., Bunt, R.: HyLog: A High Performance Approach to Managing Disk
Layout. In: Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), pp. 145–158 (2004)

14. Gal, E., Toledo, S.: Algorithms and Data Structures for Flash Memories. ACM Computing
Surveys 37(2), 138–163 (2005)

15. Chiang, M-L., Lee, P.C.H., Chang, R-C.: Using data clustering to improve cleaning
performance for Flash memory. Software: Practice and Experience 29(3), 267–290 (1999)

16. Wu, M., Zwaenepoel, W.: eNVy: a non-volatile, main memory storage system. In:
Proceeding of the 6th International Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), pp. 86–97 (1994)

17. Chang, L.P., Kuo, T.W., Lo, S.W.: Real-time garbage collection for Flash memory storage
systems of real time embedded systems. ACM Transactions on Embedded Computing
Systems 3(4), 837–863 (2004)

18. PostMark, http://www.netapp.com/ftp/postmark-1_5.c
19. Katcher, J.: PostMark: A New File System Benchmark. Technical Report TR3022,

Network Appliance Inc. (1997)

VLSI Architecture for MRF Based Stereo Matching

Sungchan Park, Chao Chen, and Hong Jeong

Pohang University of Science and Technology
Electronic amd Electrical Engineering

Pohang, Kyungbuk, 790-784, South Korea

Abstract. As a step towards real-time stereo on 2D markov random field (MRF),
we will present fast belief propagation (FBP) VLSI architecture for stereo match-
ing, which has a parallel, distributed and memory-efficient structure and lowest
error rates among the real-time systems. FBP can reduce memory complexities
by 17 times smaller than belief propagation (BP) and output 320x240 disparity
image of 32 levels with 320 parallel processors on 2 Xilinx FPGAs at 30 frames/s.
Multiple chips can be cascaded to increase computation speed due to its linear ar-
ray architecture. Our structure is more adequate for high resolution and real-time
applications like 3D video conference, multi-view coding and 3D modelling.

1 Introduction

In the real-time systems, computation speed, memory size and data bus bandwidth are
important factors in addition to output precision. The iteration algorithms like BP need
the effective trade-off between good approximation results and small iteration times in
the viewpoint of the computational efficiency. Here, we will present our paper from this
real-time perspective.

Stereo vision is the process of recreating depth or distance information from a pair
of images from the same scene. Its methods fall into two broad categories. One is the
local method, like block matching and feature matching technique, which uses local
constraints within small pixel windows. The other is the global method, like BP [5], [6]
and graph which uses global constraints over several scan-lines or the whole image.
Many real time systems [2] are realized by local methods. Although it has low compu-
tational complexities, there are some local problems where it may fall into mismatch,
due to occlusions, uniform texture, ambiguity of low texture and etc. The global meth-
ods can solve these local problems but suffer from time and memory complexities. BP
has to calculate on the 2D MRF nodes and access a huge number of message memo-
ries iteratively, which is not apt for parallel structure due to the bandwidth limitations
of data bus. To solve this problem, we will introduce an efficient linear array archi-
tecture, which can avoid accessing each message on the MRF network iteratively and
sequentially. It scans the MRF network only one time and meanwhile shows the same
result as the iteration technique. FBP requires the least memory resource and achieves
high-speed parallel processing architecture. Its arrays are highly regular, consisting of
identical and simple processing elements (PEs). Hence, it is possible to construct a real-
time stereo vision chip which can output disparity images with high depth resolution.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 55–64, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

56 S. Park, C. Chen, and H. Jeong

2 Background

Given MxN left and right images gl, gr and parameters Cd, Cv , Kd, Kv [5], pair wise
MRF energy model of stereo matching can be represented as follows.

E(d) =
∑

p,q∈N2

V (dp, dq) +
∑

p∈P

Dp(dp), (1)

mt
pq(dq) = min

dp

(
V (dp, dq) + Dp(dp) +

∑
s∈Nb(p)\q

(
mt−1

sp (dp) − α
))

, (2)

d̂p = argmin
dp

⎛

⎝Dp(dp) +
∑

s∈N(p)

mT
qp(dp)

⎞

⎠ , (3)

Dp(dp) = min(Cd|gr(dp) − gl(p)|, Kd), (4)

V (dp, dq) = min (Cv|dp − dq|, Kv) , α =
∑

dp

mt−1
sp (dp), (5)

where Dp(dp) is the data cost of the label dp at the pixel p in the image P , V (dp, dq) is
the discontinuity cost between dp and its neighbor dq , Nb(p)\q denotes the neighbors
of p other than q, and α is the normalization value. mt

pq(dq) is the message calculated
at iteration t and sent from the node p to the neighbour node q using Eq. (2). After T it-
erations, the d̂p at each node is decided using Eq. (3). The message memory complexity
of BP is O(SN2) given the state number S. The time complexity is O(STN2).

3 Fast Belief Propagation Structure

Hierarchical BP [5] uses matching costs from coarse-to-fine scale level and has fast
convergence within fewer and fixed iterations.

When the iterations in BP structure are considered as layers, it can be viewed as
a dynamic bayesian network with upward propagation as in Fig. 1(c). Here, we will
present a method to show the results that are equivalent to [5] while the MRF network
is scanned through FBP structure as in Fig. 2. Here, we denote the MRF axes as p =
(p0, p1), the level index as k, the iteration layer index as lk and node index as pk. To
clarify the layer structure, we can align nodes vertically by the layer transform on the
p0 axis as in Fig. 1(b). Node indexes are transformed from pk

0 to pk
0 − lk.

Layer (l)

0

2

1

3

Layer Buf

Local Buf

Node index
(p0)0 1 2 3 4 5

(a) BP

Layer (l)

0

2

1

3

Layer Buf

Local Buf

p03 4 5 6 7 8

p
0
-0

p
0
-1

p
0
-2

p
0
-3

(b) FBP

Layer(lk)

0

1

Level

0

1

2

1

p1
0

p0
0-350 1 2 3

1 2 3

(c) Hieratical FBP

Fig. 1. Layer transform of Hieratical FBP

VLSI Architecture for MRF Based Stereo Matching 57

p0(l)

p1

p0
1=0Level 1

(a) Current step to scan each g0

a0=0 Level 0

Level 1
p0

1=0

(b) Next step to scan each g0

Level 0 p0
1=1

a0=1

(c) Next step to scan each g1

Fig. 2. Scanning sequence of Hierarchical FBP

Given local nodes h and s ∈ Nb(h) in the group, we can represent the message as
Mk

hs(dh, lk), which corresponds to mpkN(pk)(dpk) in the MRF. It is calculated by the

parallel processor h at each layer in the group. The MAP state d̂p(L) is outputted at the
last layer L and then the next neighbor group on the p0 axis is processed. In the group,
the higher coarse level group is scanned at first and the next lower fine level groups
are processed within the higher coarse level group range. Given the parallel processor
size Hk, processor index h, group index g, and group size G0 = N/(H02K−1), Gk =
H02K−1/(2kHk), the algorithm to calculate messages Mhs(dh, l) is shown as follows.

Algorithm:(Hieratical FBP)
for each group g0 from 0 to G0 − 1,

for each level k from K − 1 to 0,
Message scaling between level(k).
for each group gk from 0 to Gk − 1,

for each layer lk from 1 to Lk,
Message update within level(k,lk).

1. Message scaling between level(k).
for each parallel processor h ∈ [(0, 0), (H02K−1−k, N/2k − 1)],

Mk
hs(dh, 0) =

{
0, if k = K − 1,

Mk+1
(h′)(s′)(dh′ , Lk+1), otherwise,

(6)

(s ∈ Nb(h), h′ = h/2, s′ = (s − h) + h′) . (7)

2. Message update within level(k,lk).
for each parallel processor h ∈ [(0, 0), (Hk − 1, N/2k − 1)],

pk
0 =

{
h − lk, if k = K − 1,

h + Hk ∗ gk − (lk + L(k + 1)), otherwise,
(8)

pk
1 = h1, s ∈ Nb(h), L(k + 1) =

k+1∑

j=K−1

Lj2j−k. (9)

58 S. Park, C. Chen, and H. Jeong

3. Message calculation.

Mk
hs(ds, l

k) = min
dh

(
V (dh, ds) + Dpk(dh)

+
∑

u∈Nh

(
Mk

uh(dh, lk − 1) − α
)
)

, (10)

Nh = Nb(h − (1, 0)T)\(s − (1, 0)T). (11)

4. State estimation at the last layer L.

d̂p(L) = arg min
dh

(
Dp(L)dh

+
∑

s∈N(h) M0
sh(dh, L0)

)
(12)

(L =
K−1∑

k=0

Lk2k). (13)

Nb(p)\q in Eq. (2) is modified to Nh in Eq. (10) by the layer transform on the p0

axis. u0 ∈ (h0 + a0) of −2 ≤ a0 ≤ 0, In Fig. 2, the processed area is represented as
the gray intensity area, and the layer buffer(bk) where the messages need to be stored is
denoted as the thick line. If u0 < 0, that is, it is not in the group, then Muh(dh, l − 1)
is loaded from the layer buffer saved by the previous group. Otherwise, the message is
read from the local buffer of the previous layer. The updated messages Mk

hs(ds, l) of
h0 ≥ Hk − 2 refresh the layer buffer for the next group processing.

The function of the Message scaling between level (k) changes message scales be-
tween different levels. The Message update within level (k,lk) calculates the messages
within one group in parallel. The node pk on the k level’s MRF is calculated by the
local node h, the layer lk + L(k + 1), and the group location Hk ∗ gk. The iteration
layer number Lk at each level is decided by the environment such as the image size.

4 Architecture

4.1 Array Architecture

The VLSI logic includes two parts: multi-scale-level data cost calculation and FBP PE
array structure.

Fig. 3 shows the architecture for calculating data costs from level 0 to level 3. In
block A, the left and right scan lines are loaded to the registers and then the scan line
of right image pixels are shifted by disparity d. The level 0 matching cost is calculated
by the absolute difference of the left and right pixel values at each state. Block B shows
how to calculate higher level matching cost. At level k, two neighbor level k-1 match-
ing cost is summed up and then accumulated over 2k scan lines. This is equivalent to
applying the summation over 2k x 2k window. All data costs are saved in the data cost
Block RAM, which will be used by PEs at each level’s the first layer.

Fig. 4 shows the architecture of the PE group which includes 8 PEs. Totally, 40 PE
group arrays are implemented for a pair of 320 x 240 images as shown in Fig. 6.

Fig. 5 represents the local and layer buffer assignment for each PE in the PE group,
where the usage of PE is not equal at each level. As shown in Fig. 3 and Fig. 5, each
different level’s data costs that are computed in data cost module, are processed and

VLSI Architecture for MRF Based Stereo Matching 59

g l

gr

|-|

A
+

Register Accumulator

B

A A A A A A A A

B B

B

B

MUX MUX

B B

B

MUX MUX

Data Cost Block RAM

Level 0
Cost

Level 1
Cost

Level 2
Cost

Level 3
Cost

Fig. 3. Architecture for data cost calculation

PE

Local
buffer

Layer
buffer

PE

Local
buffer

Layer
buffer

PE

Local
buffer

Layer
buffer

PE

Local
buffer

Layer
buffer

... ...

0 k-1 k 7

Data Cost
Data Cost Module

Message Bus

Message

Pixel
Data

Message

MUX MUX MUX MUX

Fig. 4. Architecture of PE group

L0 L0

L1

L2

L0 L0

L1

L0 L0

L1

L2

L0 L0

L1

L3

PE
0 PE

1 PE
2

PE3 PE4 PE
5

PE6 PE
7

Fig. 5. Buffer assignment in PE group

60 S. Park, C. Chen, and H. Jeong

PE
group

PE
group

PE
group

0 1 N
1
/8

PE
group

2
Message

Pixel Data

...

Fig. 6. Linear array architecture of FBP

saved in the corresponding PEs and buffers. For example, PE0 is used at all the levels,
but PE3 is only operated at the finest level 0.

The multiplexer (MUX) is to select the corresponding level’s messages and data costs
at each level processing. The left and right messages have 4-to-1 MUX which is used
to access the message buffer of 4 level’s different neighborhoods shown in Fig. 5.

Fig. 6 represents the distributed and systolic array structure of FBP, which calculates
the messages in parallel by accessing the local buffer or the layer buffer messages in
the neighbor PE group. The memory resource is consumed efficiently and can obtain
high-speed results due to the parallel structure at the same time.

4.2 Architecture of Processing Element (PE)

The PE is the basic logic for calculating the normalized message Mk
hs(ds, l

k)−α, which
is denoted as mo(ds). At S disparity levels for ds = 0, ..., S − 1, the main numerical
formula is shown as follows, where V (d, k) = min(Cv|d − k|, Kv).

mo(ds) = min
dh∈[0,S−1]

V (ds, dh) + msum(dh)
(

msum(dh) = Dpk(dh) +
∑

u∈Nh

(
Mk

uh(dh, lk − 1) − α
)
)

.

By the recursive backward and forward skills of the distance transform, the time
complexity can be reduced from O(S2) to O(2S) for S disparity levels [5]. Upon this
transform, we propose a VLSI architecture which needs 3S clocks to calculate the mes-
sage mo(ds).

Forward process:
Initialize D1(−1) = B, D2(−1) = B (B is as big as possible).
For t = 0, ..., S − 1,

D1(t) = min(msum(t), D1(t − 1) + Cv), (14)

D2(t) = min(msum(t), D2(t − 1)), (15)

mf (t) = D1(t), (16)

mf (−1) = D2(D − 1) + Kv. (17)

Backward process:
Initialize D3(−1) = B, D4(−1) = 0.

VLSI Architecture for MRF Based Stereo Matching 61

For t = 0, ..., S − 1,

D3(t) = min(mf (S − 1 − t), D3(t − 1) + Cv), (18)

mb(t) = min(D3(t), mf (−1)), (19)

D4(t) = mb(t) + D4(t − 1), (20)

mb(−1) = D4(S − 1)/S. (21)

Normalization:
For t = 0, ..., S − 1,

mo(t) = mb(t) − mb(−1). (22)

The following VLSI architecture will be explained along with this algorithm. Fig. 7
shows the PE internal structure. The forward PE reads the messages and data costs,
outputs the forward cost mf (t) and saves it to the stack. Then the backward PE reads it
from the stack and calculates mb(t), which is then normalized.

Forward
Processor

m
f
 Stack

Backward
Processor

m
b
 Stack

Message
Normailizor

Buffer

Data Cost

Message

mf(t)

m
f
(-1)

mb(t)

mb(-1)

mo(t)

Fig. 7. Internal pipeline structure of PE

Z-1C
v D1(t-1)

D
1
(t)

mf(t)
min

msum (t)

(a) Cost processor

Z-1

mf(-1)msum (t)

Kv

D2(t-1)
D

2
(t)

min

(b) Parameter calculator

Fig. 8. Forward processor

In the forward processor architecture, Fig. 8(a) and Eq. (14) show the cost processor
and sequences that output the minimum value between msum(t) and D1(t − 1) + Cv

once the neighbor messages are summed together with the data cost D(t) to calculate
msum(t). Fig. 8(b) and Eq. (15) prepare the parameter for backward process.

In the backward processor architecture, Fig. 9(a), Eq. (18) and Eq. (19) show the cost
processor that reads the mf (D − 1 − t) from the stack, calculates the minimum value
D3(t), and outputs the minimum value between D3(t) and the parameter mf (−1). In
Fig. 9(b), Eq. (20) and Eq. (21), messages mb(t) are summed up and then divided by the
disparity level S. If the disparity level is 2’s exponent, then the divider can be replaced
by a bit shifter. This normalization parameter will be used in the normalization process.

62 S. Park, C. Chen, and H. Jeong

Z-1

Cv

m
b
(t)

D3(t-1)

mf(S-1-t)

m f(-1)

D3(t)
min min

(a) Cost processor

m b(-1)

Z -1

D4(t)

D4(t-1)

m b(t)
Shift

D4 (S-1)
by log

2 S

(b) Parameter calculator

Fig. 9. Backward processor

4.3 Memory and Time Complexities

Given iteration layer Lk, state number S, and B bit cost, the local buffer size is calcu-
lated as (4 messages + 1 data cost) x group size Nk

1 x SB. The layer buffer size is
calculated as (4 messages + 1 data cost) x group size Nk

1 x layer number Lk x SB.
The total buffer size is

∑K−1
k=0 5SB(Lk + 1)Nk

1 .

Table 1. Comparisons of HBP and FBP

HBP FBP

memory 5SBN1N0
�K−1

k=0 5SBLkNk
1

time complexity O(
�K−1

k=0 SLkNk
1 Nk

0) O(
�K−1

k=0 SLkNk
0)

PE 1 N1

FBP uses less memory than HBP byN0/
∑K−1

k=0 ((Lk + 1)/2k). Thus our algorithm
takes effect when Lk � N0. This condition is usually satisfied because hierarchical
structure requires only small iteration layer Lk, k = 0, ..., K − 1.

Table 2. Resource used in the architecture

level k layer No. Lk local buffer (bit) PE No. Nk
1 = N1/2k layer buffer (bit)

3 5 5x40x32x10 40 5x40x5x32x10
2 5 5x80x32x10 80 5x80x5x32x10
1 10 5x160x32x10 160 5x160x10x32x10
0 5 5x320x32x10 320 5x320x5x32x10

total 25 960,000 320 6,080,000

Table. 2 shows the resources used for each level. The total memory size is 960+6,080
= 7,040 kbits at 32 disparity levels, 10 bit message and 320x240 image, which is smaller
than hierarchical BP’s 5SBN1N0 = 122, 880 kbits by N0/

∑3
k=0(L

k/2k) ≈ 17 times.
The time complexity is O(

∑K−1
k=0 SLkNk

1 Nk
0 /Nk

1) = O(
∑K−1

k=0 SLkNk
0) which is

reduced from HBP’s complexity by Nk
1 parallel processors at each level. Approxi-

mately, it is faster than HBP by N1.

VLSI Architecture for MRF Based Stereo Matching 63

THBP /TFBP = N1(
K−1∑

k=0

Lk/22k)/(
K−1∑

k=0

Lk/2k) ≈ N1 (23)

5 Experimental Results

Table. 3 shows the software performance using Middlebury data set. The error rate here
represents the amount of unoccluded pixels whose disparities are different from the
truth map. Our method shows the lowest error rate among real-time methods. Fig. 10
shows the quality of our method on the Tukuba image and real image.

Table 3. Disparity error comparison of several methods(%)

Image Tsukuba Map Venus Sawtooth

Real-time DP [4] 2.85 6.45 6.42 6.25
Real-time GPU [1] 2.05 NA 1.92 NA
Real-time BP [3] 1.5 NA 0.8 NA

Our method 1.9 0.3 0.8 0.8

(a) Tsukuba left image (b) Real left image (c) Resulting depth map

Fig. 10. Depth maps results of our method

Table 4. Comparisons of computation time

Spec Image Levels fps

Real-time DP [4] 320x240 100 26.7
Real-time GPU [1] 320x240 48 18.5
Real-time BP [3] 320x240 16 16

Our chip 320x240 32 30

Table. 4 shows the computational time performance. Due to the fully parallel VLSI
structure, our algorithm can achieve superior real-time processing which has 2 times
higher depth resolution and 2 times faster frame rate than real-time BP.

Our architecture was implemented on 2 Xilinx FPGAs. The implemented stereo
matching board incorporates 320 PEs working at 25MHz. Its detailed spec. is described
in Table. 5. We spent 2 times more Block RAM (14.4Mbits) than the expected FBP
memory(7.04M kbits) due to the Xilinx FPGA optimization. But, still, it used less mem-
ory than HBP by 9 times. We can cascade chips to process higher resolution image.

64 S. Park, C. Chen, and H. Jeong

Table 5. Hardware spec

Spec.(Resource usage percentage)

FPGA Xilinx Virtex II pro-100
Clock Speed 25MHz(Max.=79MHz)

Number of FPGA 2
Number of Block RAM(18kbit) 800(90%)

Number of Multiplier 0
Number of Divider 0

Number of Slice Flip Flops 55,712(31%)
Number of 4 input LUTs 94,014(53%)

6 Conclusions

In this paper, new VLSI techniques for finding a approximated global solution on the 2D
MRF are presented. We changed the iteration structure of BP to the memory efficient
FBP structure. Due to the small and distributed memory requirement and fully parallel
structure, our VLSI chip can process the 2D MRF global energy minimization in real-
time. We implemented it on 2 Xilinx FPGAs, which can provide 32 disparity levels’
real-time stereo matching for the 320 x 240 images at 30 frames/s.

References

1. Wang, L., et al.: High-quality real-time stereo using adaptive cost aggregation and dynamic
programming. In: 3DPVT (2006)

2. Hariyama, M., et al.: Architecture of a stereo matching vlsi processor based on hierarchically
parallel memory access. In: The 2004 47th Midwest Symposium on Cir-cuits and Systems,
number 2, pp. II245 – II247 (2004)

3. Yang, Q. et al.: Real-time global stereo matching using hierarchical belief propagation. In:
The British Machine Vision Conference (2006)

4. Forstmann, S., et al.: Real-time stereo by using dynamic programming. In: CVPR, Workshop
on real-time 3D sensors and their use (2004)

5. Felzenszwalb, P.F., Huttenlocher, D.R.: Efficient belief propagation for early vision. In: Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, (1), pp. I261–I268 (2004)

6. Zheng, N.N., Sun, J., Shum, H.Y.: Stereo matching using belief propagation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 25(7), 787–800 (2003)

Low-Power Twiddle Factor Unit for FFT Computation

Teemu Pitkänen, Tero Partanen, and Jarmo Takala

Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
{teemu.pitkanen, tero.partanen, jarmo.takala}@tut.fi

Abstract. An integral part of FFT computation are the twiddle factors, which, in
software implementations, are typically stored into RAM memory implying large
memory footprint and power consumption. In this paper, we propose a novel
twiddle factor generator based on reduced ROM tables. The unit supports both
radix-4 and mixed-radix-4/2 FFT algorithms and several transform lengths. The
unit operates at a rate of one factor per clock cycle.

1 Introduction

Fast Fourier transform (FFT) has gained popularity lately due to the fact that OFDM
has been used in several wireless and wireline communication systems, e.g., IEEE
802.11a/g, 802.16, VDSL, and DVB. An integral part of the FFT computation are the
twiddle factors, which, in software implementations, are typically stored into RAM
memory implying large memory footprint. The twiddle factors can be generated at run-
time. A traditional method is to use CORDIC as described, e.g., in [1]. The sine and co-
sine values are needed in direct digital frequency synthesizers and often the generation
is based on polynomials, e.g., in [2]. An other approach is to use a function generator
based on recursive feedback difference equation [3,4]. Typically these approaches re-
sult in smaller area than memory based approaches. However, since the computation is
done at run-time, there is a huge amount of transistor switching implying higher power
consumption in CMOS implementations.

Another approach is to store the twiddle factors into a ROM table. In an N-point
FFT, there are N/2 different twiddle factors and an approach exploiting this property
has been reported in [5]. Methods requiring only N/4 coefficients to be stored into a
table are described in [6,7]. There is, however, even more redundancy since the real
and imaginary parts of the factors are sine values and N/8 + 1 complex coefficients
are needed to reconstruct all the factors for an N-point FFT [8]. In [9], a coefficient
manipulation method is presented where only N/8 + 1 coefficients are needed to gen-
erate the twiddle factors. However, the previous methods are designed only for radix-2
algorithms containing more arithmetic operations than radix-4 algorithms.

A twiddle factor generator unit could be used as a special function unit in an applica-
tion-specific instruction-set processor (ASIP) but it may not increase the performance
of the software implementation. Often several instructions are needed to compute the
correct index to the unit. Considerable performance increase can be expected, if the unit
can also perform the index modifications to avoid additional instructions. However, the
indexing of the twiddle factors varies depending on the FFT variant. More detailed
discussion on twiddle factor indexing can be found from [10].

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 65–74, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

66 T. Pitkänen, T. Partanen, and J. Takala

In this paper, we propose a low-power twiddle factor unit based on a ROM ta-
ble. The proposed work differs from the related work such that the proposed unit a)
supports radix-4 and mixed-radix-4/2 FFT algorithms, b) supports several transform
sizes (power-of-two), and c) integrates index manipulation. By supporting radix-4 al-
gorithms, the performance of FFT computation is increased significantly compared to
radix-2 algorithms. In addition, the overhead of address manipulation in software im-
plementation is omitted, which increases the performance even more. The unit can gen-
erate factors at a rate of one factor per clock cycle. The proposed unit has already been
used in the FFT implementations described in our previous work [11,12] but here the
twiddle factor generation is described in detail.

2 FFT Algorithms

In this work, we have used the traditional in-place radix-4 decimation-in-time (DIT)
radix FFT algorithm with in-order-input, permuted output as given, e.g., in [13]. In
this work, we would like to expose the different permutations, thus we formulate the
traditional algorithm in the following fashion:

F22n = R22n

[
0

∏
s=n−1

[Os
22n]T (I2(2n−2) ⊗ F4)As

22nOs
22n

]
; (1)

F4 =

⎛

⎜⎝

1 1 1 1
1 − j −1 j
1 −1 1 −1
1 j −1 − j

⎞

⎟⎠ ; (2)

R22n =
n

∏
k=2

I2(2n−2k) ⊗ P22k,4 ; (3)

Os
2m = I4s ⊗ P2(m−2s),2(m−2s−2) (4)

where j is the imaginary unit, In is an identity matrix of order n, and the permutation
matrices RN and ON are based on stride-by-S permutation matrices [14] PN,S defined as

[PN,S]mn =
{

1, iff n = (mS mod N)+ �mS/N�
0, otherwise

, m,n = 0,1, . . . ,N − 1 (5)

The matrix As
N contains N twiddle factors W k

K = e j2πk/K as follows

As
N = Qs

N

⎡

⎣
N/4−1�

b=0

diag

(
W 0

4s+1 ,W
� b4s+1

N �
4s+1 ,W

2� b4s+1
N �

4s+1 ,W
3� b4s+1

N �
4s+1

)⎤

⎦ ; (6)

Qs
N =

s

∏
l=0

P4(s−l),4 ⊗ IN/4(s−l) . (7)

Examples of signal flow graphs of this algorithm are depicted in Fig. 1a) and 1c).
As the Fig. 1 shows the output data is not in order, thus to give it in order, input

permutation is needed at each column and it complicates the index modifications in the
coefficient generator.

Low-Power Twiddle Factor Unit for FFT Computation 67

a)

F4

F4

F4

F4

s=0 s=1 s=2

4
8

12

4
8

12

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4

F4
4
8

12

4
8

12

F4

F4

F4
8

16
24

F4
8

16
24

F4
8

16
24

F4
8

16
24

F4
12
24
36

F4
12
24
36

F4
12
24
36

F4
12
24
36

F4
4
8

12

F4
8

16
24

F4
12
24
36

F4
1
2
3

F4
5

10
15

F4
9

18
27

F4
13
26
39

F4
2
4
6

F4
6

12
18

F4
10
20
30

F4
14
28
42

F4

F4
3
6
9

F4
7

14
21

F4
11
22
33

F4
15
30
45

0
16
32
48
4

20
36

56
12
28
44
60
1

17
33
49
5

21
37
53
9

25
41
57
13
29
45
61
2

18
34
50

52
8
24
40

6
22
38
54
10
26
42
58
14
30
46
62
3

19
35
51
7

23
39
55
11
27
43
59
15
31
47
63

b)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

F4

F4

F4

F4

F4

F4

F4

F4

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F2

F4

F4

F4

F4

F4

F4

F4

F4

s=0 s=1 s=2

0
16
4
20
8

24
12
28
1

17
5

21
9

25
13
29
2

18
6
22
10
26
14
30
3

19
7

23
11
27
15
31

4
8
12

4
8

12

8
16
24

8
16
24

12
24
36

12
24
36 30

22

14

6

28

20

12

4

26

18

10

2

24

16

8

c)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

F4

F4

F4

F4

F4

F4

F4

F4

s=0 s=1

0
4
8
12
1
5
9

13
2
6

10
14
3
7

11
15

4
8

12

8
16
24

12
24
36

Fig. 1. Signal flow graph of a) 64-point radix-4, b) 32-point mixed-radix, and c) 16-point radix-4
FFT. A constant k in the signal flow graph represents a twiddle factor W k

64.

The radix-4 algorithms can be used only when the FFT size is a power-of-four.
Power-of-two transforms can be supported by using mixed-radix approach and a mixed-
radix-4/2 FFT consists of radix-4 processing columns followed by a single radix-2 col-
umn as follows

F22n+1 = S2(2n+1) (I4n ⊗ F2)B2(2n+1) ·[
0

∏
s=n−1

[Os
2(2n+1)]

T (
I2(2n−1) ⊗ F4

)
As

2(2n+1)O
s
2(2n+1)

]
; F2 =

(
1 1
1 −1

)
(8)

where the matrices Os
N and As

N are defined in (4) and (6), respectively. The matrix SN is
a permutation matrix given as

SN = (I2 ⊗ R4n)PN,2 ,N = 22n+1. (9)

68 T. Pitkänen, T. Partanen, and J. Takala

The matrix BN contains the twiddle factors for the radix-2 processing column and it is
defined as

BN = Qlog4(N/2)
N

N/2−1�

b=0

diag
(

W 0
N ,W b

N

)
,N = 22n+1 (10)

where the permutation matrix Qs
N is defined in (7). Example of signal flow graph of the

mixed-radix-4/2 algorithm is shown in Fig. 1b).

3 Twiddle Factor Access

Our objective is to design a unit, which can generate twiddle factors for several power-
of-two size transforms. By investigating the structure of the twiddle factors in FFTs of
different size, we find that the twiddle factors of a shorter transform are included in the
larger transform. Our approach is based on lookup tables (LUT) containing the twiddle
factors, thus we need to define the maximum FFT size supported, Nmax = 2nmax , and the
twiddle factors for shorter transforms can be generated from the same LUT.

The unit generates a twiddle factor based on index from an iteration counter, which
may be updated by software, if the unit is used as a special function unit in a processor.
When targeting to an application-specific fixed-function FFT processor, the iteration
counter is the counter, which used to generate all the control signals in the architecture.

An N-point radix-4 FFT contains log4(N) iterations of butterfly columns divided into
N/4 four-input radix-4 butterfly computations while, in a mixed-radix-4/2 algorithm,
log4(N/2) iterations of N/4 radix-4 computations is followed by N/2 two-input radix-
2 computations. Therefore, we need log2(N) bits to identify each butterfly input in a
butterfly column and �log2(log4(N))� bits to express the butterfly column, i.e., s in
definitions (1) and (8).

The input operands for the unit are the iteration counter and parameter indicating the
transform size. Let us denote the (�log2(log4(N))�+ log2(N))-bit iteration counter by
c = (c�log2(log4(N))�+log2(N)−1, . . . ,c1,c0)T . The transform size is indicated by parameter
f = log2(Nmax)− log2(N). The structure of the proposed function unit is discussed in
the following sections with an example design supporting FFT sizes of 16, 32, and 64.
In this example case, the input parameter f can have values 0, 1, or 2 to indicate FFT
sizes 64, 32, or 16, respectively. A 5-bit iteration counter c is used when FFT size is 16
and, for a 64-point FFT, an 8-bit counter is needed. The block diagram of the example
design is illustrated in Fig. 2. The input parameters are written into registers f and c
and the final twiddle factor is obtained from the output registers.

3.1 Scaling

In order to minimize the bit-level shifts due to different transform sizes, we first shift
the iteration counter c to the left by the number of bits indicated by the parameter f .
This implies that after the shift we obtain a bit-field where the �log2(log4(Nmax))� +
log2(Nmax) bits indicate the butterfly column s and the log2(Nmax) = nmax least signif-
icant bits contain the index of the twiddle factor in the column to be generated. Let
us denote this part by d = (dnmax−1, . . . ,d0)T . However, the actual index is in the most
significant bits index and d contains (nmax − log2(N)) zeros in the least significant bits.
The rest of the operation is based on operands s and d.

Low-Power Twiddle Factor Unit for FFT Computation 69

R

R << 5c(7:0)
s(1:0)

d(5:0)

f(1:0)

permut

mask 6

6
8

5

M0
1

M0
1

msb

lsb

lsb
msb

co
msb
lsb

msb
lsb

4

4g(3:0)

k(5:0)

h(1:0)
h(0)

h(1)

l(5:0)

r2detectmr

msb
lsb

S

M0
1h(0)

R

3
k(5:0)

q(2:0)

r(2:0)
w(3:0)

q(0)

LUT M0
1

M0
1

msb
lsb

msb
lsb3 16

q(2)q(0)q(2)q(0) q(2)

1616

16

Re(WN
k)

Im(WN
k)

Re
Im

ci
co

ci

ci

R

Fig. 2. Block diagram of twiddle factor generator supporting transform sizes of 16, 32, and 64.
R: register. M: multiplexor. co: carry out. ci: carry in. <<: left shifter.

3.2 Permutation

The order of twiddle factors depends on the FFT algorithm and, in this work, we con-
centrate on the in-order input, permuted output FFTs given in (1) and (8). In these par-
ticular cases, we need to consider the implementation of matrices As

N and Bs
N defined in

(6) and (10), respectively.
Our approach is based on index modifications, thus first we need to perform the

permutation Qs
N in (7). The the permutation can be investigated by considering the bit-

level rotations as discussed in [15,16]. This shows that the permutation is actually the
traditional bit-reversed permutation but here 2-bit fields are used instead of a single bit.
It should also be noted that the permutation varies according to the butterfly column
s. The permutation in our case is actually independent on the transform size, since we
have shifter the index earlier, thus the permuted index, l = (llog2(N), . . . , l1, l0), of an
N-point FFT can be expressed in bit-level in matrix form as follows

l =
(

Īs ⊗ I2
Inmax−2s

)
d ; Īs =

⎛

⎜⎜⎜⎝

1
·

·
·

1

⎞

⎟⎟⎟⎠ (11)

where Īm is an antidiagonal matrix of order m. The bit-level permutations in a general
case are illustrated in Fig. 3. In our example case, the permutations are performed in the
block “permut” and the first two, i.e. the maximum butterfly column s is 2, permutations
from Fig. 3 are needed.

3.3 Lookup Table Index

Our approach is to store the twiddle factors to a lookup table and the indexing into the
table is based on the exponent k in the twiddle factor W k

N as defined in (6). Different

70 T. Pitkänen, T. Partanen, and J. Takala

s=0, s=1

s=2 . . .

s=3 . . .

nmax-1

nmax-1

nmax-1

nmax-1

1

1

1

1

0

0

0

0

. . .

s=4 . . .

nmax-1 1 0s=5 . . .

Fig. 3. Examples of bit-level index permutations according to (11)

values of k in FFTs can also be seen in Fig. 1. By exploiting the property W a
aN = WN ,

we can express the twiddle factors as powers of WNmax . The twiddle factors for radix-4
algorithm are defined in (6) and we can rewrite this equation as follows:

As
N = Qs

N

N�

b=0

W
(b mod 4)� �b/4�4s+1

N � Nmax
4s+1

Nmax
(12)

where mod is the modulus operation. Here we need an equation for the exponent k for
factor W k

Nmax
, which can be found from the previous. In addition, we have used a shifted

index and, therefore, the index b can be replaced with the permuted index l from (11)
by the relation l = bNmax/N, thus we obtain

k = (b mod 4)��b/4�4s+1

N
�Nmax

4s+1 =
[
� lN

Nmax
� mod 4

][
��l/4�4s+1

Nmax
�Nmax

4s+1

]
. (13)

We may denote the first term as h and the second as g. Then the operation at bit-level
representation can defined as follows:

k = hg ; g =
(

I2s

0nmax−2s−2,nmax−2s

)
l ; h = (02,nmax− f−2, I2,02, f) l (14)

where 0n,m is an n × m matrix containing zeros and f is the input operand defining
the index shift, f = nmax − log2(N). In the example case in Fig. 2, the block “mask”
generates a 6-bit mask, where the 2s most significant bits are ones and the rest are
zeros. This is used to mask the 6-bit permuted index l. Then the two least significant
bits are omitted and the 4-bit result is passed to multiplication with h. Since h is a 2-bit
variable, a simple solution is to us adder, where the same operand is fed but the second
one is shifted one bit to right, i.e., multiplied by two. Multiplexers can be used to feed
either the operand or zero to the adder and these multiplexers are controlled by the
multiplicand h.

The 2-bit variable h needs to be extracted from l with the aid of multiplexer con-
trolled with f . Figure 2 indicates that h can be extracted also from d, which shortens the
critical path. The block “S” performs the extraction, i.e., h = (h1,h0)T = (d f+1,d f)T .

In the last butterfly column of mixed-radix-4/2 algorithm, the twiddle factors have a
bit different form and by using the fact that, in the last column, s = log4(N/2) we may
rewrite (10) as follows:

Low-Power Twiddle Factor Unit for FFT Computation 71

BN = Qs
N

N�

b=0

W
(b mod 2)� �b/2�4(s+1)

N � Nmax
4(s+1)

Nmax
. (15)

By following the procedure used to define the exponent k in radix-4 case, we can define
k in this case as follows

k = (b mod 2)��b/2�4s+1

N
�Nmax

4s+1 =
[
� lN

Nmax
� mod 2

][
�
� l

2�4s+1

Nmax
�Nmax

4s+1

]
. (16)

By comparing this equation to (13), we find that there is a scaling difference in the sec-
ond term and, if the same hardware is used to generate exponent for both radix-4 and
mixed-radix-4/2 twiddle factors, this needs to be compensated. In bit-level representa-
tion, this can be defined as

k = 2hg ; h = (01,nmax− f−1,1,01, f) l (17)

where g is obtained as in (14). The example case in Fig. 2 shows a block “detectmr”,
which is used to detect when mixed-radix algorithm is used and the twiddle factors are
for the last butterfly column consisting of the radix-2 butterflies. In this case, the least
significant bit of f can be used to detect the mixed-radix transform and the detection of
the last butterfly column is detected with the aid of hard-coded detection. Signal “r2” is
active-high, which masks the signal “h(1)” since h is only a 1-bit parameter. In addition,
the operand g is directed to the lower input of the adder, where the operand is shifted
one bit to the left, thus the additional multiplication by two is realized.

3.4 Memory Reduction

Here we propose a method to reconstruct twiddle factors for radix-4 and mixed-radix-
4/2 FFT from a ROM table containing N/8 + 1 coefficients. The twiddle factors in
64-point radix-4 FFT are shown in Table 1 and it can be seen that by reordering the
coefficients into six blocks, B0 . . .B5, all the twiddle factors can be retrieved from co-
efficients in block B0 containing nine complex coefficients. Since we need to support
several transform sizes up to an Nmax-point FFT, we store (Nmax/8+1) complex-valued
coefficients into a table, M = (M0,M1, . . . ,MN/8) | Mk = W k

Nmax
. The rest of the twiddle

factors can be obtained from the table M as follows:

W k
Nmax

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mk , k ≤ Nmax
8

− jM Nmax
4 −k , Nmax

8 < k ≤ Nmax
4

− jM∗
k− Nmax

4
, Nmax

4 < k ≤ 3Nmax
8

−M∗
Nmax

2 −k
, 3Nmax

8 < k ≤ Nmax
2

−Mk− Nmax
2

, Nmax
2 < k ≤ 5Nmax

8

jM∗
3Nmax

4 −k
, 5Nmax

8 < k

(18)

where M∗
k is the complex conjugate of Mk.

72 T. Pitkänen, T. Partanen, and J. Takala

Table 1. Twiddle factors in 64-point radix-4 FFT. The decimal value is shown as (real,imaginary).

B0 B1 B2 B3 B4 B5

W 0
64 (1.0,0.0) W 16

64 (.00,-1.0)

W 1
64 (1.0,-.10) W 15

64 (.10,-1.0) W 33
64 (-1.0,.10)

W 2
64 (.98,-.20) W 14

64 (.20,-.98) W 18
64 (-.20,-.98) W 30

64 (-.98,-.20)

W 3
64 (.96,-.29) W 13

64 (.29,-.96) W 45
64 (-.29,.96)

W 4
64 (.92,-.38) W 12

64 (.38,-.92) W 20
64 (-.38,-.92) W 28

64 (-.92,-.38) W 36
64 (-.92,.38)

W 5
64 (.88,-.47) W 11

64 (.47,-.88) W 21
64 (-.47,-.88) W 27

64 (-.88,-.47)

W 6
64 (.83,-.56) W 10

64 (.56,-.83) W 22
64 (-.56,-.83) W 26

64 (-.83,-.56) W 42
64 (-.56,.83)

W 7
64 (.77,-.63) W 9

64 (.63,-.77) W 39
64 (-.77,.63)

W 8
64 (.71,-.71) W 24

64 (-.71,-.71)

In order to generate correct twiddle factor W k
N for the given exponent k defined ear-

lier, we need to create an index to the table M. Such a method can be obtained by noting
the fact that the twiddle factors are defined by vectors with equal spaced angles along
a unit circle, thus when starting from zero angle the indices to the table M increase by
one until k = N/8. Then the indices decrease until k = N/4 and they start to increase
again. This behavior results in six regions as shown in Table 1.

In bit-level, we may generate the index to lookup table by dividing the bit-field k into
two parts; the three most significant bits of k are denoted as q = (knmax−1,
knmax−2,knmax−3)T and the least significant bits by r = (knmax−4, . . . ,k1,k0)T . The index
to the lookup table is obtained as follows

w =
{

r , if q0 = 0
∼ r + 1 , otherwise

(19)

where ∼ r denotes inversion of bits in r. This can be seen in the lower part in Fig. 2.
The index w is used to access the lookup table M (“LUT” in Fig. 2) and the obtained
complex value Mw needs to be modified according to (18), which shows that the correct
twiddle factor can be obtained as follows

W k
Nmax

=
{

(−1)q0�q2ℜ(Mw)+ j(−1)q0�q1�q2ℑ(Mw) , if q0 � q1 = 0
(−1)q0�q2ℑ(Mw)+ j(−1)q0�q1�q2ℜ(Mw) , otherwise

(20)

where � denotes bitwise exclusive-OR operation and ℜ(x) and ℑ(x) denote real and
imaginary part of x, respectively. Figure 2 shows that this modification requires two
multiplexors and two real adders with XOR-gates in inputs.

4 Experiments

We have described the proposed twiddle factor unit in VHDL language such that Nmax =
214, i.e., the unit supports power-of-two FFTs up to 16K, thus lookup table contains
2049 complex-valued coefficients. The inputs to the unit are 17-bit c register and 4-bit

Low-Power Twiddle Factor Unit for FFT Computation 73

Table 2. Power dissipation and area of twiddle factor unit designs: proposed unit, pipelined (two
stages) and non-pipelined, and unit based on ROM table [5]

pipelined@250MHz non-pipelined@140MHz ROM table [5]@250MHz

Power [mW] Area [kgates] Power [mW] Area [kgates] Power [mW] Area [kgates]

LUT 1.50 12 2.24 15.8 43.00 20.5

Pipeline 0.95 0.3

Total 3.70 14.3 4.11 18.4 43.00 20.5

f register. The lookup table contains complex-valued coefficients with 16-bit real and
imaginary parts, i.e., word width of lookup table is 32 bits.

The design has been synthesized with Synopsys tools onto a 130 nm standard cell
technology. Then power estimates have been obtained with Synopsys tools with aid of
gate level simulations. The analysis results are listed in Table 2.

The analysis results show that the critical path limits the clock frequency to 140
MHz when no pipelining is exploited. When two pipeline stages are used, the maximum
clock frequency is 275 MHz. The lookup table has been designed with hard-wired logic
for reducing the power consumption. If the lookup table was implemented as a ROM
memory, the power consumption would have been eight times higher, although the area
had been half smaller.

For comparison, we have also implemented a unit based on the traditional ROM table
approach where Nmax/2 = 8192 coefficients are stored (“ROM table” in Table 2). The
method in [9] is not compared since it does not support radix-4 algorithms.

We have also the twiddle factor unit in an ASIP tailored for FFT computations [12]
and, in this 32-bit processor containing, e.g., complex multiplier and adder, the twid-
dle factor unit uses about 23% of the core area (instruction and data memories not
included), while the power consumption is only 7% of the total power consumption of
the core. However, the unit improved significantly the performance of the FFT software
implementation; the unit provides twiddle factor once per instruction cycle without ad-
ditional address manipulation instructions.

5 Conclusions

In this paper, we have described a twiddle factor unit supporting radix-4 and mixed-
radix-4/2 FFT algorithms and several power-of-two FFT sizes. The unit can be used as
a special unit in an ASIP architecture or a coefficient generator in application-specific
FFT processors. The unit shows significant power savings compared to the popular
approach where the twiddle factors are stored into a ROM table.

Acknowledgement

This work has been supported in part by the Academy of Finland under project 205743
and the Finnish Funding Agency for Technology and Innovation under research funding
decision 40441/05.

74 T. Pitkänen, T. Partanen, and J. Takala

References

1. Wu, C.S., Wu, A.Y.: Modified vector rotational CORDIC(MVR-CORDIC algorithm and its
application to fft. In: Proc. IEEE ISCAS, Geneva, Switzerland, vol. 4, pp. 529–532 (2000)

2. Xiu, L., You, Z.: A new frequency synthesis method based on flying-adder architecture. IEEE
Trans. Circuits Syst. 50(3), 130–134 (2003)

3. Fliege, N.J., Wintermantel, J.: Complex digital oscillator and FSK modulators. IEEE Trans.
Signal Processing 40(2), 333–342 (1992)

4. Chi, J.C., Chen, S.G.: An efficient FFT twiddle factor generator. In: Proc. European Signal
Process. Conf., Vienna, Austria, pp. 1533–1536 (2004)

5. Cohen, D.: Simplified control of FFT hardware. IEEE Trans. Acoust., Speech, Signal
Processing 24(6), 577–579 (1976)

6. Chang, Y., Parhi, K.K.: Efficient FFT implementation using digit-serial arithmetic. In: Proc.
IEEE Workshop Signal Process. Syst., Taipei, Taiwan, pp. 645–653. IEEE Computer Society
Press, Los Alamitos (1999)

7. Ma, Y., Wanhammar, L.: A hardware efficient control of memory addressing for high-
performance FFT processors. IEEE Trans. Signal Processing 48(3), 917–921 (2000)

8. Wanhammar, L.: DSP Integrated Circuits. Academic Press, San Diego, CA (1999)
9. Hasan, M., Arslan, T.: FFT coefficient memory reduction technique for OFDM applications.

In: Proc. IEEE ICASSP, Orlando, FL, vol. 1, pp. 1085–1088 (2002)
10. Chu, E., George, A.: Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform

Algorithms. CRC Press, Boca Raton, FL (2000)
11. Pitkänen, T., Mäkinen, R., Heikkinen, J., Partanen, T., Takala, J.: Low-power, high-

performance TTA processor for 1024-point fast Fourier transform. In: Vassiliadis, S., Wong,
S., Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 227–236. Springer, Heidel-
berg (2006)

12. Pitkänen, T., Mäkinen, R., Heikkinen, J., Partanen, T., Takala, J.: Transport triggered ar-
chitecture processor for mixed-radix FFT. In: Proc. Asilomar Conf. Signals, Systems, and
Computers, Pacific Grove, CA (2006)

13. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall,
Englewood Cliffs (1975)

14. Granata, J., Conner, M., Tolimieri, R.: Recursive fast algorithms and the role of the tensor
product. IEEE Trans. Signal Processing 40(12), 2921–2930 (1992)

15. Akopian, D., Takala, J., Astola, J., Saarinen, J.: Multistage interconnection networks for
parallel Viterbi decoders. IEEE Trans. Commun. 51(9), 1536–1545 (2003)

16. Bóo, M., Argüello, F., Bruguera, J., Doallo, R., Zapata, E.: High-performance VLSI archi-
tecture for the Viterbi algorithm. IEEE Trans. Commun. 45(2), 168–176 (1997)

Trade-Offs Between Voltage Scaling and Processor
Shutdown for Low-Energy Embedded Multiprocessors�

Pepijn de Langen and Ben Juurlink

Delft University of Technology, Computer Engineering Lab.
Mekelweg 4, 2628 CD Delft, The Netherlands

{pepijn,benj}@ce.et.tudelft.nl

Abstract. When peak performance is unnecessary, Dynamic Voltage Scaling
(DVS) can be used to reduce the dynamic power consumption of embedded
multiprocessors. In future technologies, however, static power consumption is
expected to increase significantly. Then it will be more effective to limit the
number of employed processors, and use a combination of DVS and processor
shutdown. Scheduling heuristics are presented that determine the best trade-off
between these three techniques: DVS, processor shutdown, and finding the opti-
mal number of processors. Experimental results show that our approach reduces
the total energy consumption by up to 25% for tight deadlines and by up to 57%
for loose deadlines compared to DVS. We also compare the energy consumed by
our scheduling algorithm to two lower bounds, and show that our best approach
leaves little room for improvement.

1 Introduction

Recently, (single-chip) multiprocessors such as the IBM/Sony/Toshiba Cell architec-
ture [1] and Philips Wasabi [2] have been introduced or announced for the high-
performance embedded market. For such systems, the energy consumption is an
important design consideration. The power consumption of a processor consists of a
dynamic part (due to switching activity) and a static part (due to leakage current). In
past technologies, the dynamic power has been much larger than the static power. With
each technology generation, however, the leakage current is predicted to increase by a
factor of five [3] and is predicted to surpass the dynamic power consumption [4].

In this paper we consider the problem of scheduling tasks on a multiprocessor system
to minimize the total energy consumption. When the dynamic power dominates the
static power, an effective technique to reduce the energy is to schedule the tasks on as
many processors as possible to reduce the makespan of the schedule. Thereafter, the
remaining time before the deadline (the slack) is used to scale down the supply voltages
and operating frequencies. We refer to this technique as Schedule-and-Stretch (S&S).

When the static and dynamic power are comparable, however, S&S is no longer ef-
fective because it increases the amount of leakage current by using more processors than
necessary and by lengthening the time it takes to complete the computation. In previ-
ous work [5] we have proposed LAMPS (Leakage-Aware MultiProcessor Scheduling).

� This research was supported in part by the Netherlands Organisation for Scientific Research
(NWO).

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 75–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

76 P. de Langen and B. Juurlink

LAMPS does not employ as many processors as possible to maximize the amount of
slack, but determines an optimal balance between the number of processors that should
be used and the level of frequency/voltage scaling.

In this work, we extend both S&S and LAMPS in the following ways. First, we
assume discrete voltage levels, while in [5] we have assumed that any voltage/frequency
level can be used. Second, we extend both heuristics with the option to shut down
processors temporarily. Third, we include two lower bounds, one for the case where
only a single frequency is used for all tasks, and one for the case where processors can
run at different frequencies and these frequencies may change over time.

Experimental results show that our best approach reduces the total energy consump-
tion by up to 25% for tight deadlines (1.5x the critical path length) and by up to 57%
for loose deadlines (8x the critical path length) compared to S&S and by up to 14% re-
spectively 11% compared to LAMPS. Comparing these results to the theoretical bounds
indicates there is little room left for improvement. More specifically, for fairly coarse-
grain task graphs LAMPS+PS attains over 94% of the possible savings, provided the
frequency is the same for all active processors and is constant throughout the schedule.

This paper is organized as follows. Section 2 contains an overview of related work.
The power model employed in this work, dynamic voltage scaling, and processor shut-
down are explained in Section 3. Section 4 reviews S&S and LAMPS and presents our
novel scheduling heuristics that extend S&S and LAMPS with the possibility to shut
down processors for a period of time. Experimental results are provided in Section 5.
In Section 6, conclusions are drawn and some directions for future research are given.

2 Related Work

Applying DVS to multiprocessor scheduling has been investigated by a significant num-
ber of researchers. An overview is provided by Jha [6]. As described in Section 1, one
approach is to use an existing scheduling algorithm, such as list scheduling with earliest
deadline first (EDF), to finish the tasks as early as possible and use the remaining slack
before the deadline to lower the supply voltage. This technique has been proposed by
several authors [7,8] using different names and, therefore, we refer to it as Schedule and
Stretch (S&S). Leakage current was not included in their energy calculations, however.

Jejurikar et al. [9] showed that there is an optimal operating point, called the critical
speed, at which the total energy consumption is minimized. Lowering the supply volt-
age below this point increases the energy consumption. They combined this knowledge
with processor shutdown and DVS and used it for real-time scheduling. A similar ap-
proach was followed by [10], who employed a fixed priority instead of EDF. However,
these works assumed that the tasks are independent and focussed on single-processor
scheduling. The same model is assumed in [11] and [12]. In addition, the first did not
consider DVS, and the second assumed a continuous voltage range.

In other work [13], the scheduling is done in a way to optimize the possibilities
for selecting different voltages. Varatkar et al. [14] tried to execute part of the code
on a lower supply voltage while minimizing communication. Some researchers have
proposed to improve DVS by also adjusting the threshold voltage when scaling the

Trade-Offs Between Voltage Scaling and Processor Shutdown 77

supply voltage [15,16,17,18]. None of these works, however, attempted to determine
the number of processors that yields the least energy consumption.

Xu et al. [19] proposed to minimize energy consumption by both using a combination
of DVS and choosing the correct number of employed processors. Their work, however,
targets embedded clusters in which the nodes provide the same type of service in a
client-server model. Furthermore, these authors do not consider static scheduling but
instead propose an online algorithm similar to [8].

Our work differs in the following ways. First, we focus on static multiprocessor
scheduling, where others mainly focussed on single-processor or real-time multiproces-
sor scheduling. Second, we use a detailed power model and limit the voltage to discrete
steps. Third, we consider DVS as well as processor shutdown and finding the correct
number of processors. Fourth, we use a publicly available set of task graphs, where
most others have used randomly generated graphs.

3 Preliminaries

In this section we describe the employed models, as well as two primary ways to reduce
power dissipation: dynamic voltage scaling and processor shutdown.

System and Application Model. We assume a shared memory multiprocessor system
running parallel applications, for which the scheduling and mapping are statically de-
termined. The applications are represented as weighted directed acyclic graphs (DAGs),
where nodes correspond to tasks, edges to task dependences, and node weights to task
processing times. We furthermore assume that this system is CPU bound. As explained
by Liberato et al. [20], real-time applications with periodic tasks can be translated to
DAGs using the frame-based scheduling paradigm.

Another common application model is Kahn Process Networks [21], where a group
of processes are connected by communication channels to form a network of processes.
Each process is in principle infinite and receives data over its input channels, processes
it, and sends the results over the output channels. Here there is not a single deadline
but a certain throughput must be guaranteed. This model can be converted to DAGs by
making several copies of the KPN, by adding an edge from each node in the ith copy to
the corresponding node in the (i + 1)st copy, and by assigning the output nodes of the
first copy an arbitrary but reasonable deadline. The deadline of the output nodes of each
successive copy is set to the deadline of the corresponding node in the previous copy
plus the reciprocal of the throughput. A simple example is depicted in Fig. 1.

3 2 1..., I , I , I

3 2..., J , J , J 1

I1

J1

I2

J2

I3

J3

Fig. 1. Simple example for translating KPNs into DAGs

78 P. de Langen and B. Juurlink

Mainly due to unpredictable behavior in the memory system, the execution time
of a task does not solely depend on the clock frequency. However, since reducing the
frequency will make memory accesses relatively less costly, it is safe to assume that
executing a task on 1/Nth of the frequency will take at most N times as much time.

Power Model. In this work, we use the power model described in [9], which in turn is
based on the model and parameters given in [16], where it has been verified with SPICE
simulations. In this model, the power consumption of a processor is given by:

P = PAC + PDC + Pon,

where PAC is the dynamic power consumption (due to switching activity), PDC is the
static power consumption (due to leakage current), and Pon is the intrinsic power con-
sumption needed to keep the processor on. Like [9], we assume Pon is 0.1W . The dy-
namic and static power are given by:

PAC = CeffV
2
dd f and PDC = VddIsubn + |Vbs| I j,

where Ceff is the effective switching capacitance, Vdd is the supply voltage, f is the
operating frequency, Isubn is the sub-threshold leakage current, Vbs is the voltage applied
between body and source, and I j is the reverse bias junction current. The sub-threshold
leakage current and the threshold voltage are given by:

Isubn = K3eK4VddeK5Vbs and Vth = Vth1 − K1Vdd − K2Vbs,

where K1. . . K5 and Vth1 are constants. Finally, the relation between operating frequency,
supply voltage, and threshold voltage is:

f = (Vdd −Vth)α/LdK6,

where Ld represents the logic depth and K6 and α are constants for a certain technology.
We use the same constants for 70nm technology as [9,16], which are omitted due to
space constraints. The maximum frequency of this processor is 3.1GHz, which requires
a supply voltage of 1V. Figures 2(a) and 2(b) depict the resulting power consumption
and energy per cycle as a function of the normalized operating frequency.

Dynamic Voltage Scaling. DVS mainly reduces the dynamic power consumption,
which increases quadratically with the supply voltage. The static component, although
having a exponential relation with supply voltage, does not decrease as much with de-
creasing supply voltage as the dynamic component, as is depicted in Fig. 2(a).

Since energy equals power times time, the energy consumption will actually start
to increase if the frequency is decreased below a certain point. Fig. 2(b) depicts the
energy per cycle as a function of the normalized frequency. It can be seen that the
optimal or critical frequency (fcrit) is 0.38 times the maximum. Because of the discrete
voltage levels, however, the critical frequency is reached at a supply voltage of 0.7V,
corresponding to a normalized frequency of 0.41. Scaling below this frequency will
reduce the power consumption but not the total energy consumption, provided that the
processors can be shut down for the remaining time. When there is no sleep/shutdown
mode, scaling below fcrit will, in fact, reduce the total energy consumption, since the
processors also consume energy for the remaining time.

Trade-Offs Between Voltage Scaling and Processor Shutdown 79

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

po
w

er
 [W

]

normalized frequency

Ptotal
Pac
Pdc
Pon

(a) Power consumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

en
er

gy
 p

er
 c

yc
le

 [μ
J]

normalized frequency

f c
rit

Etotal
Eac
Edc
Eon

(b) Energy consumption.

Fig. 2. Power and energy consumption as a function of the normalized frequency

Processor Shutdown. The second technique to reduce the energy consumption of a
multiprocessor system is to put idle processors temporarily in a deep sleep or shutdown
mode. The advantage of this technique over DVS is that it reduces all terms of the to-
tal power consumption, not only the dynamic part. When shutting down a processor,
however, the contents of, e.g., caches and branch predictors are lost. When a processor
is switched back on, they have to be warmed up again, which causes additional delay
and consumes extra energy. We use the estimates of Jejurikar et al. [9], who estimated
that a processor in sleep state consumes about 50µW of power and that shutting down
and resuming a processor incurs an energy overhead of 483µJ. This overhead includes
the supply voltage switching as well as the energy spent to warm up caches and predic-
tors. The additional delay incurred by powering down can be hidden by waking up the
processor a short time before the end of the idle period.

Processor shutdown is only beneficial if a processor is idle for a sufficiently long
period. Since in most cases applications with rather fine-grain tasks will have relatively
short idle periods (unless the task graph is very unbalanced), such applications will in
general not benefit from to shutting down processors temporarily between the execution
of two tasks. However, it might still be energy efficient to shut down at the end of the
schedule, provided the deadline is relatively long.

4 Scheduling for Energy Minimization

In this section we review S&S and LAMPS and enhance both scheduling approaches
with the option to shut down processors temporarily. In the schedules produced by
these approaches, all processors run at the same operating frequency and this frequency
is constant throughout the whole schedule. Both S&S and LAMPS employ list schedul-
ing with earliest deadline first (LS-EDF) to perform the actual scheduling. EDF does
not necessarily produce the best schedule, however. To investigate if other scheduling
algorithms could result in additional energy gains, we also present an ideal model in
which idle processors are assumed to consume no energy. Furthermore, we also show
the improvements that could be attained if the frequency could vary among processors
and over time.

80 P. de Langen and B. Juurlink

S&S and S&S+PS. As described before, in S&S the task graph is first scheduled
using LS-EDF to maximize the amount of slack before the deadline. Thereafter, this
slack is exploited to lower the supply voltage. By employing this technique, the energy
consumption can already be reduced by 30% for tight deadlines by more than 70% for
loose ones [5].

We extend S&S with the option to shut down processors temporarily. We refer to
this heuristic as S&S with Processor Shutdown (S&S+PS). In S&S+PS, the task graph
is again first scheduled using the EDF policy. Thereafter, the optimal balance between
processor slowdown (through DVS) and shutdown is determined by gradually scal-
ing the operating frequency from the maximum frequency to the minimum frequency
required to meet the deadline using discrete voltage level steps of 0.05V. For each fre-
quency, the remaining slack both inside as well as at the end of the schedule is used to
shut down processors, provided the idle period is greater than the minimum idle period
to result in energy savings. In other words, the slack is only used to shut down a proces-
sor if it is large enough to make up for the additional energy consumption due to loss of
state.

LAMPS and LAMPS+PS. In LAMPS, a trade-off is made between the number of
processors that should be employed and the amount of voltage scaling. The remain-
ing processors are turned off. The number of processors that minimizes the energy is
found by calculating the energy consumption of the schedule produced by S&S for
Nmin, Nmin + 1, . . . , Nmax processors, where Nmin is the number of processors needed
to finish before the deadline and Nmax is the number of processors that can be used to
reduce the makespan of the schedule.

We also enhance the LAMPS heuristic with the option to shut down processors and
refer to the resulting heuristic as LAMPS+PS. As in LAMPS, the number of processors
that minimizes the total energy consumption is determined by calculating the energy
consumption for Nmin, Nmin +1, . . . , Nmax processors, where Nmin is the minimal number
of processors needed to meet the deadline and Nmax is the number of processors that can
be employed efficiently. For each number of processors, we then determine the balance
between DVS and processor shutdown by scaling the frequency from the maximum to
the minimum frequency required to meet the deadline. For each frequency, we then use
the available slack to shut down processors, similar to the S&S+PS heuristic.

LIMIT-SF & LIMIT-MF. In the approaches described above, the schedule is always
produced by EDF. It is known, however, that EDF is suboptimal for multiprocessor
scheduling. Furthermore, in the approaches the frequency is always constant throughout
the entire schedule. To investigate if additional energy can be saved by employing a
different scheduling algorithm or by allowing different frequencies, we also include
two lower bounds, one for the case with a single frequency (LIMIT-SF) and one for the
case where multiple frequencies are allowed (LIMIT-MF).

LIMIT-SF has the following characteristics. First, idle processors are assumed to
consume no energy at all. In other words, only active cycles are considered when cal-
culating the energy consumption and, consequently, there is no benefit from or penalty
for shutting down processors. Second, the number of processors is equal to the num-
ber of tasks. Since idle processors consume no energy, using fewer processors will not

Trade-Offs Between Voltage Scaling and Processor Shutdown 81

reduce the energy. Third, the frequency is scaled down to the optimal frequency if pos-
sible to meet the deadline, or otherwise as much as possible. No schedule can consume
less energy than this ideal model, provided that the frequency is the same for all active
processors and is constant throughout the schedule.

The difference between LIMIT-MF and LIMIT-SF is that in LIMIT-MF all tasks
are scheduled at the critical frequency. Because of this and since idle processors are
assumed to consume no energy, LIMIT-MF is an absolute lower bound, even for the
case where processors can run at different speeds and where the frequency may change
over time. We note, however, that it may happen that the schedule produced by LIMIT-
MF does not meet the deadline.

Since both LIMIT-SF and LIMIT-MF do not depend on any particular scheduling
algorithm, this implies that these results cannot be improved by employing a different
scheduling algorithm than EDF.

5 Experimental Evaluation

In this section, we present and compare the results of the different scheduling ap-
proaches discussed in Section 4. We use the same power model as used by [16] and [9],
as explained in Section 3. We again emphasize that a processor in sleep state consumes
50µW and that switching a processor off and on requires 483µJ of energy.

Experimental Setup. Table 1 lists the benchmarks that have been used, as well as the
number of nodes and edges, the critical path length, and the sum of all node weights
(total work). These benchmarks have been taken from the Standard Task Graph Set [22].
The first three have been derived from real applications, while the other three have
been randomly generated. We note that most previous works have used only randomly
generated task graphs to validate their approaches.

Table 1. Employed benchmarks and their main characteristics

name number of nodes number of edges critical path total work
fpppp 334 1196 1062 7113
robot 88 130 545 2459
sparse 96 128 122 1920
proto001 273 1688 167 4711
proto003 164 646 556 1599
proto279 1342 16762 735 13302

Since the Standard Task Graph Set does not provide deadlines, we have used dead-
lines of 1.5, 2, 4, and 8 times the critical path length (CPL) when running at the maxi-
mum frequency of 3.1GHz. It also does not define the unit of the task weights. Instead,
the weights are given as integers in the range from 1 to 300. Therefore, two differ-
ent scenarios are considered. In the first scenario, corresponding to rather coarse-grain
tasks, a weight of 1 in a task graph implies an execution time of 3.1 ·106 cycles, which

82 P. de Langen and B. Juurlink

is 1 millisecond when running at the maximum frequency of 3.1GHz. In the second sce-
nario, corresponding to relatively fine-grain tasks, the same weight implies an execution
time of 3.1 ·104 cycles, which at maximum frequency takes 10 microseconds.

Experimental Results. Figs. 3 and 4 depict the results for coarse grain and fine grain
tasks, respectively. For each scenario, we show the energy consumption for deadlines
of 1.5, 2, 4, and 8 times the CPL. Each figure shows the results of the four different
approaches explained in Section 4, as well as the theoretical limits. Throughout this
section, S&S is used as the baseline against which we compare the other heuristics.

(a) deadline = 1.5×CPL (b) deadline = 2×CPL

(c) deadline = 4×CPL (d) deadline = 8×CPL

Fig. 3. Energy consumption for coarse-grain tasks

First we compare the energy consumption of the schedules produced by LAMPS to
the energy consumption of the schedules generated by S&S. Figs. 3 and 4 show that
LAMPS improves upon S&S mainly for less strict deadlines. This can be expected be-
cause for tight deadlines (1.5x the CPL), LAMPS requires the same or nearly the same
number of processors as S&S to meet the deadline, and therefore consumes the same or
nearly the same amount of energy as S&S. In other words, if the deadline is tight, there
is less opportunity to turn off processors. For loose deadlines (8x the CPL), on the other
hand, LAMPS consumes significantly less energy than S&S, simply because it can em-
ploy fewer processors. In this case LAMPS reduces the total energy consumption by
45% on average compared to S&S with a maximum of 53%. For fine-grain tasks, de-
picted in Fig. 4, the relative differences between S&S and LAMPS are the same as with
coarse-grain tasks, since both heuristics do not shut down processors. Compared to [5]
the energy savings are generally slightly smaller because there a continuous voltage
range was assumed while in this work discrete voltage levels are assumed.

We now compare S&S+PS to S&S. Because S&S employs a large number of proces-
sors, it consumes a significant amount of static power. Therefore, S&S+PS improves

Trade-Offs Between Voltage Scaling and Processor Shutdown 83

(a) deadline = 1.5×CPL (b) deadline = 2×CPL

(c) deadline = 4×CPL (d) deadline = 8×CPL

Fig. 4. Energy consumption for fine-grain tasks

upon S&S significantly, by shutting down idle processors temporarily. The gains, in
this case, are considerably larger for coarse-grain tasks (30% on average) than for fine-
grain tasks (12% on average), because in the latter case the slack is often not large
enough to make shutdown beneficial.

LAMPS+PS improves upon LAMPS mostly for coarse-grain tasks. Again, the main
reason for this is that for fine-grain tasks, the slack is often not large enough to make
shutting down worthwhile. With coarse grain tasks, however, a significant amount of
energy can be saved by shutting processors down temporarily. The improvement of
LAMPS+PS over LAMPS is typically less than the improvement of S&S+PS over S&S.
This is because in LAMPS the static dissipation is already reduced by using a smaller
number of processors compared to S&S. For coarse-grain tasks, the maximum improve-
ments by LAMPS+PS upon LAMPS are 14% and 11%, for deadlines of 1.5× and 8×
the CPL respectively.

For coarse-grain tasks, the total improvement by LAMPS+PS upon S&S is 29% on
average, with a maximum of 25% for deadlines of 1.5× the CPL and a maximum of
57% for deadlines of 8× the CPL. For fine-grain tasks, LAMPS+PS improves upon
S&S by 25% on average, with a maximum of 15% for deadlines of 1.5× the CPL and
a maximum of 57% for deadlines of 8× the CPL.

LIMIT-SF in Figs. 3 and 4 gives an upper limit on the energy savings using our
current single-frequency model. Using S&S as the baseline and LIMIT-SF as the max-
imum, it shows that LAMPS+PS attains more than 94% of the possible energy reduc-
tion with coarse-grain tasks, for all combinations of benchmarks and deadlines. For
fine-grain tasks and strict deadlines (1.5× the CPL), LAMPS+PS achieves more than
41% of the potential savings on 4 out of the 6 benchmarks. With less strict deadlines,
LAMPS+PS attains more than 50% of the possible savings on all benchmarks.

84 P. de Langen and B. Juurlink

In Figs. 3 and 4, Limit-MF is an indication for the possible improvements that could
be attained by allowing the processors to run at a different frequency, and by allowing
these frequencies to change over time. The results indicate that there is very little room
for improvements when the deadline is relatively loose. For stricter deadlines, some
savings may be attained, but mostly for fine-grain tasks. In the case of fine-grain tasks
with strict deadlines, the periods of inactivity are often too small to make shutting down
worthwhile. In this case, allowing varying frequencies might result in some additional
savings. However, when the deadline is less strict and/or the task graph is fairly coarse-
grained, shutting down processors becomes worthwhile. In this case, scheduling tasks
at different frequencies will not provide a significant improvement.

6 Conclusions and Future Work

As feature sizes keep decreasing, the contribution of leakage current to the total energy
consumption is expected to increase. Depending on the amount of slack that remains
before the deadline, the amount of parallelism, and the granularity of the application,
voltage scaling as well as shutting down processors can be used to reduce the energy
significantly. At the same time, it is important not to employ to many processors.

We have shown that LAMPS+PS reduces the total energy by up to 25% for tight
deadlines and up to 57% for loose ones compared to the S&S algorithm. For coarse-
grain tasks and a single frequency, LAMPS+PS attains more than 94% of the possible
energy reduction, i.e., the energy reduction achieved by LIMIT-SF compared to S&S.
Since LIMIT-SF is independent of the scheduling algorithm, this implies that there is
almost no room left for improvement by using other scheduling algorithms than EDF.

Even when multiple frequencies are allowed, LAMPS+PS reduces the energy con-
sumption close to the theoretical limit (LIMIT-MF). For loose deadlines (4× or 8× the
critical path length), LIMIT-MF consumes the same amount of energy as LIMIT-SF,
and so LAMPS+PS again attains over 94% of the potential savings with coarse-grain
tasks. Averaged over all tested deadlines, our best approach still attains over 84% of the
possible savings. As a result, it will be nearly impossible to reduce the overall energy
consumption further by using other scheduling algorithms that produce schedules in
which different processors can run at different frequencies and in which the frequency
can change over time. Applications consisting of relatively fine-grain tasks, on the other
hand, might benefit from using other scheduling approaches. However, since LIMIT-
MF does not take the deadline into account, real scheduling approaches will probably
not reach this limit. Consequently, the actual benefit from having multiple frequencies
will probably be much less. We intend to investigate the impact of multiple frequencies
and other scheduling algorithms in future research.

References

1. Hofstee, H.: Power Efficient Processor Architecture and the Cell Processor. In: Proc. Int.
Symp. on High-Performance Computer Architecture, pp. 258–262 (2005)

2. Stravers, P., Hoogerbrugge, J.: Homogeneous Multiprocessing and the Future of Silicon De-
sign Paradigms. In: Proc. Int. Symp. on VLSI Technology, Systems, and Applications, pp.
184–187 (2001)

Trade-Offs Between Voltage Scaling and Processor Shutdown 85

3. Borkar, S.: Design Challenges of Technology Scaling. IEEE Micro 19(4), 23–29 (1999)
4. Duarte, D., Vijaykrishnan, N., Irwin, M., Tsai, Y.: Impact of Technology Scaling and Pack-

aging on Dynamic Voltage Scaling Techniques. In: Proc. IEEE Int. ASIC/SOC Conf, IEEE
Computer Society Press, Los Alamitos (2002)

5. de Langen, P., Juurlink, B.: Leakage-Aware Multiprocessor Scheduling for Low Power. In:
Proc. Int. Parallel and Distributed Processing Symp. (2006)

6. Jha, N.: Low-Power System Scheduling, Synthesis and Displays. IEE Proc. on Computers
and Digital Techniques 152(3), 344–352 (2005)

7. Gruian, F., Kuchcinski, K.: LEneS: Task Scheduling for Low-Energy Systems Using Variable
Supply Voltage Processors. In: Proc. Conf. on Asia South Pacific Design Automation, pp.
449–455 (2001)

8. Zhu, D., Melhem, R., Childers, B.: Scheduling with Dynamic Voltage/Speed Adjustment
Using Slack Reclamation in Multiprocessor Real-Time Systems. IEEE Trans. on Parallel
and Distributed Systems 14(7), 686–700 (2003)

9. Jejurikar, R., Pereira, C., Gupta, R.: Leakage Aware Dynamic Voltage Scaling for Real-Time
Embedded Systems. In: Proc. Conf. on Design Automation, pp. 275–280 (2004)

10. Quan, G., Niu, L., Hu, X.S., Mochocki, B.: Fixed Priority Scheduling for Reducing Overall
Energy on Variable Voltage Processors. In: Proc. Int. Real-Time System Symposium, pp.
309–318 (2004)

11. Lee, Y., Reddy, K., Krishna, C.: Scheduling Techniques for Reducing Leakage Power in Hard
Real-Time Systems. In: Proc. Euromicro Conf. on Real-Time Systems, pp. 105–112 (2003)

12. Irani, S., Shukla, S., Gupta, R.: Algorithms for Power Savings. In: ACM-SIAM Symp. on
Discrete Algorithms, pp. 37–46 (2003)

13. Zhang, Y., Hu, X.S., Chen, D.Z.: Task Scheduling and Voltage Selection for Energy Mini-
mization. In: Proc. Conf. on Design Automation, pp. 183–188 (2002)

14. Varatkar, G., Marculescu, R.: Communication-Aware Task Scheduling and Voltage Selection
for Total Systems Energy Minimization. In: Proc. Int. Conf. on Computer-Aided Design, pp.
510–517 (2003)

15. Gonzalez, R., Gordon, B., Horowitz, M.: Supply and Threshold Voltage Scaling for Low
Power CMOS. IEEE Journal of Solid-State Circuits 32(8), 1210–1216 (1997)

16. Martin, S., Flautner, K., Mudge, T., Blaauw, D.: Combined Dynamic Voltage Scaling and
Adaptive Body Biasing for Lower Power Microprocessors under Dynamic Workloads. In:
Proc. Int. Conf. on Computer-Aided Design, pp. 721–725 (2002)

17. Andrei, A., Schmitz, M., Eles, P., Peng, Z., Al-Hashimi, B.M.: Overhead-Conscious Voltage
Selection for Dynamic and Leakage Energy Reduction of Time-Constrained Systems. In:
Proc. Conf. on Design, Automation and Test in Europe, pp. 518–525 (2004)

18. Yan, L., Luo, J., Jha, N.K.: Combined Dynamic Voltage Scaling and Adaptive Body Bi-
asing for Heterogeneous Distributed Real-time Embedded Systems. In: Proc. Int. Conf. on
Computer-Aided Design, pp. 30–37 (2003)

19. Xu, R., Zhu, D., Rusu, C., Melhem, R., Moss, D.: Energy-Efficient Policies for Embedded
Clusters. In: Proc. ACM SIGPLAN/SIGBED Conf. on Languages, Compilers, and Tools for
Embedded Systems. pp. 1–10 (2005)

20. Liberato, F., Lauzac, S., Melhem, R., Moss, D.: Fault Tolerant Real-Time Global Scheduling
on Multiprocessors. In: Proc. Euromicro Conf. on Real-Time Systems. (1999) 252–259

21. Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In: Information
Processing, pp. 471–475 (1974)

22. Kasahara, H., Tobita, T., Matsuzawa, T., Sakaida, S.: Standard Task Graph Set,
http://www.kasahara.elec.waseda.ac.jp/schedule/

http://www.kasahara.elec.waseda.ac.jp/schedule/

An Automatically-Retargetable Time-Constraint-Driven
Instruction Scheduler for Post-compiling Optimization

of Embedded Code

José O. Carlomagno F., Luiz F.P. Santos, and Luiz C.V. dos Santos

Federal University of Santa Catarina - Computer Science Department
Florianópolis, SC, Brazil,

{jocf, penkal, santos}@inf.ufsc.br

Abstract. Although SoC design space exploration requires retargetable tools
and real-time constraint awareness, conventional compiler infrastructure barely
provides both. This paper proposes a novel, automatically retargetable, time-
constraint aware instruction scheduler to fulfill both needs. The tool is based upon
a unified representation of instruction precedence and timing constraints. It relies
on a formal model of the target processor, written in an architecture description
language. Experimental results show that the technique not only handles time-
constraint analysis efficiently, but also exploits them successfully to guide code
optimization. To give proper evidence of retargetability, we present results for the
processors MIPS, PowerPC and SPARC. We obtained speed-ups of 1.18 to 1.23
over pre-optimized code.

1 Introduction

The increasing complexity of systems-on-chip (SoCs) gave rise to the platform-based
design paradigm [1]. Later, the need to launch embedded software development as early
as possible asked for higher level platform descriptions, such as the transaction-level
modeling (TLM) [2].

To minimize code size and power consumption, while ensuring enough performance
to fulfill real-time constraints, SoC design space exploration has to consider alternative
target processors. Often, SoCs are heterogeneous multiprocessor architectures that may
contain processors ranging from general-purpose processors and digital signal proces-
sors to application-specific instruction-set processors (ASIPs). Such variety of proces-
sors requires retargetable tools.

TLM descriptions are growing in importance in contemporary system design flows,
since they allow the early development of hardware-dependent software. For efficiency
reasons, such design flows start with an untimed TLM description (cycle-accurate mod-
els are too time consuming to begin with). Later, timing is annotated to the model,
leading to timed TLM models (called TLM+T [2]). Such annotation imposes time-
constraints to pre-compiled code. Therefore post-compiling time-constraint driven tools
are welcome.

Acceptable average performance levels are likely to be obtained with state-of-the-art
instruction scheduling techniques built in classical compilers. However, since conven-
tional schedulers aim at optimizing average performance, they are unable to determine

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 86–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

An Automatically-Retargetable Time-Constraint-Driven Instruction Scheduler 87

the worst-case execution time of a code segment. Therefore, under real-time constraints,
a conventional scheduler is prone to trial-and-error. The tighter the time constraint, the
larger the number of trials.

As stated in [3], it would be desirable that a compiler could switch to heavier op-
timization techniques when dealing with code hot spots (such as time-critical loops).
Since this is not observed in practical compilers, a developer would be forced either
to manually improve a critical code segment at the source level or to hand-optimize
compiled code. However, if repeated for several processor targets, such a makeshift
would become unacceptable under time-to-market pressure. That’s why a retargetable,
time-constraint aware optimizing engine can be envisaged as a pragmatic way to pre-
serve classical compiler infrastructure by automatically analyzing and optimizing time-
critical code at the assembly level.

This paper describes an automatically retargetable technique that combines time-
constraint analysis and assembly code scheduling. The technique relies on the automatic
extraction of processor-dependent information from a formal description of an arbitrary
target processor (to gain retargetability), and on the encoding of precedence and time
constraints on a unified graph representation (to provide grounds for time-constraint
analysis).

The remainder of this paper is organized as follows. Section 2 reviews related work.
The unified representation of constraints is formalized in Section 3. Section 4 describes
the proposed post-compiling scheduling engine. Experimental results are summarized
in Section 5, while our conclusions are drawn in Section 6.

2 Related Work

2.1 Time-Constraint Analysis

In the compiler domain, scheduling algorithms barely address time-constraint feasibil-
ity since they focus on average performance. However, the time-constrained scheduling
problem has been addressed in the domains of behavioral synthesis and code generation
for in-house DSP processors.

A weighted sequencing graph was proposed in [4] to unify the representation of
time-constraints and data dependencies. Such a modeling allows an elegant formulation
for time-constrained scheduling by casting it as a longest-path problem. Therefore, a
schedule can be found by means of classical algorithms such as Bellman-Ford’s [5].

An extension of that modeling was suggested in [6], where all constraints (tim-
ing, precedence, resources) are modeled on a same graph. If two operations compete
for a same resource, their conflict will be avoided by inserting an edge between them
(weighted with the resource’s delay). An edge is inserted for each new scheduled oper-
ation. A constraint analyzer is invoked after each new operation is scheduled, keeping
track of time-constraint feasibility while the scheduler seeks for a suitable ordering.
Since edge insertion reduces the scheduler search space, the analyzer speeds up the
convergence to a feasible schedule. Since the approach in [6] assumes a VLIW DSP
target architecture, it is not suitable for general core exploration in SoC design.

88 J.O. Carlomagno F., L.F.P. Santos, and L.C.V. dos Santos

2.2 Automatically Retargetable Tools

Most contemporary retargetable compilers are based upon Architecture Description
Languages (ADLs). For instance, AVIV [7] relies on ISDL [8] and EXPRESS [9] in
EXPRESSION [10].

Instruction scheduler generation from LISA [11] was reported in [12]. The approach
focused on the automatic generation of a structural hazard description, but it didn’t
address automatic instruction latency extraction from LISA descriptions.

Assembly-level optimization techniques like SALTO [13] and PROPAN [14] allow
existing compilers to be reused, while machine-dependent optimizations can be added
to improve code quality.

A comprehensive review of retargetable techniques can be found in [3].

2.3 Bridging the Gap

In summary, while ADL-based tools grant retargetability, but don’t address time-
constraint feasibility properly, behavioral synthesis and some DSP code generation ap-
proaches properly deal with time constraints, but are inherently not retargetable, as they
are driven towards an application-specific target architecture.

We propose a technique to bridge this gap by providing a retargetable time-constraint
aware scheduling engine. To our knowledge, no ADL-based retargetable technique pub-
lished so far has properly addressed time-constraint analysis as a driver for optimization.
Despite its novelty, the proposed technique doesn’t require a new framework, fitting in a
pragmatic approach: the resort to a post-compiling scheduler tailored to deal with time-
constraints, while preserving conventional compiler infrastructure (as will be shown in
Section 4).

Our technique relies on a well-defined graph-based modeling, as summarized in the
next section.

3 Unified Modeling of Constraints

The technique described in this paper adopts the constraint representation proposed in
[4], as summarized below.

Definition 1. A weighted precedence graph WPG(V, E, W) is a directed weighted
graph where each vertex vi represents an instruction, each edge (vi, v j) represents a
precedence constraint and the weight wi j ∈ Z represents the relative delay between the
start times of instructions vi and v j. The poles v0 and vn are called source and sink,
respectively.

Definition 2. Given a WPG(V, E, W) and a number k ∈ Z+, a minimum delay of k
cycles between the start times of instructions vi and v j is represented by an edge (vi, v j)
with weight wik = +k, thereby constraining instruction v j to start its execution at least k
cycles after operation vi has started execution.

Definition 3. Given a WPG(V, E, W) and a number k ∈ Z+, a maximum delay of k
cycles between the start times of instructions vi and v j is represented by an edge (vi, vi)

An Automatically-Retargetable Time-Constraint-Driven Instruction Scheduler 89

with weight w ji = -k, thereby constraining instruction v j to start its execution at most k
cycles after operation vi has started execution.

Definition 4. Given a WPG(V, E, W) and a number k ∈ Z+, an exact delay of k cycles
between the start times of instructions vi and v j is represented by an edge (vi, v j) with
weight wi j = +k and an edge (v j, vi) with weight w ji = -k, thereby constraining instruc-
tion v j to start its execution at exactly k cycles after operation vi has started execution.

Definition 5. Let τ(vi, t) be a function that binds each instruction vi at time t to a re-
source type required for its execution. Let ar be the number of resources of type r in the
target processor. A function called schedule ϕ : V → N maps each instruction vi to a
start time ϕ(vi) such that:

- ∀(vi, v j) ∈ E: ϕ(v j) ≥ ϕ(vi) + wi j ;
- ∀t in [ϕ(vi), ϕ(vi) + wi j] : |{vk ∈ V : [τ(vk, t) = r]∧ [t = ϕ(vk)]}| ≤ ar .

It has been shown that a longest-path algorithm such as Bellman-Ford’s [5] can induce
a schedule ϕ provided that resource constraint is properly encoded in the graph model
[6]. It was proven [4] [5] that when the Bellman-Ford algorithm doesn’t converge within
a limited number of iterations, then the set of constraints is infeasible. This is the key to
feasibility analysis, as will be shown in Section 4.

4 The Retargetable Scheduling Engine

This section first describes the structure of our retargetable tool and the main underlying
algorithms.

4.1 Engine Structure

Figure 1 depicts the structure of our retargetable scheduling engine. Ellipses denote
distinct code representations. Rectangles represent tool components. Solid arrows indi-
cate the flow of code transformations, while dashed arrows show how target-dependent
information is fed to the proper components.

From a processor model, written in an ADL, a model parser extracts target-specific
information such as assembly syntax, instruction latency and the specification of the set
of general-purpose registers.

The input code consists of raw assembly generated by a conventional compiler. As a
conventional compiler doesn’t capture time-constraints, an editor is employed to insert
them into the code. A pair of pseudo instructions is used to enclose the code fragment
affected by a time-constraint. For instance, the pair [MIN k, label] and [/MIN label]
represents a minimum delay of k cycles imposed to the enclosed code fragment. Simi-
larly, the pair [MAX k, label] and [/MAX label] represents a maximum delay, whereas
the pair [EXACT k, label] and [/EXACT label] represents an exact delay. This process
results in is instrumented assembly code.

The instrumented code is parsed, giving rise to a weighted precedence graph (WPG).
In order to remove false dependences and therefore expose more parallelism to the
scheduler, registers are renamed such that every produced value is stored on a dis-
tinct symbolic register. For every instruction whose destination symbolic register is the

90 J.O. Carlomagno F., L.F.P. Santos, and L.C.V. dos Santos

Raw
Assembly

Constraint
Editor

Instrumented
Assembly

Code
Parser

Scheduler
&

Analyzer

Optimized
Assembly

Code
Generator

Model
Parser

CPU
Model

Code transformation flow

Target-dependent information

WPG SWPG

Time

Constraints

Fig. 1. Code optimization flow

source for another instruction, the code parser inserts an edge in the WPG. The weight
of that edge is the consumer’s latency to the producer, whose value is extracted from
the processor model. Moreover, every time-constraint pseudo instruction results in the
insertion of weighted edges according to Definitions 2, 3 and 4.

The engine works on the WPG so as to find a feasible time-constrained schedule, as
described in the next subsection. Essentially, the original WPG is modified by inserting
a pair of new edges for each scheduled instruction, producing a scheduled weighted
precedence graph (SWPG). Its set of weighted edges induces a linear ordering of in-
structions.

In the end, each SWPG vertex (instruction) is visited in the induced order while
optimized assembly code is generated. Register allocation takes place during such code
generation so as to map the symbolic registers into the finite set of real registers.

Since target-dependent information is automatically extracted from the ADL descrip-
tion and the WPG is target-independent, our optimizing tool is granted automatic retar-
getability.

4.2 Algorithms

The scheduler and the analyzer are tightly coupled engines whose main procedures are
defined by Algorithm 1.

For simplicity, two auxiliary procedures invoked in Algorithm 1 are informally de-
scribed as follows. Given a time step t, procedure FindAvailableInstructions re-
turns the set of instructions whose operands are ready to be consumed at time t. Pro-
cedure SelectInstruction returns the instruction with highest priority within that
set. Although the selection of instructions resembles the list scheduling mechanism,
our engine provides a generic function for inducing priority and it can capture distinct
scheduling heuristics.

Given a WPG, when the well-known Bellman-Ford algorithm returns false, mean-
ing that the set of edge weights (which represent timing constraints) is inconsistent,
procedure Infeasible returns true.

An Automatically-Retargetable Time-Constraint-Driven Instruction Scheduler 91

Algorithm 1. Main scheduler procedures
Procedure: Infeasible(WPG(V, E, W))
1: return (¬ BellmanFord(WPG(V, E, W)));
Procedure: ScheduleStep(t, A)
2: vi = SelectInstruction(A);
3: while vi 	= none do
4: E = E (v0, vi);
5: w0i = +t;
6: E = E (vi, v0);
7: wi0= -t;
8: if Infeasible(WPG(V, E, W)) == TRUE then
9: return (FALSE);
10: end if
11: vi = SelectInstruction(A);
12: end while
13: return TRUE;
Procedure: Schedule()
14: t = 0;
15: W = BellmanFord(WPG(V, E, W)); // Weight initialization
16: A = FindAvailableInstructions (t);
17: while A 	=
 do
18: if ScheduleStep(t, A) == FALSE then
19: return(∞);
20: end if
21: t = t + 1;
22: A = FindAvailableInstructions (t);
23: end while
24: return (t);

Procedure ScheduleStep assigns as many available instructions as possible to time
step t. Once an instruction vi is selected, two edges (v0, vi) and (vi, v0) are inserted in
the WPG. Their weights are set according to Definition 4, meaning that instruction vi

must start execution exactly t cycles after the initial time reference (represented by the
source node v0).

Finally, procedure Schedule invokes ScheduleStep for successive time steps until
all instructions are scheduled according to Definition 5 or infeasibility is detected.

5 Experimental Results

To implement a prototype tool, we had to adopt an ADL and build the respective model
parser. Due to its availability under general-public license, we adopted the ADL ArchC
[15]. We have selected code segments from the well-known Mibench benchmark suite
[16]. Basic blocks belonging to inner loops and highly probable traces were preferred,
since they have higher impact on the global cycle budget. To give evidences of proper
retargetability, three target processors were adopted: MIPS R2000, PowerPC 405 and
SPARCV8. GNU gcc was the adopted compiler. The computer configuration used in
the experiments was a Pentium 4 running at 3GHz with 1GB main memory.

To isolate the impact of exploiting time constraints from the impact of a specific
scheduling heuristic that might be chosen for our scheduler, we deliberately set the
priority function to keep the original instruction order whenever ties must be broken.

Table 1 shows our benchmark characterization. The first column shows code segment
names, while the second indicates the programs from which they were extracted. For

92 J.O. Carlomagno F., L.F.P. Santos, and L.C.V. dos Santos

Table 1. Benchmark characterization

Segment Benchmark MIPS PowerPC SPARC

|V | |E| |V | |E| |V | |E|
Isqrt basicmath 22 52 20 63 21 51

Bitarray bitcount 12 29 26 70 25 67
Bitstrng bitcount 20 54 22 64 19 55
Qsort qsort 67 137 43 97 70 154

Jdcolor1 jpeg 86 197 52 130 83 198
Jdcolor2 jpeg 58 126 58 150 51 122
Rdbmp1 jpeg 35 90 36 95 36 93
Rdbmp2 jpeg 83 185 110 340 110 278

SHA sha 41 98 37 94 41 96
Timing adpcm 19 42 12 28 22 53

a given target processor, a pair of columns displays the size of the resulting WPG in
terms of number of vertices (|V |) and edges (|E|).

5.1 Time-Constraint Feasibility Analysis

To provide evidence that the scheduler handles time-constraints effectively, we sub-
mitted each code segment to distinct time constraints and computed the percentage of
feasible solutions among all benchmarks. To generate such constraints, we set a baseline
time constraint for each code segment and then progressively relaxed it. The baseline,
denoted by ε, assumes that each instruction would execute within one clock cycle, mak-
ing sure that the experiment starts with tight time constraints.

In Fig. 2, we show the percentage of solutions that turned out to be feasible under
maximum delay constraints of �1.1�ε, �1.2�ε, and �1.3�ε.

Note that only for a deviation of 30% with respect to ε all code segments satisfy time
constraints, showing. This is an evidence of the difficulty in meeting constraints without
a time-constraint aware scheduler.

5.2 Runtime Efficiency

Since our scheduler invokes a longest-path algorithm for each scheduled instruction,
the overhead of time-constraint analysis should be properly assessed.

Figure 3 displays scheduler runtime (expressed in seconds on the right-side scale) in
correlation with WPG size (expressed in number of vertices and edges on the left-side
scale) for the MIPS, PowerPC and SPARC processors.

Observe that, on average, the runtime is bounded to the number of vertices for all tar-
get processors. This is an evidence that our time-constraint analysis has low overhead.

5.3 The Impact of the Optimization

As opposed to conventional compilers, our technique exploits time-constraints to guide
optimizations. Optimizations possibly overlooked by a conventional compiler are en-
forced to ensure time-constraint compliance for critical code segments.

In order to assess to which extent time-constraints are actually exploited, we com-
pared the schedule length of a given (time-unconstrained) raw code segment with that

An Automatically-Retargetable Time-Constraint-Driven Instruction Scheduler 93

Fig. 2. Percentage of feasible solutions

MIPS PowerPC

SPARC

0

50

100

150

200

250

300

350

B
ita

rr
ay

Ti
m

in
g

B
its

trn
g

Is
qr

t

R
db

m
p1 S

H
A

Jd
co

lo
r2

Q
so

rt

R
db

m
p2

Jd
co

lo
r1

0

10

20

30

40

50

60

|V| |E| Runtime

0

50

100

150

200

250

300

350

Ti
m

in
g

Is
qr

t

B
its

trn
g

B
ita

rr
ay

R
db

m
p1 S

H
A

Q
so

rt

Jd
co

lo
r1

Jd
co

lo
r2

R
db

m
p2

0

10

20

30

40

50

60

|V| |E| Runtime

0

50

100

150

200

250

300

350

B
its

trn
g

Is
qr

t

Ti
m

in
g

B
ita

rr
ay

R
db

m
p1 S

H
A

Jd
co

lo
r2

Q
so

rt

Jd
co

lo
r1

R
db

m
p2

0

10

20

30

40

50

60

|V| |E| Runtime

Fig. 3. WPG size and runtime correlation

of the equivalent optimized code segment obtained under tight time constraints. In the
experiments, a maximum delay of �1.3�ε was imposed to each code segment.

Figure 4 plots the ratio between the schedule lengths of raw and optimized code for
every target processor. The benchmarks are displayed in order of increasing size from
left to right.

The average speed-up was 1.18 for the five smallest segments and 1.23 for the five
largest, due to the more abundant optimization opportunities within larger basic blocks.
Notice that, since raw assembly is actually the output of a conventional but optimizing
compiler, the speed up was measured relatively to pre-optimized code. Therefore, the
experimental results indicate that the compiler actually overlooked some optimization

94 J.O. Carlomagno F., L.F.P. Santos, and L.C.V. dos Santos

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

Bitstrng Rdbmp1 Bitarray SHA Isqrt Jdcolor1 Rdbmp2 Timing Jdcolor2 Qsort

MIPS PowerPC SPARC

Fig. 4. Code speed-up resulting from optimization

opportunities. Being unaware of time-constraints, the compiler might have relied on its
scheduling heuristics to select among candidate instructions. Our engine converts time-
constraints into precedence constraints, thus invalidating some instructions as candi-
dates, since they would lead to an infeasible schedule.

Since reasonable speed-ups over already optimized code are obtained at low over-
head, there is enough evidence that the approach pays off.

6 Conclusions and Future Work

We proposed a technique that fits in contemporary embedded system design flows, com-
plying with the trend of adopting a TLM description as a starting point, which is later
refined in the form of TLM+T description. The approach is effective (since it guides op-
timization towards time-constraint satisfaction) and pragmatic (since it preserves con-
ventional compiler infrastructure).

Experimental results have shown that speed-ups of 1.3 over compiler-optimized code
can be reached, while the average overhead of time-constraint analysis is kept bound to
the number of instructions.

As future work, we intend to deal with more general machine models (e.g. super-
scalars) and to address global optimizations.

References

1. Vincentelli, A.S.: Defining platform-based design. EEDesign of EETimes (February 2002)
2. Ghenassia, F.: Transaction-level Modeling with SystemC - TLM Concepts and Applications

for Embedded Systems. LNCS. Springer, Heidelberg (2005)
3. Leupers, R., Marwedel, P.: Retargetable Compiler Technology for Embedded Systems: Tools

and Applications. Kluwer Academic Publishers, Norwell, MA (2001)
4. Micheli, G.D.: Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York

(1994)
5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw-Hill, New

York (1990)
6. Mesman, B., Strik, M.T.J., Timmer, A.H., van Meerbergen, J.L., Jess, J.A.G.: Constraint

analysis for DSP code generation. In: ISSS 97, pp. 33–40 (1997)

An Automatically-Retargetable Time-Constraint-Driven Instruction Scheduler 95

7. Hanono, S., Devadas, S.: Instruction selection, resource allocation, and scheduling in the
AVIV retargetable code generator. In: 35th DAC, June 1998, pp. 510–515. ACM Press, New
York (1998)

8. Hadjiyiannis, G., Hanono, S., Devadas, S.: ISDL: An instruction set description language for
retargetability. In: 34th DAC, June 1998, pp. 299–302. ACM Press, New York (1997)

9. Halambi, A., Shrivastava, A., Dutt, N., Nicolau, A.: A customizable compiler framework for
embedded systems. In: International Workshop on Software and Compilers for Embedded
Processors (March 2001)

10. Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., Nicolau, A.: EXPRESSION: A lan-
guage for architecture exploration through compiler/simulator retargetability. In: Design, Au-
tomation and Test in Europe March 1999, pp. 485–490 (1999)

11. Pees, S., Hoffmann, A., Zivojnovic, V., Meyr, H.: LISA — machine description language
for cycle-accurate models of programmable DSP architectures. In: 36th DAC, pp. 933–938
(1999)

12. Wahlen, O., Hohenauer, M., Leupers, R., Meyr, H.: Instruction scheduler generation for re-
targetable compilation. IEEE Design and Test of Computers 20(1), 34–41 (2003)

13. Salto: The Salto Project (2006), http://www.irisa.fr/caps/projects/Salto/
14. Kstner, D.: PROPAN: A retargetable system for postpass optimizations and analyses. In:

Davidson, J., Min, S.L. (eds.) LCTES 2000. LNCS, vol. 1985, pp. 63–80. Springer, Heidel-
berg (2001)

15. ArchC: The ArchC ADL (2005), http://www.archc.org
16. MiBench: Mibench benchmark suite (2006), http://www.eecs.umich.edu/mibench/

http://www.irisa.fr/caps/projects/Salto/
http://www.archc.org
http://www.eecs.umich.edu/mibench/

Improving TriMedia Cache Performance by Profile
Guided Code Reordering

Norbert Esser1, Renga Sundararajan1, and Joachim Trescher2

1 NXP Semiconductors, San Jose, CA, USA
2 NXP Research, Eindhoven, The Netherlands

{norbert.c.esser,renga.sundararajan,joachim.trescher}@nxp.com

Abstract. There is an ever-increasing gap between memory and processor per-
formance. As a result, exploiting the cache becomes increasingly important, es-
pecially for embedded systems where cache sizes are much smaller than that
of general purpose processors. The fine-tuning of an application with respect to
cache behavior is now largely dependent on the skill of the application program-
mer. Given the difficulty of predicting cache behavior, this is, even when great
skill is applied, a cumbersome task. A wide range of approaches, in hardware
as well as in software, can be used to relieve the programmer’s burden. On the
hardware side, we can experiment, for example, with cache sizes, line sizes, re-
placement policies, and cache organization. On the software side, we can use
various optimization techniques like software pipelining, branch prediction, and
code reordering. The research described in this paper focussed on improving per-
formance by using code reordering techniques.

This paper reports on the work that we have done to reduce the number of
line-fetches in the instruction cache. We have extended the functionality of the
linker in the TriMedia compiler chain, such that the number of fetches during
program execution is reduced. By reordering the code, we ensure that hot code
stays in the cache and the cache is not polluted with cold code. Because fewer
fetches are needed we expect a performance increase. By analyzing and profiling
code, we obtain execution statistics that can help us find better code-allocations.

Keywords: cache, code layout, profiling.

1 Introduction

Like other processors, the TriMedia uses an instruction cache to speed up program ex-
ecution. Code that is executed frequently is termed “hot code” and code that is rarely
executed is “cold code”. Since cache lines are a finite resource, lines may be victim-
ized and later fetched again. Two aspects affect the number of fetches during program
execution. A victimized line may contain hot code and a fetched line may contain cold
code, both of which need to be avoided for better I-cache performance.

These aspects bear similarity to register-allocation in compilation. One big difference
between register-allocation and cache-line allocation is that cache-line allocation and
victimization is performed by a fixed hardware algorithm and can only be influenced
indirectly via the layout of the code.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 96–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving TriMedia Cache Performance by Profile Guided Code Reordering 97

By extending the TriMedia linker with the functionality to reorder code according to
linker maps, we are able to investigate various code-reordering algorithms. The linker
maps are constructed by using algorithms based on those described by Friedman [1]
and Pettis and Hansen [2]. For reference, we also implemented a more basic algorithm
that places the most frequently used code fragments consecutively in memory.

There are some unique differentiating aspects of our work compared to previous
work. One is that we study code reordering for a VLIW machine. The ”code blocks”
of VLIW machines are larger than basic blocks of traditional machines which may
have influence on the chosen algorithms. We investigate code reordering of decision
trees (dtrees)[3], aka, treegions, [4][5]. Our research extends prior work by investigating
reordering of both functions and decision trees.

Further, the results for the TriMedia TM3271 [6] show the usefulness of code re-
ordering techniques in an embedded, multi-media context.

2 Previous Work

McFarling [7] proposes one of the earliest approaches to improve performance by
remapping machine instructions. The approach specifically targets direct mapped in-
struction caches. Using profiling information, a tree is built with labels that correspond
to basic blocks. Labeled blocks should be added to the cache, unlabeled blocks can be
excluded from the cache. All instructions with the same label and all instructions with
descendant labels are positioned so that they will not interfere in the cache.

Hwu and Chang [8] propose a similar approach to improve the efficiency of caching
in the instruction memory hierarchy. They aim at maximizing the sequential and spatial
localities by grouping, for each function, the basic blocks that tend to be executed in
sequence. Functions are then placed in a sequential order, where each time the most
important descendent function is placed after its ancestor.

Pettis and Hansen [2] proposed constructing an undirected edge-weighted call graph,
in which nodes correspond to either procedures or basic blocks and the edges respec-
tively correspond to calls between the procedures or to the blocks following each other
directly in sequential execution. The edges are weighted by the number of times the
call or execution takes place. Nodes joined by an edge with a large weight are merged
using a “closest is best” strategy. By minimizing the overlap in cache lines between
nodes with a high edge weight, they were able to gain performance improvements of
8 to 10 percent on average. They also conclude that the gain is predominantly due to
repositioning basic blocks rather than on reordering procedures.

Friedman [1] proposes an approach similar to that of Pettis and Hansen. He uses a
sequence graph instead of a call graph. His algorithm does not use a “closest is best”
strategy when merging nodes. Friedman first generates a function call trace. The se-
quence graph is built up by sectioning of a “window” of this trace and increasing the
weight on the arcs between all functions that are together in the window. The complete
sequence graph is constructed by then sliding the window over the trace, until the end
is reached.

Hashemi et al. [9] improve upon the work of Pettis and Hansen by applying graph-
colouring techniques to map cache lines to procedures. Procedures are placed such that

98 N. Esser, R. Sundararajan, and J. Trescher

the cache lines of a procedure do not overlap with the cache lines of its parents and
children in the call graph.

A number of approaches, e.g., those proposed by Gloy et al. [10], Kirovski et al.
[11], and Brown et al. [12], have been proposed to further improve on the algorithms
mentioned by adding more information to the control flow graph, mostly resulting in
a better notion of the temporal correlation between nodes in the graph. More recent
optimization approaches, as the ones described by Luk et al. [13], employ similar tech-
niques.

Instead of using dynamic profiling information, some approaches use static estimation
techniques, such as those proposed by Hashemi et al. [14] and Mendlson et al. [15].

We do not give an in-depth comparison between these various approaches and our
work. Some of the approaches are very different from ours, making comparison diffi-
cult. We further consider some aspects future work, see also Section 8

3 TriMedia TM3271

This section gives a global overview of the architecture of the TM3271. Since we fo-
cus on reducing the instruction cache line fetches, we will focus in particular on the
instruction cache architecture.

3.1 TM3271 Architecture

The TM3271 is the latest TriMedia VLIW-based media-processor, which is backward
source code compatible with other processors in the TriMedia family [16]. Typically,
the TM3271 is used as an embedded processor in a System-on-a-Chip (SoC). Table 1
gives an overview of the main architectural features of the TM3271.

3.2 TM3271 Instruction Cache Architecture

The instruction cache size of the TM3271 is configurable. The available instruction
cache size configurations are: 8, 16, 32, and 64 Kbytes, all with a 128-byte block size.
Each block has an own address tag. The cache is 8-way set-associative. A TM3271 with
an instruction cache size of 64 KB would therefore have 512 blocks and there would be
64 sets, each containing 8 tags. Each block has a single valid bit, which means that a
block and its associated address tag are either entirely valid or invalid. This means that
on a cache miss all the 128 bytes are read from memory to make the entire block valid.
The instruction cache architecture of the TM3271 is identical to that of the TM3270,
which is described in detail in [17].

Instruction addresses are mapped onto the cache as shown in Figure 1. An instruction
address consists out of three fields. The set field selects one of the sets in the cache. The
offset field indicates the byte offset within the set. The tag field is the instruction’s ad-
dress tag, which is compared against the address tags of the set members. The TM3271
implements a full least-recently-used (LRU) replacement policy. When a cache miss
occurs, the instruction cache starts filling the requested block from the beginning of the
block.

Improving TriMedia Cache Performance by Profile Guided Code Reordering 99

Table 1. TM3271 Architecture

Architectural feature Quantity

Architecture
5 issue slot VLIW
guarded RISC-like operations

Address width 32 bits
Data width 32 bits
Register-file Unified, 128 32-bit registers
Functional units 41
IEEE-754 floating point yes
SIMD capabilities 1 x 32-bit, 2 x 16-bit, 4 x 8-bit

Instruction cache
8, 16, 32, or 64 Kbytes, 128-byte lines,
8 way set-associative,
LRU replacement policy

Data cache

8, 16, 32, 64, or 128 Kbytes,
128-byte lines, 4 way set-associative,
LRU replacement policy,
Allocate-on-write miss policy

Fig. 1. Instruction address for 64 KB instruction cache

4 Algorithms

This section describes the algorithms that we have implemented. All the algorithms
described here focus on reducing the number of incurred instruction cache misses by
reordering functions or dtrees. We will explain the algorithms using dtrees, but the case
for functions is fully analogous. “A decision tree is defined as a portion of code with one
entry point and potentially many exit points. Decision trees can also contain control flow
constructs such as if-then-else or select-or. Because a function call involves returning
to the instruction after the function was called, a function call will end that path of the
decision tree” [3]. We choose to reorder dtrees because they correspond to the smallest
relocatable objects in the TriMedia linker. Further, the linker could be easily extended
to add the functionality to relocate dtrees. We can relocate a function by relocating all
its corresponding dtrees.

4.1 Execution Count

We start out with a basic algorithm. For each dtree we derive statistics of how often it
is executed. We use the execution count as a measure to identify hot code. The higher
the execution count, the hotter the code. We can reduce the number of instruction cache
misses by ensuring that the hottest dtrees do not conflict with each other in the cache.
We observe that by placing two pieces of code directly after each other in memory they

100 N. Esser, R. Sundararajan, and J. Trescher

will not compete for the same set in the cache. The basic algorithm is based on this. It
sorts the dtrees by execution count and places them in the resulting order.

4.2 Sequential Locality

The basic algorithm of Section 4.1 does not consider any locality. For example the two
dtrees with the highest execution count may be executed in completely different parts
of the program and may therefore not compete with each other in the cache anyway. To
improve our algorithm we introduce a notion of sequential locality. Two dtrees have a
high degree of sequential locality if they tend to be executed in a sequential order. We
want to prevent that pairs of dtrees that have a high sequential locality and are often
executed compete with each other in the cache. If we do not prevent this, then we run
the risk of a high degree of cache thrashing.

We determine sequential locality by using dynamic control flow graphs. A dynamic
control flow graph gives an overview of the control flow during execution of an applica-
tion. In our case, the nodes in the graph correspond to dtrees and the edges correspond
to control flow passing from one dtree to another. We annotate the edges with the num-
ber of times the edge is taken during execution. We derive our dynamic control flow
graphs from execution traces. For example, the dynamic control flow graph presented
in Figure 3 corresponds to the execution trace shown in Figure 2. Node A has a higher
degree of sequential locality with node B than with nodes C and D, which by definition
means that control flows more often between nodes A and B than between nodes A
and C and nodes A and D. Our dynamic control flow graph are essentially the same
as the sequence graphs described by Friedman [1], where we take the window on the
execution trace to be of size 2.

After we build up a dynamic control flow graph, we can order the dtrees using the
algorithm as described by Friedman [1]. The algorithm repeatedly selects the edge with
the highest count and merges the nodes it connects. Merging two nodes corresponds
to placing the related dtrees consecutively in memory. This ensures that they do not
compete with each other in the cache.

If we execute the algorithm on our example dynamic control flow graph, depicted in
Figure 3, then it starts with randomly choosing either the edge between A and B or the
edge between C and D, since these two edges have the highest count. Let us assume the
algorithm chooses the edge between A and B first. The nodes A and B are merged and
the edge counts are updated. Figure 4 depicts the graph after the first iteration of the
algorithm.

In the second iteration the edge between C and D is chosen. Again the nodes are
merged, and edge counts are updated. Figure 5 shows the resulting graph.

Finally the edge between AB and CD is chosen and the nodes are merged, resulting
in the ordering ABCD.

4.3 Closest Is Best

The algorithm described in Section 4.2 merges nodes through simple concatenation. We
can extend this algorithm by a smarter placement of the nodes that are being merged.

Improving TriMedia Cache Performance by Profile Guided Code Reordering 101

A D A C D C D C D A B A B C A B A

Fig. 2. Example execution trace

3B

A

C D
5

5

1

2

Fig. 3. Example dynamic control flow graph

3

A,B

C D
5

3

Fig. 4. Graph after first iteration

Pettis and Hansen [2] present an algorithm that uses a “closest is best” strategy to deter-
mine the relative placement. The main idea is that if control frequently flows from one
node to another, then these nodes need to be placed close together. The described algo-
rithm adopts the same approach as described in 4.2, but the actual merging of the nodes
differs. The original graph is used to determine mutual relationships between nodes and
this is used to choose the actual ordering.

In our case, when merging nodes, we use the original dynamic control flow graph to
choose the ordering by determining which dtrees have the strongest relationship. See
for example Figure 5. The next step is to merge nodes AB and CD. Instead of simply
concatenating CD after AB when merging these nodes, we can also try to determine
which ordering is best. We identify four possible orderings, as reverse orderings can be
considered identical. Table 2 shows the possible orderings and the mutual edge weights
from the original graph in Figure 3.

We observe that in the original graph A and D have the strongest relationship (edge
with weight 3) and we therefore choose the fourth ordering, being BADC.

102 N. Esser, R. Sundararajan, and J. Trescher

A,B C,D
6

Fig. 5. Graph after second iteration

Table 2. Possible orderings

A-B – C-D 2
B-A – C-D 1
A-B – D-C 0
B-A – D-C 3

5 Methodology

We implemented the execution count, sequential locality, and closest is best reordering
algorithms.

We obtain the execution count statistics and the function and dtree execution traces,
which we use as input to our algorithms, from a functional simulator. For the actual
performance measurements we use a cycle accurate simulator, which is derived from the
original hardware design by automatic RTL-to-C translation. The RTL-to-C translation
is done using the free tool Verilator [18]. For our experiments we simulate the TM3271
with instruction cache sizes of 16, 32 and 64 Kbytes and a data cache size of 128 Kbytes.

The TriMedia linker links code according to the order of the object files on the com-
mand line. The order of object files effects the order of code and therefore possibly
the performance. We therefore not only look at the “out-of-the-box” object ordering
but also 20 random object orderings. We further obtain the results of linking with 20
random dtree orderings. We finally compare the performance using the implemented
algorithms to the best performance obtained from all the random orderings and the
“out-of-the-box” ordering.

We chose a number of typical TriMedia Media applications: an MPEG2 video de-
coder, an 8/10-bit up-converter, a 10-bit halo-reduced up-converter, a motion estimator,
and an H.264 CABAC decoder. For reference we also looked at Spec95 Compress,
being a non-media application.

All applications were compiled with the TriMedia Compilation System (TCS) 5.01
compiler and with only the default compiler options. The reordering algorithms are ap-
plicable with any set of compiler options, however, choosing different compiler options
can have both a positive and a negative effect on the performance of the algorithms. We
chose the default compiler options since those are the options that most users use.

6 Results

We first show the effect of reordering using the existing TriMedia linker. Figure 6 shows
the results of linking with the original, “out-of-the-box” object order and 20 random ob-
ject orderings. The minimum and maximum number of cache misses obtained over the

Improving TriMedia Cache Performance by Profile Guided Code Reordering 103

Fig. 6. I-cache misses: random reordering of object files

Fig. 7. I-cache misses: random reordering of dtrees

various orderings shows the potential effect of code ordering on performance, especially
with smaller cache sizes.

Figure 7 shows the results of linking with 20 random dtree orderings. Again the ef-
fect that the order of code can have on performance is very clear. We also note that
the performance of randomly reordering dtrees is worse than randomly reordering ob-
ject files. This is not surprising, since only reordering object files still maintains code
locality, which is completely lost when randomly reordering dtrees.

Figure 8 shows the results for function and dtree reordering on the TM3271 for
various instruction cache sizes, using execution count (EC), sequential locality (SL)
and closest is best (CB) approaches to reordering applied to functions or dtrees. The
figure shows the number of instruction cache misses, when using the various algorithms,
in percentages of the number of instruction cache misses in the original executable
(denoted as Org). As mentioned in Section 5 the numbers for the original executable
are obtained by taking the best performance from all the random orderings and the
“out-of-the-box” ordering. Note that this provides a favorable base for the “original”
ordering.

If we look at dtree reordering we see a consistent improvement for all benchmarks
across the various instruction cache sizes. In all cases we outperform the best random
ordering. As discussed in Section 4, the execution count, sequential locality, and closest

104 N. Esser, R. Sundararajan, and J. Trescher

Fig. 8. Reduction in I-cache misses due to reordering

is best algorithms are increasingly more sophisticated than the previous one. In general
the more sophisticated algorithms outperform the simpler ones. With a relatively large
instruction cache size we see however that the difference in performance between the
various algorithms is small. This is not surprising since it is more likely that the appli-
cation’s working set will fit in the cache. This of course means that there will be less
instruction cache misses to start off with and therefore also less to optimize.

If we look at the function reordering we again see a consistent improvement for all
benchmarks across the various instruction cache sizes. In the case of function reorder-
ing it seems harder to predict which algorithm will perform best and in a lot of cases
the simplest algorithm (using only execution count statistics) even performs best. It is
clear that in all cases dtree reordering outperforms function reordering, especially with
smaller cache sizes. On average we see that dtree reordering outperforms function re-
ordering by at least a factor 2. This is to be expected, since functions tend to have both
“hot code” and “cold” code and as a result reordering at function level is therefore often
too coarse grained.

Finally it is interesting to note that the cache sizes have an influence on the perfor-
mance of the algorithms. In general: the smaller the cache, the larger the initial amount
of cache misses will be, and the more room for improvement. On the other hand, if
the cache size is smaller than the working set of the application, there will be an in-
herent number of cache misses. An example of this is seen with the Media benchmarks
(see Figures 6, 7, and 8) where the reordering algorithms perform best with a 32 Kbyte
cache. With a 16Kbyte cache the cache is smaller than the working set of some of the
applications and although the reordering algorithms can still significantly reduce the
number of cache misses they are not as effective as when using a larger cache. When

Improving TriMedia Cache Performance by Profile Guided Code Reordering 105

using a 64Kbyte cache the initial number of cache misses is low to begin with, so there
is less improvement to be gotten and therefore the algorithms are less effective.

7 Conclusions

We have shown that function and dtree reordering using profile information can give a
substantial reduction in instruction cache misses on TriMedia. We have further shown
that dtree reordering on average gives twice as much reduction in instruction cache
misses as function reordering. We have also shown that especially for smaller cache
size the “closest is best” algorithm performs the best, while at larger cache sizes the
performance difference between the algorithms is very small.

8 Future Work

For newer multimedia algorithms (like H.264, and WMV9) the instruction cache perfor-
mance is becoming increasingly important, while the data cache performance remains
dominant. Our work can be extended by including data cache performance optimiza-
tions, e.g. as described by Luk et al. [13]. This can be further extended by studying how
our algorithms can steer the software and combined software/hardware data prefetching
in the TriMedia.

Another extension consists of investigating how our algorithms can steer the cache-
locking mechanisms available on the TriMedia.

Current work used execution traces to derive (dynamic) control flow graphs. We plan
to investigate the usefulness of static control flow graphs in future, to eliminate the need
for a separate profiling run. Approaches using static estimation techniques, for example
as proposed by Hashemi et al. [14] and Mendlson et al. [15], have shown promising
results.

Other promising future improvements include adding more information to the con-
trol flow graphs, such as a better notion of temporal correlation between the nodes in
the graph, or excluding certain nodes (say, those of interrupt service routines).

Acknowledgments

We thank all members of the TriMedia compiler team at NXP Research for their help
and valuable feedback. We also thank Jan Hoogerbrugge at NXP Research and Paul
Gorissen, Wil Michiels and Henk Schepers at Philips Research for all their advice and
guidance. Finally, we would like to thank the anonymous reviewers for their construc-
tive comments and suggestions.

References

1. Friedman, N.: GNU Rope–a subroutine position optimizer (1998)
2. Pettis, K., Hansen, R.C.: Profile guided code positioning. In: PLDI ’90. Proceedings of the

ACM SIGPLAN 1990 conference on Programming language design and implementation,
pp. 16–27. ACM Press, New York (1990)

106 N. Esser, R. Sundararajan, and J. Trescher

3. Philips Semiconductors: TriMediaTM Compilation System 5.01 User Manuals, vol. 3, Ch. 8,
pp. 173–184 (2006)

4. Banerjia, S., Havanki, W.A., Conte, T.M.: Treegion scheduling for highly parallel processors.
In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 1074–
1078. Springer, Heidelberg (1997)

5. Havanki, W., Banerjia, S., Conte, T.: Treegion scheduling for wide issue processors. In:
HPCA ’98. Proceedings of the 4th International Symposium on High-Performance Computer
Architecture, Washington, DC, 266. IEEE Computer Society Press, Los Alamitos (1998)

6. van de Waerdt, J.W., Vassiliadis, S., Das, S., Mirolo, S., Yen, C., Zhong, B., Basto, C., van
Itegem, J.P., Amirtharaj, D., Kalra, K., Rodriguez, P., van Antwerpen, H.: The tm3270 media-
processor. In: MICRO 38. Proceedings of the 38th annual IEEE/ACM International Sympo-
sium on Microarchitecture, Washington, DC, pp. 331–342. IEEE Computer Society Press,
Los Alamitos (2005)

7. McFarling, S.: Program optimization for instruction caches. In: ASPLOS-III. Proceedings of
the third international conference on Architectural support for programming languages and
operating systems, pp. 183–191. ACM Press, New York (1989)

8. Hwu, W.W., Chang, P.P.: Achieving high instruction cache performance with an optimizing
compiler. In: ISCA ’89. Proceedings of the 16th annual international symposium on Com-
puter architecture, pp. 242–251. ACM Press, New York (1989)

9. Hashemi, A.H., Kaeli, D.R., Calder, B.: Efficient procedure mapping using cache line col-
oring. In: PLDI ’97. Proceedings of the ACM SIGPLAN 1997 conference on Programming
language design and implementation, pp. 171–182. ACM Press, New York (1997)

10. Gloy, N., Blackwell, T., Smith, M.D., Calder, B.: Procedure placement using temporal or-
dering information. In: MICRO 30. Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture, Washington, DC, pp. 303–313. IEEE Computer Society
Press, Los Alamitos (1997)

11. Kirovski, D., Lee, C., Potkonjak, M., Mangione-Smith, W.H.: Synthesis of power efficient
systems-on-silicon. In: Asia and South Pacific Design Automation Conference, pp. 557–562
(1998)

12. Brown, S.S., Asher, J., Mangione-Smith, W.H.: Offline program re-mapping to improve
branch prediction efficiency in embedded systems. In: ASP-DAC ’00. Proceedings of the
2000 conference on Asia South Pacific design automation, pp. 111–116. ACM Press, New
York (2000)

13. Luk, C.K., Muth, R., Patil, H., Cohn, R., Lowney, G.: Ispike: A post-link optimizer for the
Intel� Itanium� architecture. In: CGO ’04. Proceedings of the international symposium on
Code generation and optimization, Washington, DC, USA, p. 15. IEEE Computer Society
Press, Los Alamitos (2004)

14. Hashemi, A., Kaeli, D., Calder, B.: Procedure mapping using static call graph estimation. In:
Proceedings of the Workshop on Interaction between Compiler and Computer Architecture
(1997)

15. Mendlson, A., Pinter, S.S., Shtokhamer, R.: Compile time instruction cache optimizations.
SIGARCH Comput. Archit. News 22, 44–51 (1994)

16. Rathnam, S., Slavenburg, G.: An architectural overview of the programmable multimedia
processor, TM-1. In: COMPCON ’96. Proceedings of the 41st IEEE International Computer
Conference, Washington, DC, 319. IEEE Computer Society Press, Los Alamitos (1996)

17. van de Waerdt, J.: The TM3270 Media-processor. PhD thesis, Delft University of Technology
(2006)

18. Snyder, W.: Verilator-3.631 (2007)

A Streaming Machine Description and
Programming Model

Paul Carpenter, David Rodenas, Xavier Martorell,
Alex Ramirez, and Eduard Ayguadé

Barcelona Supercomputing Center, Barcelona, Spain
Universitat Politècnica de Catalunya, Barcelona, Spain

HiPEAC European Network of Excellence

Abstract. In this paper we present the initial development of a stream-
ing environment based on a programming model and machine descrip-
tion. The stream programming model consists of an extension to the
C language and it’s translation towards a streaming machine. The ex-
tensions will be a set of OpenMP-like directives. We show how a serial
application can be converted into a streaming parallel application using
the proposed annotations. We also show how the machine description
can be used to parametrize a cost-model simulator to predict the per-
formance of the stream program. The cost model allows the compiler to
determine the best task partitioning and scheduling for each architecture.

1 Introduction

A stream programming model is most likely to be adopted by the mainstream
if it is possible to incrementally modify an existing sequential application into
a streaming one. We do not expect the programmer to learn a whole new lan-
guage before any benefit can be seen, nor do we assume that the compiler can
automatically extract a stream program from the original code without mod-
ifications. We propose a new streaming environment[1] consisting in a Stream
Programming Model (SPM), implemented as an annotated version of the C pro-
gramming language, and an Abstract Streaming Machine (ASM), implemented
as a cost-model simulator. The SPM and ASM should cooperate to make the
same code with the same annotations suitable for many different architectures.

We have developed a runtime to experiment with the SPM and their possible
interpretations. We have manually applied transformations to a small set of
benchmarks. We have collected traces showing the state and communications
of each application. The cost-model simulator evaluates costs for a prototype
compiler to guide the partitioning and scheduling of the stream program onto
the hardware. It uses a machine description and either the application description
and its proposed mapping onto the hardware or a previously generated trace in
which all communication between tasks is visible. All results and studies are
visualized using Paraver[2] traces, which allow us to see what is happening at
each timestamp with a minimum overhead.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 107–116, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

108 P. Carpenter et al.

The rest of the paper is structured as follows: Section 2 presents the Stream
Programming Model, Section 3 presents the Abstract Streaming Machine, and
Section 4 describes our initial experiments. Section 5 compares our approach to
related work and Section 6 concludes the paper.

2 Stream Programming Model

The SPM describes an application as multiple tasks connected via point-to-point
streams. Each task may be viewed as an independent process, with all its data
private. Communication and synchronization of tasks happens only via streams.
A stream is directed, and we refer to its ends, stream-ends, from the point of view
of the task, so that the producer has an output stream and the consumer has an
input stream; the two ends are permanently connected together, and cannot be
moved during execution.

2.1 Directives

We have defined SPM as a set of directives in the same style as OpenMP[3]. The
OpenMP directives allow one to start with an existing serial application and
parallelize it incrementally, checking at each step that the program still works.
This allows nonexpert users to obtain immediate benefit and learn more about
it only as further knowledge is required.

SPM directives define how the application is converted into a stream program,
by defining the tasks and the streams between them. The outermost directive
is the #pragma taskgroup, which defines the region in which the tasks exist. It
initializes all its tasks, starts them, executes the body of the outer control-task,
finally waiting for all of the tasks to finish; i.e. it defines an implicit barrier.
The #pragma task directive defines a task, and must be lexically inside the
#pragma taskgroup; any statements not enclosed by a #pragma task belong
to the control-task. It is possible to nest task and taskgroup definitions. The
pragma task directive may have two clauses: input and output, both taking a
list of variables. The input(v1,v2,...,vn) clause defines n input streams that
receive the values of v1,v2,...,vn. The output(w1,w2,...,wm) clause defines m
output streams that send the values of w1,w2,...,wm produced by the task. The
body specified by the task directive will be executed as many times as it has
inputs available.

Figure 1 shows an example program, tolower, which defines a taskgroup region
that contains the whole loop, and two explicit task definitions, each containing
a single line of code. In total, there are therefore three tasks, the first is the
control-task (referred to as fread), and the other two are the first #pragma task
(referred to as tolower) and the second #pragma task (referred to as fwrite).
There are three visible stream-ends and two streams. The resulting graph is
shown at Figure 2 a).

A Streaming Machine Description and Programming Model 109

int main(int argc, char **argv)
{

FILE *in, *out;
char c,x,y;
in = fopen(argv[1], "r");
out = fopen(argv[2], "w");
fread(&c, sizeof(char), 1, in);
#pragma taskgroup /* fread */
while (!feof(in))
{
#pragma task input(c) output(x) /* tolower */
if (’A’ <= c && c <= ’Z’)

x = c - ’A’ + ’a’;
else

x = c;

#pragma task input(x) /* fwrite */
fwrite(&x, sizeof(char), 1, out);

fread(&c, sizeof(char), 1, in);
}
fclose(in);
fclose(out);
return 0;

}

Fig. 1. Annotated C code for tolower example

a) tolower b) wordhash

Fig. 2. Example communication-graphs

2.2 Graph Optimization

As we have seen in the previous example we need some kind of graph analysis
in order to connect the two ends of each stream together. If the compiler is not
able to do this optimization it is always possible to send the data via a common
outer task.

We suggest to use data flow analysis to detect stream connections. Automatic
dependence analysis in the compiler can take place either when building the
graph of stream tasks, or when transforming the intermediate representation.
The former is at the original source level. The compiler will obtain the positions
where data is consumed (...=v) and where data is produced (v=...) and will
consider them as stream-ends. The latter is at transformed intermediate repre-
sentation level. In that point compiler has created a large number of non-efficient
stream connections translated as special push and pop instructions. Pushes have
to be performed as soon as possible, and Pops as late as possible. If a value, x,

110 P. Carpenter et al.

popped from one stream is immediately pushed, without modification, onto an-
other stream, then it is usually preferable to replace the outgoing stream with a
direct one from the source of x to its destination. If x is not otherwise consumed
by the intermediate task, then the incoming stream may be removed.

In case the resulting graph does not contain cycles, the compiler can apply
blocking to allow the unrolling of the task control-loop and also its vectorization.

3 Abstract Streaming Machine

The ASM description is defined in three parts: the program, machine and system.
The program description defines the application, its tasks and its streams. The
machine description defines the available processors, buses and communications
properties. The system description is the glue that maps the program into the
machine.

3.1 Program Description

For the purposes of the cost-model simulator, a streaming program is a directed
graph of tasks and streams. Each stream carries a sequence of homogeneous
values between tasks. Each task has, as the elementary unit of work, a work
function, which consists of three distinct stages: a pop stage, in which a fixed
number of elements are popped from each input stream, a processing stage,
in which a fixed amount of work is performed, and a push stage, in which a
fixed number of elements are pushed onto each output stream. Pops and pushes
block when the stream becomes empty or full respectively. This definition of a
streaming program is thus similar to Synchronous Data Flow (SDF)[4].

The program description specifies the graph topology, data rates, and process-
ing costs; see the tolower example in Figure 3. The execution time of each kernel
is currently constant, and estimated by the compiler, although it could come
from a statistical model, with parameters estimated by the compiler.

It is possible that the producer and consumer tasks do not push and pop the
same number of elements per iteration, in which case the producer and consumer

Define program
def setup_program():

Streams
num name elemSize
streams = [Stream (1, ’c’, 1),

Stream (2, ’x’, 1)]

Tasks
num name inputs outputs cpu_time
tasks = [Task (1, ’fread’, [], [(’c’,1,2)], 5),

Task (2, ’tolower’, [(’c’,1,2)], [(’x’,1,2)], 5),
Task (3, ’fwrite’, [(’x’,1,2)], [], 5)]

return Program (tasks, streams)

Fig. 3. Program description for tolower example

A Streaming Machine Description and Programming Model 111

execute at different rates. The stream constructor has an optional argument
giving the number of elements to prequeue onto the stream, as required for
feedback loops.

The program description defines the default length of queue for each stream,
normally set to a value large enough to prevent deadlock. For example, setting
the queue length to be smaller than the number of elements pushed by the
producer at each iteration would cause it to immediately deadlock. The system
mapping file can override these values as necessary to get good performance.

3.2 Machine Description

The machine description defines the platform on which a streaming program
may be executed, and is represented by a hypergraph of processors connected
via communication hardware links, each joining two or more processors. Each
communications link has a single unbounded queue to hold the messages ready
to be transmitted, and one or more channels on which to transmit them. The
reason for having two levels: channels and links, rather than just one, is that it
allows the choice of channel within a link to be deferred until run time.

Communication links are not executed directly, instead corresponding to
shared state and parameters for the channels. Threads and edges are used to
model the compiled binary (see next section), but here it is useful to know that
when a stream is statically mapped onto the available links in the hardware, it
is divided into edges, each of which corresponds to one hop in the route.

When a processor is connected to a link with more than one channel, we
assume that it is not possible for the same processor to transmit onto more than
one channel in the same link simultaneously; similarly for receive. The interface
between the processor and link may be configured as either full-duplex or half-
duplex, depending whether it is possible to transmit and receive on different
channels at the same time.

Figure 4 shows a simplified model of the Cell processor [5]. Following Girona
et al.[6] we approximate the four rings of the EIB using a set of buses (in this
example four buses). The interface of each processor to the EIB has bandwidth
equal to a single channel of the EIB, so it can be represented using the model of
the interface, as presented above (in full-duplex mode). We are currently in the
process of validating our approach and determining the optimal values of the
parameters.

3.3 System Description

The system description references the program and machine descriptions, and
maps the former onto the latter to provide the binary. Together, the program,
platform and binary form the executable system to be simulated. The binary
is comprised of threads, each of which executes a list of tasks on a particular
processor, and edges, each of which is part of a stream statically routed onto a
fixed link.

112 P. Carpenter et al.

Define platform
def setup_platform():

define processors
processors = [Processor (1, ’PPE’),

Processor (2, ’SPE0’), Processor (3, ’SPE1’),
Processor (4, ’SPE2’), Processor (5, ’SPE3’),
Processor (6, ’SPE4’), Processor (7, ’SPE5’),
Processor (8, ’SPE6’), Processor (9, ’SPE7’)]

Model EIB as four buses; although it’s actually four rings

All processors are on the bus
processorsOnBus = [proc.name for proc in processors]

Define bus
num name processors start bandwidth gap
links = [Link (1, ’EIB’, processorsOnBus, 159, 8, 2, numChannels=4)]

return Platform (processors, links)

Fig. 4. Simplified platform description for Cell

The simulator will automatically generate a route for each stream, assuming
one exists, using the minimum number of hops. It does not however attempt to
balance the total communication load across the network. Local communication
within a processor is not normally modelled by the simulator, so is effectively
zero latency and infinite bandwidth. In all cases it is possible to override the
routing decisions in the system description file.

Each message is transferred using a single (unidirectional) transfer on the bus,
which carries both the data and the necessary control.

Figure 5 shows a potential mapping of the tolower program onto a CPU
plus accelerator. It is assumed that the accelerator does not have the ability to
perform I/O, so the fread and fwrite tasks have both been mapped to the CPU,
in different threads to allow concurrency. Note that the system description only
deals with issues of partitioning and scheduling. Compiler optimizations such as
loop transformations or blocking should be represented at the program level.

Define binary
def setup_binary(program):

Threads
num name proc tasks
threads = [Thread (1, ’A’, ’CPU’, [’fread’]),

Thread (2, ’B’, ’Accelerator’, [’tolower’]),
Thread (3, ’C’, ’CPU’, [’fwrite’])]

return Binary(threads)

Fig. 5. Mapping file for tolower program on CPU plus accelerator

Figure 6 shows a Paraver trace for the simulation of the tolower program, as
defined by the Figure 3. Each row corresponds to a thread, but it is possible,

A Streaming Machine Description and Programming Model 113

Fig. 6. Tolower simulation on Cell Paraver trace

using the Visualizer module of Paraver, to plot processors or tasks instead from
the same trace.

4 Experiments

We have manually transformed two example applications, tolower and word-
hash, using the shown directives. Both are graph optimized and we have applied
blocking of 128 elements.

The translated source code uses the acolib runtime, and has been tested on
Intel, PowerPC and OpenPower platforms. Each task has its own dedicated
processor. We present traces for the tolower example on a two-processor dual core
PowerPC970MP (total 4 cores), and the wordhash example on a two-processor
dual core dual thread Power5 (total 8 threads).

Figure 7 shows a trace for the tolower example. The color of the line represents
the state of the task at any given time. Cyan represents idle state, blue represents
computing state, and yellow are the communication lines. The trace shows the
communication latencies and the computation time of each task. Because we are
executing in shared memory the latency is negligible. The trace shows that input
task takes more time than tolower and fwrite tasks together. The ASM should
predict this, and the compiler may use this information to merge the tolower
and fwrite tasks.

a) whole trace b) zoom

Fig. 7. Paraver trace for the tolower example

The wordhash example, shown in Figure 2 b), has two main characteristics:
it sends complex data structures through streams (an array of five elements),
and it has conditional data flow. Figure 8 shows a trace for this example. We
can observe that tasks 4 through 7 are executed once every five iterations. This

114 P. Carpenter et al.

a) whole trace b) zoom

Fig. 8. Paraver trace for the wordhash example

is because their tasks are defined inside a conditional statement that is only
satisfied every five iterations.

5 Related Work

There are some other models similar to the SPM; for example StreamIt[7], and
GNU Radio[8]. StreamIt is a whole infrastructure with its own language: a mix
between C and Java oriented to filters, and a compiler able to deal with the
filters and interconnections. There are some limitations: each filter has exactly
one input and output stream, and streams can only carry values from a small set
of primitive types. GNU Radio is a framework developed in C++ and Python.
The graph of filters and connections is described using Python, and the filters are
constructed as C++ classes. GNU Radio has its own scheduler and the system
can be deployed on multiple architectures, even including FPGA. GNU Radio
provides more than 100 blocks. Both StreamIt and GNU Radio are designed for
signal processing applications, and require the program to be written specifically
in terms of streaming blocks.

The proposal for OpenMP 3.0[9] supports task parallelism using the new
taskgroup and task directives. The task directive specifies that the serial code
within it should be executed by another thread inside the taskgroup’s scope.
The similarly named directives in the SPM intentionally have similar behaviour,
although we have input and output streams. In OpenMP every time the task
directive is reached a new task is created to execute its body. In the SPM, all the
inner tasks are created once when the taskgroup directive is reached, and a value
is sent on each input stream each time the task directive is reached. This is a form
of synchronization that does not exist in the OpenMP 3.0 proposal. However,
there are other proposals for OpenMP that add synchronization between threads.
Gonzalez et al. [10][11] propose three new directives: PRED, SUCC and NAME.
The NAME directive labels a worksharing, and this label can be used by PRED
and SUCC directives, which specify synchronization. Another approach using

A Streaming Machine Description and Programming Model 115

annotated C is Cell superscalar[12], which uses a task directive to mark the
inputs and outputs of a function. Each time the function is called, new tasks
and dependencies between them are tracked using the information about the
inputs and outputs.

Dimemas[13] is a simulator designed to predict the performance of an applica-
tion running on a different system configuration. It takes as input a Paraver trace
and the system parameters, generating a new trace for the target system. The
cost model simulator is able to use a Paraver input trace in a similar manner.

6 Conclusions

As far as we know this is the first attempt to define a streaming language that
allows an existing serial application to be converted into a streaming program
using only pragma-style directives. This approach allows a nonexpert program-
mer to modify the application step by step. We have proposed a small set of
basic directives, which have easy to understand and predictable behaviour; in
the future we will extend our set of directives as necessary.

We have presented some very simple benchmarks, which we have used to
test the algorithm and experiment with the cost model. We can see how simple
applications can be converted automatically into stream programs with minimal
programmer effort. We expect to extend our set of directives to handle new
cases; for example tasks defined outside the lexical scope of the taskgroup. We
have modelled these benchmarks using a simple cost-model simulator, visualizing
the execution using Paraver, and have seen behaviour similar to that on the real
hardware. We expect to integrate the work into a real compiler that takes a serial
application with minimal markup, automatically partitioning and scheduling the
tasks for optimal performance on a given architecture.

Acknowledgements

We would like to acknowledge our partners in the Acotes project for the insightful
discussions on the topics presented in this paper. This research is supported by
the Spanish Government under contract CICYT TIN200407739C0201, and the
IST program of the European Community under contract IST034869 (Acotes
Project).

References

1. Carpenter, P., Rodenas, D., Martorell, X., Ramirez, A., Ayguade, E.: Code genera-
tion for streaming applications based on an abstract machine description. Technical
Report UPC-DAC-RR-CAP-2007-3, Universitat Politecnica de Catalunya (April
2007)

2. CEPBA: Paraver performance visualization and analysis tool,
http://www.cepba.upc.edu/paraver/

3. OpenMP: OpenMP Application Program Interface, http://www.openmp.org/

http://www.cepba.upc.edu/paraver/
http://www.openmp.org/

116 P. Carpenter et al.

4. Lee, E., Messerschmitt, D.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (1987)

5. Chen, T., Raghavan, R., Dale, J., Iwata, E.: Cell Broadband Engine Architecture
and its first implementation. IBM developerWorks (2005)

6. Girona, S., Labarta, J., Badia, R.: Validation of Dimemas communication model
for MPI collective operations. In: Proc. EuroPVM/MPI (2000)

7. Gordon, M., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and
pipeline parallelism in stream programs. In: Proceedings of the 12th international
conference on Architectural support for programming languages and operating
systems, pp. 151–162 (2006)

8. Blossom, E.: GNU radio: tools for exploring the radio frequency spectrum. Linux
Journal 2004, 122 (2004)

9. Eduard, A., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Federico, M., Su, E.,
Unnikrishnan, P., Guansong, Z.: A proposal for task parallelism in OpenMP. Sub-
mitted to IWOMP2007 (2007)

10. Gonzalez, M., Ayguade, E., Martorell, X., Labarta, J.: Complex Pipelined Ex-
ecutions in OpenMP Parallel Applications. International Conference on Parallel
Processing (ICPP’2001) (to appear)

11. Gonzalez, M., Ayguade, E., Martorell, X., Labarta, J.: Exploiting pipelined exe-
cutions in OpenMP. Parallel Processing 2003. In: Proceedings. 2003 International
Conference on pp. 153–160 (2003)

12. Bellens, P., Perez, J., Badia, R., Labarta, J., Center, B., II, U., Girona, J.: CellSs:
a Programming Model for the Cell BE Architecture. In: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing (2006)

13. CEPBA: Dimemas performance analysis tool,
http://www.cepba.upc.edu/dimemas/

http://www.cepba.upc.edu/dimemas/

Mapping and Performance Evaluation for
Heterogeneous MP-SoCs Via Packing

Bastian Ristau and Gerhard Fettweis

TU Dresden, Vodafone Chair Mobile Communications Systems
01062 Dresden, Germany

{ristau, fettweis}@ifn.et.tu-dresden.de

Abstract. The computational demand of signal processing algorithms is rising
continuously. Heterogeneous embedded multiprocessor systems-on-chips are one
solution to tackle this demand. But to be able to take advantage of the benefits
of these systems, new strategies are required how to map applications to such
a system and how to evaluate the system’s performance at a very early design
stage. We will present a static, analytical, bottom-up methodology for temporal
and spatial mapping of applications to MP-SoCs based on packing. Furthermore
we will demonstrate how the result can be used for performance evaluation and
system improvement without the need for simulations.

1 Introduction

The computational demand of signal processing algorithms is rising continuously. Het-
erogeneous embedded systems-on-chip are one solution to tackle this demand. Though
ASIC centered single chip solutions are usually smaller and more energy efficient [1],
flexibility and reusability of MP-SoC components is comparatively higher. This is im-
portant especially in signal processing, since it enables to react to future changes in
signal processing algorithms or even to implement new algorithms without changing
the hardware. But to take advantage of this flexibility new strategies are required to
determine how to map applications to such a system and to evaluate the system’s per-
formance at a very early design stage.

We will present a static, analytical, bottom-up methodology for mapping applications
spatial and temporal to a given architecture following the Y-Chart approach [2]. The ba-
sic idea of the Y-Chart approach is to model applications and architecture separately, to
perform a mapping of application to architecture and to iterate over different mappings,
architectures and application descriptions until the desired architecture and mapping is
found. In our proposed methodology the iterations over different mappings is done au-
tomatically. Furthermore the resulting static mapping can be utilized for performance
evaluation and system improvement without the need for simulations. For determining
an initial system there already exist works (e.g. [3,4]) using linear or multi-objective
optimization (MOO). These can be used easily in interaction with our method.

In this paper we will concentrate on mapping for minimal execution time, although
the methodology is not restricted to this. In a lot of signal processing applications we
have to face semi-hard real-time constraints. Thus, it is important to know in the first
place, if the chosen system can meet the given timing constraints. If not, the system

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 117–126, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

118 B. Ristau and G. Fettweis

has to be modified. We think of this of a starting point for further optimizations, if the
timing requirements are met. This can be done by modifying some constraints and the
objective in our methodology, but also by applying other approaches, e.g. [5,6,7,8].

We rejected the use of MOO in the first performance evaluation step, because there
are two major downsides. Firstly, MOO produces a set of pareto-optimal solutions, from
which the preferred one has to be chosen manually. Secondly, the existence of more
than one solution prevents solvers from efficiently making use of branch&bound or
equivalent techniques. Thus, relevant details usually have to be neglected in the model
to get acceptable solving times. The result of these methods has to be checked with
simulations afterwards [3].

2 Methodology

In this section we will give a short overview of the setup of our methodology followed
by a more detailed description, how the mapping problem can be regarded as and solved
via solving packing problems.

But first we want to give a short description about the methodology we used for
modeling applications and architectures. For modeling there is a variety of languages,
which can roughly be divided into process-network based and control & data-flow graph
(CDFG) based approaches. We have chosen a CDFG based kind of view, because in
comparison to process networks the complete parallelism of the application is exposed
explicitly. We use YML [9], which was designed to deal with Kahn-Process-Networks
derived from Compaan [10], but is suitable for CDFGs as well. Another advantage of
YML is, that it can be used to model the architecture as well in the same way.

As mentioned, our methodology is a single objective, bottom-up, analytical approach.
We favored an analytical over a simulation based approach, because in this way each
corner-case does not have to be identified and simulated individually, but is considered
within the model. However, this – as well as the fact that our methodology is static –
limits our approach to applications that can be scheduled statically. The methodology is
designed bottom-up due to fact, that implementation and performance figures are avail-
able usually at very low abstraction levels – or at least can be estimated more precise.
Multiple abstraction levels are included by finding mappings on the lowest abstraction
levels, inserting the gained results into higher abstraction levels and in this way reaching
the top-level step-by-step.

To find a mapping and evaluate the performance of the given system, we propose
the methodology depicted in Fig. 1. First we do a fast optimization to check, if the
chosen system can meet the required timing constraints without resource constraints.
This problem can be solved exact in polynomial time for example via shortest path
algorithms from the field of graph theory. Since the algorithms are well-known, we
neglect the details in this paper.

If the timing constraints can be met disregarding resource constraints, we perform
a 3-step mapping algorithm, which is described in detail in the following subsections.
The three steps can be seen as a stepwise refinement of the mapping. After each step
the mapping process is stopped, if the timing constraints cannot be met. In the first
step the tasks are mapped onto the system. Second, the variables are mapped to suitable

Mapping and Performance Evaluation for Heterogeneous MP-SoCs Via Packing 119

Compute
Theoretic Min

Map for Minimum Execution Time

Requirements met

Map Tasks Map Variables Map Transfers

Choose
Promising
System

Break Graph
Structure &

Tune Mapping

Map for
Desired

Objective(s)

Room for
Improvement

Requirements not met

STOP

Enlarge
Mapping
Space

Update
System

START

Fig. 1. Block diagram of the presented methodology and the possible steps beyond

memories of the system and memory addresses. This step also determines, if the chosen
memory capacity is sufficient. After that transfers are taken care of.

We are aware of the fact, that there have been efforts treating individual phases –
just to name [11,12] as prominent examples. Our approach differs in putting all of these
problems down to the class of packing problems. Another advantage esp. in memory
allocation is the fact, that not two, but an arbitrary number of memories can be handled
simultaneously. In addition, we keep the graph structure of the application throughout
the whole mapping process, which can be useful for further optimizations.

After the 3-step mapping algorithm an optional refinement step can be performed,
which breaks up the graph structure. If the timing constraints can be met, further opti-
mizations can be executed utilizing the results of the mapping result.

2.1 Mapping Tasks and Transfers

The problem of mapping tasks temporal and spatial can be interpreted as 2-dimensional
strip-packing problem [13]. In strip-packing, boxes of fixed length and width have to
be arranged into a strip of fixed width in such a manner, that total height is minimized.
Figure 2 illustrates the application of packing to mapping tasks.

Applied to mapping tasks the boxes to be packed represent the tasks. The length of
these boxes is defined by the execution time of the tasks. The width of the strip is the
total execution time and height represents the available processing elements in discrete
unified steps. Thus, not the height but the width of the strip wmin is minimized, when
optimization of total execution time is desired.

Let Pi be the set of processors capable of processing task i and yi,k := 1, if task i
is mapped to processor k. First, we have to ensure that each task i is mapped onto a
processor k capable of processing this task. This is done by (1).

120 B. Ristau and G. Fettweis

PE 1

PE 2 Task 1

Time

Task 2

Task 3dependency

Total Exec. Time

Fig. 2. Application of packing to mapping tasks

∑
k∈Pi

yi,k = 1, ∑
k/∈Pi

yi,k = 0 ∀i (1)

Let xi be the starting time of task i. Since the run-time of task i is dependent on the
processor it is mapped to, execution time can be expressed as ∑k Wi,kyi,k (with Wi,k :=
execution time of task i on processor k). Thus, (2) guarantees that all tasks are finished
before total execution time wmin and (3) that precedence constraints are met. Note that
(3) is a restriction of valid positions for the boxes in packing terms, which is not given
in regular packing problems. This property reduces the solution space and speeds up
solution time. The solution space can be reduced even more by considering ALAP and
ASAP times for the tasks, which we did not implement yet.

xi +∑
k

Wi,kyi,k ≤ wmin ∀i (2)

xi +∑
k

Wi,kyi,k ≤ x j ∀i, j : j depends on i (3)

Next, we have to obey machine restrictions. Let be i, j tasks and k, l the indices of
the assigned processors. Let be ui, j := 1, if k ≤ l, and bi, j := 1, if i is executed before
task j (0 otherwise). Since DSPs and ASICs usually do not support multi-threading,
tasks cannot be executed in parallel on the same processor. Equations (4) – (8) provide
this non-overlapping in packing terms and are stated for each interfering task-pair (i, j)
with Pi ∩Pj �= /0. In this context two tasks do not interfere, if there exists a path between
i and j in the CDFG or if they are belonging to different case-blocks of a switch-case-
construct. In the latter case, the tasks may be mapped onto the same processor at the
same time, because only one of the tasks will be executed in reality. By including this
property into our methodology, each possible branch that can be realized in the CDFG
is considered automatically.

xi +∑
k

W ′
i,kyi,k −Wmax +Wmaxbi, j ≤ x j (4)

∑
k

kyi,k + 1 − Hmax + Hmaxui, j ≤ ∑
k

ky j,k (5)

b j,i + bi, j ≤ 1 (6)

u j,i + ui, j ≤ 1 (7)

u j,i + ui, j + b j,i + bi, j ≥ 1 ∀ interfering i, j (8)

Note, that not run-time but the earliest starting time of the next task on the same
processor is relevant to ensure a valid temporal mapping. The earliest starting time for

Mapping and Performance Evaluation for Heterogeneous MP-SoCs Via Packing 121

subsequent tasks after the start of task i on processor k is denoted by W ′
i,k. Constants

W max := ∑i,k Wi,k and Hmax := |�i Pi| make sure, that (4) and (5) are redundant with
x j ≥ 0 and ∑k ky j,k ≥ 0 in case of bi, j = 0 and ui, j = 0, respectively.

Finally we need an objective that minimizes total execution time wmin. The sum term
in (9) (with A := adjacency matrix) additionally minimizes the time between two ad-
jacent tasks and therefore liveness of variables. The objective can be refined by adding
additional terms, e.g. trying to put adjacent tasks onto the same processor for reducing
needed transfers.

W min +

(

∑
i, j

Ai, j(x j − xi − ∑k Wi,kyi,k)
W max

)
→ min (9)

For mapping transfers, the same methodology can be applied, because the transfers
have to be performed by some components of the system. But since the components
involved in these transfers are determined by the memory allocation, this has to be done
after the mapping of variables and cannot be integrated into the mapping of tasks.

2.2 Mapping Variables

The results of the task mapping are now used for mapping variables. Since the set of
valid memories depends on the processor, the related task is mapped to, the mapping of
variables has to take place after the tasks are mapped.

Mapping variables in heterogeneous MP-SoCs is similar to register allocation in
compiler construction. A well known solution for this problem is Chaitin’s graph color-
ing algorithm [12]. But in opposite to register allocation there are usually more than the
two memories (register and global memory) in MP-SoCs, like local, shared and global
memories or vector and scalar memories. Thus not each memory is suitable for storing
a variable. But the concept of interference can be utilized and extended.

In our methodology two variables interfere, if they can share the same memory and
can be live simultaneously. Since we keep the graph structure throughout the whole
mapping process instead of looking at sequential code, the possibility rather than the
fact of being live simultaneously is important.

The problem of mapping variables can now be seen as shelf-packing problem as
follows: Each shelf represents a memory k of the system, whose height is defined by
the capacity Ck. The variables i to be mapped represent the boxes to be packed into the
shelves, whose heights hi matches the size of the variables.

Let Mi be the set of memories suitable for storing variable i and xi,k := 1, if variable
i is stored in memory k (0 otherwise). First, we have to select a valid memory (shelf)
for each variable (10).

∑
k∈Mi

xi,k = 1, ∑
k/∈Mi

xi,k = 0 ∀i (10)

Let yi be the starting address of variable i in the memory. Eq. (11) takes care, that the
variable is stored in a valid memory address.

yi + hi ≤ ∑
k

Ckxi,k ∀i (11)

122 B. Ristau and G. Fettweis

Let Hoffset
k be the shelf height of memory k and Hmax ≥ maxk{Hoffset

k +Ck} a constant
denoting the height of the rack. To make certain that two variables are not stored in the
same memory at the same address, we introduce non-overlapping constraints (12) &
(13) for all interfering variables i, j.

yi + hi +∑
k

Hoffset
k xi,k − Hmax + Hmaxu j,i ≤ y j +∑

k

Hoffset
k x j,k (12)

u j,i + ui, j = 1 ∀ interfering i, j (13)

Since each memory k has different access times denoted by Wk, we minimize not only
needed memory resources, but also force the allocation of variables into fast memories.
This is done by (15), where the required resource amounts for memory k are denoted
with ymin

k and constraint by (14).

yi + hi + Hmaxxi,k − Hmax ≤ ymem
k ∀i,k (14)

∑
i,k

Wkxi,k +∑
k

ymem
k C−1

k → min (15)

3 Results

In this section we will apply the proposed method to a case study. For the case study we
considered a processor core [14] based on Synchronous Transfer Architecture (STA) as
a MP-SoC. The intermediate representations our test bench applications generated by
the MOUSE [15] compiler front-end served as sample applications.

STA is the concept of loosely coupled functional units and different memory types
connected by an interconnection network. Thus, these functional units can be consid-
ered as processors in the MP-SoC. In our case study we selected a STA core with 21
functional units. As an important property for legitimating this architecture for the MP-
SoC case study there are some operations that have to be executed on a dedicated func-
tional unit of the architecture and some operations, that can be mapped to an element
of a subset of functional units of the STA core. In addition, each of these units has out-
put registers. This characteristic is used to model the behavior of keeping data in local
memory as rather than having to write it back to shared or global memory.

The advantage of this abstract example is, that we have on the one hand well-known
execution times for the instructions and on the other hand a set of test benches, that suit
as complex examples (up to 135 nodes per basic block) to demonstrate the potentials
and limits of our methodology.

3.1 Results for Mapping Tasks

After transferring the STA core as well as the applications into our internal YML-based
data structure, we applied the methodology described in Sect. 2 to our test benches.
We compared the performance of our methodology with the results from our compiler
and the theoretic minimum which is defined as the minimal number of VLIWs required

Mapping and Performance Evaluation for Heterogeneous MP-SoCs Via Packing 123

0%

20%

40%

60%

80%

100%

co
nv

se
ria

l

dc
t2

d8
8

dc
t2

d1
68

fft
64

8

fft
12

88

fft
25

68

fir
se

ria
l

fir
pa

ra
lle

l

iirs
er

ial

iirp
ara

lle
l

lm
ss

er
ial

function

n
o

.
o

f
V

L
IW

s
MOUSE compiler

mapping result

theoretic min

Fig. 3. Comparison of the quality of the task mapping methodology with the MOUSE Compiler
and the theoretic min without resource constraints

without resource constraints. Figure 3 shows an improvement of about 75% in aver-
age compared to the existing MOUSE compiler. But even more important is the com-
parision with the theoretic optimum without resource constraints on the same kind of
architecture. As Fig. 3 shows, we are within a factor of 1.45 of this minimun in average.

Solving was done by passing the problem to CPLEX 10.1. Although it was not pos-
sible to compute the optimal mapping in acceptable time for applications with a large
number of nodes, first solutions were found fast. Therefore we implemented a time
limit for finding a better solution of 10 seconds after an improvement of a solution was
found. To get an indicator about the quality of these solutions, we ran the CPLEX solver
for one block of an application for more than six hours, which showed improvement of
about 10% over the solution found after less than a minute.

Figure 4 shows the times required for mapping tasks. We think the denoted running
times up to 250 sec. are worth to be spend at an early design stage, since no additional
simulations are required. Moreover, note that the solving time can be accelerated by
reducing the time specified for finding a better solution during progress.

3.2 Results for Mapping Variables

We applied the shelf-packing methodology for mapping variables to the test benches.
As mentioned, the functional units can hold data in their output registers, which is used
in the case study for modeling the behavior of keeping data in local memory as rather
than having to write it back to shared or global memory. The results of our methodology
applied to the test benches showed that this is an important property to be considered
in the mapping process. It significantly reduced not only required memory resources to
10% in average but also communication overhead.

3.3 Utilizing Results for Performance Evaluation and System Refinement

As mentioned in Sect. 1, the methodology is designed for performance analysis of an
existing MP-SoC in the first place. But the results can be utilized to guide the designer

124 B. Ristau and G. Fettweis

1

10

100

1000

10000

co
nv

se
ria

l

dc
t2

d8
8

dc
t2

d1
68

fft
64

8

fft
12

88

fft
25

68

fir
se

ria
l

fir
pa

ra
lle

l

iirs
er

ial

iirp
ara

lle
l

lm
ss

er
ial

function

n
o

.
o

f
b

lo
ck

s/
in

st
ru

ct
io

n
s

0

50

100

150

200

250

300

so
lv

in
g

 t
im

e
(s

ec
.)

blocks

instructions

solving time

Fig. 4. Number of blocks and instructions to be mapped and the resulting solving times

0%

20%

40%

60%

80%

100%

de
co

der

sa
lu1
sa

lu4
sa

lu2

sm
em
ss

hif
t

sa
lu3

vm
em

sm
ul
vfp

u1
va

lu
se

q icu
vfp

u2
sfp

u

functional unit

lo
ad

blocks where theoretic
minimum is missed

overall

Fig. 5. Load analysis of the task mapping result for all test benches

0%

20%

40%

60%

80%

100%

co
nv

se
ria

l

dc
t2

d8
8

dc
t2

d1
68

fft
64

8

fft
12

88

fft
25

68

fir
se

ria
l

fir
pa

ra
lle

l

iirs
er

ial

iirp
ara

lle
l

lm
ss

er
ial

function

n
o

.
o

f
V

L
IW

s

given architecture

architecture with
additional decoder

theoretic min

Fig. 6. Improvement gained by adding a second decoder unit to the given architecture as result of
the load analysis

in the process of modifying the system to improve metrics as performance, for example.
Since we have a static mapping, we can derive some performance figures like processor
loads or memory requirements very easily. Figure 5 shows, that the load of the decoder
is very high in comparison to the other functional units.

Mapping and Performance Evaluation for Heterogeneous MP-SoCs Via Packing 125

Thus, we modeled a system with two decoders and did the mapping for this modified
system. Figure 6 shows the improvement compared to the original system. With this
quite simple analysis of the loads of the functional units and the derived modification
of the system we were able to reduce the gap between the theoretic minimum without
resource constraints and our mapping result from about 45% to under 20%.

4 Conclusion

We have shown that mapping of applications to a given heterogeneous MP-SoC can
be regarded as packing problem. These packing problems can be solved efficiently by
existing optimization software. Furthermore the results of our static, analytical method-
ology can be utilized to guide the system designer, how to refine the given system.

Acknowledgement

This research is supported by NXP Semiconductors Dresden within the project MxMo-
bile Multi-Standard Mobile Platform of the German Federal Ministry of Education and
Research (BMBF).

References

1. Blume, H., Feldkämper, H.T., Noll, T.G.: Model-based exploration of the design space for
heterogeneous systems on chip. J. VLSI Signal Process. Syst. 40, 19–34 (2005)

2. Kienhuis, B., Deprettere, E., Vissers, K., van der Wolf, P.: An approach for quantitative analy-
sis of application-specific dataflow architectures. In: ASAP ’97. Proceedings of the IEEE In-
ternational Conference on Application-Specific Systems, Architectures and Processors, pp.
338–349. IEEE Computer Society Press, Los Alamitos (1997)

3. Erbas, C., Erbas, S.C., Pimentel, A.D.: A multiobjective optimization model for exploring
multiprocessor mappings of process networks. In: CODES+ISSS ’03. Proceedings of the
1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis, pp. 182–187 (2003)

4. Schwiegershausen, M., Pirsch, P.: A formal approach for the optimization of heterogeneous
multiprocessors for complex image processing schemes. In: EURO-DAC ’95/EURO-VHDL
’95. Proceedings of the Conference on European Design Automation, pp. 8–13 (1995)

5. Pimentel, A.D., Erbas, C., Polstra, S.: A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Transactions on Computers 55, 99–112
(2006)

6. Bakshi, A., Prasanna, V.K., Ledeczi, A.: MILAN: A model based integrated simulation
framework for design of embedded systems. In: LCTES ’01. Proceedings of the ACM SIG-
PLAN Workshop on Languages, Compilers and Tools for Embedded Systems, pp. 82–93.
ACM Press, New York (2001)

7. Govindarajan, R., Gao, G., Desai, P.: Minimizing memory requirements in rate-optimal
schedules. In: ASAP ’94. Proceedings of the International Conference on Application Spe-
cific Array Processors, pp. 75–86 (1994)

8. Ristau, B., Fettweis, G.: An optimization methodology for memory allocation and task
scheduling in SoCs via linear programming. In: Vassiliadis, S., Wong, S., Hämäläinen, T.D.
(eds.) SAMOS 2006. LNCS, vol. 4017, pp. 89–98. Springer, Heidelberg (2006)

126 B. Ristau and G. Fettweis

9. Coffland, J.E., Pimentel, A.D.: A software framework for efficient system-level performance
evaluation of embedded systems. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 666–671. Springer, Heidelberg (2004)

10. Turjan, A., Kienhuis, B., Deprettere, E.: Translating affine nested-loop programs to process
networks. In: CASES ’04. Proceedings of the 2004 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, pp. 220–229 (2004)

11. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. ACM 20, 46–61 (1973)

12. Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.:
Register allocation via coloring. Computer Languages 6, 47–57 (1981)

13. Belov, G., Chiglintsev, A.V., Filippova, A.S., Mukhacheva, E., Scheithauer, G., Shirgazin,
R.: The two-dimensional strip packing problem: A numerical experiment with waste-free
instances using algorithms with block structure. Preprint MATH-NM-01-2005 TU Dresden
(2005)

14. Matus, E., Seidel, H., Limberg, T., Robelly, P., Fettweis, G.: A GFLOPS Vector-DSP for
broadband wireless applications. In: CICC ’06. Proceedings of the IEEE Custom Integrated
Circuits Conference, pp. 543–546. IEEE Computer Society Press, Los Alamitos (2006)

15. Cichon, G., Fettweis, G.: MOUSE: A shortcut from matlab source to SIMD DSP assembly
code. In: SAMOS ’03. Proceedings of the International Workshop on Systems, Architectures,
MOdeling, and Simulation, pp. 159–167 (2003)

Strategies for Compiling µTC to Novel Chip
Multiprocessors

Thomas A.M. Bernard, Chris R. Jesshope, and Peter M.W. Knijnenburg

Computer Systems Architecture group, Informatics Institute
University of Amsterdam, The Netherlands

tbernard@science.uva.nl, jesshope@science.uva.nl,
peterk@science.uva.nl

Abstract. Microthreaded C also called µTC is a concurrent language based on
the C language which allows the programmer to code concurrency-oriented appli-
cations for targeting chip multiprocessors. µTC source code contains fine-grained
concurrent control structures, where the concurrency is explicitly written via new
keywords. This language is used as an interface for defining dynamic concur-
rency and as an intermediate language to capture concurrency from data-parallel
languages such as Single-Assignment C, or as the target for parallelizing com-
pilers for sequential languages such as C. This paper presents an overview of
µTC language, emphasizing the aspects of memory synchronization and con-
current control structures. In order to understand the properties and scopes of
the language, we also present the outlines of the architectures after discussing
the global concepts of the microthreading model. Finally we show the toolchain
we are currently developing to support the model, focusing on compiler
strategies.

1 Introduction

Microthreading is an approach to parallel computing for on-chip concurrency in order
to improve performance.

Until the recent past, the classic improvements of CPU designs are obtained either
by increasing the clock speed or by increasing the number of instructions issued per
cycle. In order to exploit a different approach and avoid the classic problem of power
consumptions and heat dissipations, chip designers often look to other CPU features
like cache size and number of cores. Recently, Intel has pledged up to 80 cores on a
chip within the next five years. Intel has built an 80-cores-on-chip processor prototype,
which might be able to perform a trillion floating-point operations per second. Nev-
ertheless these new features dramatically increase the complexity of the chip for the
programmers. Important issues such as the existence of proper languages to exploit all
the new features of the chip might be a problem.

The Microgrid Project is a research effort to design a chip multiprocessor with a tool
suite which comprises a chip simulator and compilation tools based on the Microthread-
ing model of concurrency [1]. In order to improve the parallelization of computations,
the Microthreading [1] model proposes a new self-similar approach to concurrency,

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 127–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

128 T.A.M. Bernard, C.R. Jesshope, and P.M.W. Knijnenburg

from ILP to user tasks. This approach is based on massive thread-level parallelism aug-
mented by two forms of synchronization, namely, bulk synchronization between con-
current sections and fine-grain synchronization within concurrent sections. This model
is captured in the language µTC, which represents this explicit concurrency in the code
by using high-level structures that are implemented as instructions in a microthreaded
ISA. The µTC language is an extension to the C language, and provides concurrency
control structures which can represent all forms of concurrency from units which are a
single instruction up to complete programs. Our microthreaded architecture is a chip
multiprocessor [2]. More precisely, it is a reconfigurable pool of processors, which
can be connected by ring networks for executing concurrent sections. Each portion of
code or microthread is created dynamically with a collection of registers or a context
in the fine-grain synchronizing memory allocated to it. µTC captures the concept of
fine-grain synchronization between concurrent computations, as well as bulk synchro-
nization in non-synchronized memory. Concurrency control structures in the code are
directly mapped to low-level operations by using new ISA instructions [2].

There is related work on parallel languages in the current literature. OpenMP [3]
is similar in some aspects to µTC, though there are significant differences. The major
difference is that OpenMP uses pragmas to annotate the code and µTC uses concurrent
control structures which can be issued. The other point is that µTC assumes a synchro-
nizing memory. This captures dependencies between threads allowing sequence to be
transformed into concurrency, where any dependencies are managed transparently in a
data-driven manner. Similar to µTC, UPC [4] is another language which is an extension
of C. It uses new keywords and pragmas to specify concurrency in C code. The major
difference is that µTC does not have any notion of mapping threads to the hardware
(except to manage resource deadlock), since this is managed by the architecture.

This paper presents the main definition of the language with code examples and
demonstrates how it allows a programmer to code an application directly in a
concurrency-oriented manner using this language. We are currently at an early stage
of the project where the µTC language can be used by the programmer or as an inter-
face language with other projects. Eventually, the µTC language will be only internal,
which means that the programmer will only have to code in standard C. The compiler
suite will take care of the aspects of concurrency described in this paper. To under-
stand the properties and scopes of the µTC language, we present first the outlines of our
architecture after explaining the global concepts of the Microthreading model.

2 Problem and Motivation

The motivation of this work is to provide a deterministic method of programming large
scale concurrency. New developments in microprocessor design will force even the
commodity market, currently dominated by out-of-order issue processors, to adopt ex-
plicit concurrency as multi-core chips become the norm. A recent paper by Edward
Lee [5] warns of the danger of exposing a thread-based programming model to the
vagaries of non-deterministic scheduling in a multi-processor environment. His own
carefully managed software developments threw up bugs that had lain dormant in the
code for years when exposed to a multi-core environment.

Strategies for Compiling µTC to Novel Chip Multiprocessors 129

Our thesis is that the only sensible way to program multi-core devices is by using
ordinary sequential code that is compiled to parallel code. However, years of research
and development in parallelizing compilers has not yet yielded any significant solu-
tions. This is despite the fact that discovering some forms of concurrency in sequential
code is easy. Data dependence analysis can expose much concurrency in a unit of code.
What is difficult, however, is scheduling that concurrency onto current microproces-
sors where there is little or no support for synchronization. This results in non-optimal
schedules being generated statically by the compiler using coarse-grain units of concur-
rency. Coarse granularity is a necessity imposed by the inefficiency of software schedul-
ing methods used by the operating system or the language run-time support.

Our approach is to expose all of this concurrency to the hardware but to insist that the
hardware supports synchronization and efficient scheduling. Dataflow models (e.g., [6])
can execute the data-dependence graph directly. However, these models are inefficient
in managing the contextualisation of the code (e.g. managing different iterations on a
loop or different calls to a function). Our approach is to retain the data driven semantics
but to embed this in a conventional RISC architecture. Close to the processor, synchro-
nization is managed by the processors registers, just like an out-of-order processor. This
means that a microthread’s execution will be blocked if any of the data required by the
current instruction is not available. It would be expensive to implement this form syn-
chronization universally on all memory locations and so we also adopt a dynamic model
of concurrency creation, with barrier synchronization between concurrent sections and
this is used to manage synchronization in the slower main memory.

This separation of concerns, namely, exposing concurrency in the compiler and man-
aging concurrency in the microprocessor, allows us to achieve our goal of programming
multi-core chips, but only provided that the cores adopt the dynamic RISC approach de-
fined by microthreaded execution.

3 The Microthreading Model

Our Microthreading model aims to increase the concurrency of computations on the
chip [1]. Code is split into fragments , which are called microthreads, and those code
fragments are executed on several processors, as shown in Figure 1. Code fragments
can be identified as loops or function bodies or even sub-divisions of basic blocks. A
microthread is issued independently on a processor. Microthreads are created as fami-
lies (for instance, a loop represents a family of microthreads) of indexed microthreads.
The model adds just a few new instructions to an existing ISA to implement explicit
concurrency controls which are recursively applied to define parametric sets (families)
of concurrent code fragments, which are scheduled dynamically on multiple proces-
sors, as explained in section 4. Concurrency in Microthreading is parametric and its
schedules are dynamic, thus allowing the same binary code to be run on an arbitrary
number of processors. This allows dynamic management of resources. These new ISA
instructions [2] also handle data dependencies between microthreads.

Our Microthreading model supports a shared-register model of data using blocking
reads. The model also provides the programmer the opportunity to explicitly capture
concurrency in the code by means of this new language, as explained in section 5.

130 T.A.M. Bernard, C.R. Jesshope, and P.M.W. Knijnenburg

For i = 1 , n
 ...
 ...
 ...

Create (fid ; 1 ; n)
 ...
 ...
 ...

i = 1 , n Global
 schedule

u-threaded
 queues

Pipelines

Local
 schedulers

i = 9
i = 5
i = 1

i = 10
i = 6
i = 2

i = 11
i = 7
i = 3

i = 12
i = 8
i = 4

Hardware

Source code uTC Source code

Code fragments are scheduled
to processors dynamically and
individual instructions are
scheduled according
to dataflow
constraints.

Fig. 1. Illustration of Microthreaded Scheduling

4 Microthreaded Architecture

4.1 Overview

A microthreaded architecture is a chip multiprocessor which in principle can comprise
a very large number of processors. It does not matter how many processors execute
the code as the same code will run on any number of processors, bounded only by the
loop limit. A global schedule determines the distribution of the microthreads over the
processors when created by the ISA instruction create.

As shown in Figure 2, each processor consists of

– a local scheduler which manages the families of microthreads,
– a local pipeline which executes instructions,
– a large local register file providing memory for contexts. Each context is divided in

four classes: local, global, shared and dependent,
– links to the bus and a ring network (for communication with the others processors).

Each microthread can access a set of local registers, a set of read only registers, and
global registers which can be accessed by all microthreads. We support communication
between adjacent threads in a family by defining some registers of the local context

Strategies for Compiling µTC to Novel Chip Multiprocessors 131

Broadcast bus

Ring interconnect for registers
 and bus arbitration

Scheduler Scheduler

Pipeline Pipeline

 Local
Register File

 Local
Register File

 I-
cache

 I-
cache

 D-
cache

 D-
cache

Fig. 2. Microthreaded Architecture

as shared. In this way, the processors can exchange data in the shared registers for
dependencies between microthreads by a ring network, as shown in Figure 2. Each mi-
crothread has its own set of local registers for local data. Global registers contain global
values which are accessible to all microthreads of the family. Global values are derived
from local values in the creating thread and cannot be modified by the microthreads so
as to maintain determinism.

4.2 Synchronizing Memory: Hardware Perspective

Each thread created has a context of local registers which store scalar variables and
which are dynamically allocated to it. These registers have special state bits that indicate
whether or not the register contains a value that is written by the source of a dependency.
They are used to synchronize between dependent threads. The collection of all these
registers is called the synchronizing memory. These registers are initialized to the empty
state on creation of a thread and are garbage collected when the thread completes. The
only exception is the index variable that is set to the corresponding value of the iteration.
These variables provide synchronization on data from non-synchronizing memory and
on data from other threads if the variables are declared as shared. Reading an empty
variable in synchronizing memory will block the thread reading it until the value has
been set (the thread is suspended and can no longer proceed until the data is available).
Synchronizing memory is dynamic (like ordinary registers) and data created by a thread
must be shared with another thread or written to non-synchronizing memory before the
thread terminates. Otherwise it will be lost.

5 µTC Language

5.1 Introduction to the Language

The µTC language is an extension of the C language. However, we should emphasize
that µTC is not meant to be a language that should be used by a programmer. Instead,

132 T.A.M. Bernard, C.R. Jesshope, and P.M.W. Knijnenburg

we use it as an intermediate language between high level C and the microthreaded
extension of the underlying ISA. We plan to use µTC as an interface language to be
used in other projects in order to capture concurrency from data-parallel languages such
as Single-Assignment C (SAC) [7] or as the target for parallelizing compilers for se-
quential languages such as C. The latter is currently being designed in our group as a
source-to-source compiler using high-level code analysis. In this way, we can detect
where concurrency is present in a C source code and then produce µTC code. Subse-
quently, this code is translated into the microthreaded ISA. First, we explain which new
keywords have been added to C in order to define µTC.

5.2 New Keywords

A set of new statements and structures has been added to handle the microthreading
model, especially data dependencies and synchronization between microthreads. µTC
adds keywords to the standard C language as shown in Table 1. Each keyword can be
used anywhere in a C source code following a number of restrictions [8]. For instance, the
create statement has to follow syntax rules such as the braces and semantic rules such as
no function call inside the body or definitions of the parameters (integer or expression).

Table 1. Concurrency-control keywords

Keywords Semantics

create control structure used to create a family of microthreads
thread type specifier to indicate the functions that define the microthreads

squeezable function qualifier identifying threads that propagate a squeeze signal to subordinate
families

shared type qualifier of variables shared between microthreads
index type of the index variable of a family of microthreads
family type used to specify a variable that identifies a family of threads
place type used to specify a variable that identifies a place at which to execute

a family of threads
sync construct that waits for the termination of a specified family
break construct that terminates a family from one of its threads
kill construct that terminates a specified family externally

squeeze construct that preempts the execution of a specified family so that it may
restarted without loss of state

A µTC source file contains explicit statements to define code fragments. For exam-
ple, the create statement is a concurrent control structure which produces a family of
microthreads. Its semantics resembles a for construct in ordinary C. In the example be-
low, each iteration is a microthread which can be created and managed from one to n
processors.

...
create (fid; ; 0; m-1; ; ;)
{

index i;

Strategies for Compiling µTC to Novel Chip Multiprocessors 133

sum[i]=i+1;
}
printf ("fid %d", fid);
foo (fid);
...
sync (fid);

For handling synchronization, the sync statement blocks until the family of mi-
crothreads specified by fid has completed and then completes its execution. The creating
thread can continue until it needs to sync, as shown the example above. This example
has the same behaviour as a for loop statement with m iterations, but here each iteration
is executed concurrently. The programmer can also explicitly specify structures which
can be microthreaded by means of the thread function specifier, as follows.

thread sumint(shared int sum, int array[])
{

index idx;
sum = sum + array[idx];

}
...

int main(void)
{

int *a;
int fid, s=0, n=10;
create(fid; ; 0; n-1; ; ;)

sumint(s, *a);
sync(fid);
return 0;

}

In order to notify the compiler of a dependency between threads in a concurrent con-
trol structure, the shared keyword is used. In the following example, a variable is shared
between the iterations as well as the example above. The initialization is exposed to the
creating environment and depends on the scoping of variables. In the example above,
the shared variable is used as parameter. In the example below, the shared variable lo-
cated within a microthreaded structure needs to be initialized by an outer variable.

int s_init=0;
create (fid; ; 0; m-1; ; ;)
{

index i;
shared int s=s_init;
s=s+a[i];

}
sync (fid);

This has a similar semantics to a scalar in a loop, as each thread shares its shared
variable with the next thread in index sequence. Finally, another type qualifier, called

134 T.A.M. Bernard, C.R. Jesshope, and P.M.W. Knijnenburg

index, identifies an index within the family of microthreads. index i gets a value cor-
responding to the iteration numbered by the hardware. This value index is set by the
processor for each thread created by the create instruction/control. These executable
constructs added, (i.e. with the exception of the thread, index and shared type qualifiers)
all correspond to machine instructions added to an ISA to support microthreading.

5.3 Synchronizing Memory: Language Perspective

Communicating between threads in the same family must use synchronizing memory
by using a variable declared as shared. Such variables have a unique location in each
thread and define a dependency chain through all threads. To initialize this chain of
neighbours, the first thread reads a variable of the same name from the creating envi-
ronment (not declared as shared) or in the case of a named thread, a binding is made
to a variable in the creating environment such as in the example below, the variable s
is initialized by a variable in the creating environment. Following the termination of
the family (i.e., after a sync statement), a read of the initialising variable in the creating
environment will yield the value written to the shared variable by the last thread created.

int *a, s_init=0;
create (fid; ; 0; 99; ; ;)
{

index i;
shared int s = s_init;
s=s+1;
a[i]=s;

}
sync (fid);

From the previous example, the variable s is shared with the following ’iteration’. Its
first value is initialized to 0 during the first read. After the synchronization sync (fid),
the value of s would be the last value written which is 101.

6 µTC Compiler Strategies

We plan to have a compiler suite which comprises three main tools: two source-to-
source compilers (bold-line rectangles) and one core compiler (rounded-corners rectan-
gle), which is shown in Figure 3.

All of those tools are still in development and require testing suite experiments for
checking the quality of code, the performance, the use of memory, etc. For the pur-
pose of building a working core compiler (µTC-to-assembly) as soon as possible, the
compilation and the code analysis have been split up. However in the future we plan
to merge all the tools into the same system. The second reason is that we collaborate
with different partners within a project called AETHER [9]. We use the µTC language
as a language interface with two other source-to-source compilers under development
at the University of Hertfordshire: from Single-Assignment C to µTC, and from SNET
to µTC.

Strategies for Compiling µTC to Novel Chip Multiprocessors 135

SNET-to-uTC C-to-uTC SAC-to-uTC

uTC-to-C

 uTC-to-ASM
Core Compiler

uT-Assembler / uT-Linker

Fig. 3. µT-Compiler chain

At the University of Amsterdam, we use two different frameworks for our compilers.
We currently use the gcc 4.1 core release as the framework of our core compiler. And
the CoSy [10] system from Ace is used as the C-to-µTC parellizing compiler. In this
section we are going to focus on the design of the core compiler.

The µTC-to-C source-to-source compiler has the behaviour of a code checker / trans-
lator. This tool translates directly the microthreaded code to a classic sequential C
source code by using line-by-line replacements and keywords detections.

The strategy of the C-to-µTC compiler is to work on a high-level representation of
the code in order to detect which portions of code can be transformed (e.g. loops) to a
microthreaded code. The tool handles the data dependencies of the code and synchro-
nization by using the µTC keywords. This compiler will also be extended with trans-
formation strategies to extract more parallelism from the original program following
the microthreading model. The CoSy [10] system is used for the development of this
source-to-source compiler. It uses a convenient system of engines which works on a
centralized representation (CCMIR) of the program. µTC does not contain any schedul-
ing information, this is done at the hardware level. This compiler needs only to discover
the parallelism within a C source code.

The gcc 4.1 compiler is built in three main parts: the front-end which handles the
input languages (like C or Java) and the middle-end which manages most of the opti-
mizations (language- and target-independent) and then the back-end which generates
the assembly code and does some target-dependent optimizations. The main goal is to
port the gcc compiler to this new language and the targeted architecture. For that pur-
pose, our strategy is to extend the C front-end with our new keywords and concurrent
structures. The lexical, syntax and semantic analysis need to be extended as well in
order to support the new rules and semantics of the language. As shown in Figure 4,
the gcc 4.1 compiler has three internal representations from high-level (GIMPLE, tree-
based), optimization-level (SSA) until low-level (RTL, list of objects). To support the
mapping from high-level structures to low-level operations, we have to extend all of
them during all the stages of the compilation. The ’gimplification’ produces the GIM-
PLE form and needs to be updated with new structures to represent the new statements.
The ’out-of-SSA’ stage needs to be extended to support the new statements from the

136 T.A.M. Bernard, C.R. Jesshope, and P.M.W. Knijnenburg

GIMPLE. The ’RTL expansion’ which is responsible of the translation from the GIM-
PLE to RTL nodes is extended to support the new information. ’Code generation’ is
also extended with new rules about the new ISA instructions and memory description.
The gcc 4.1 back end is well designed for retargeting new architecture. The back-end
works as a back-end generator which is fed by the Target Description Files (TDF as
shown in Figure 4). These files contain the rules for the ’expansion’ and for the ’code
generation’. For now the compiler does not perform any code transformation or code
analysis like data dependencies.

uTC

Gimple

Gimple-SSA

Gimple

RTL

ASM TDF

Front-end

Middle-end

Back-end

Fig. 4. Intermediate Representations of gcc 4.1

7 Challenges for Compiling µTC

Besides adding new concepts within the compiler via new keywords and new struc-
tures, µTC has other complex challenges for compiler architecture. It is common know
that register allocation is most important challenge for compiler architects. Normally the
register allocation works at the late stages of compilation and follows a specific descrip-
tion of the memory features of the targeted architecture. The register allocation basically
starts analyzing from the low-level internal representation which uses an infinite number
of registers called pseudo registers. The Target Description Files (TDF as shown in Fig-
ure 4) explain for instance what kind of registers are used for a specific type of operations
such as arithmetic operations or pointers operations. The numbers of those registers are
fixed for a specific target and are real hardware registers. They are called hard registers
in the literature. After the register allocation passes and algorithms passes for memory
optimizations, all the used registers are hard registers in pseudo-assembly code of the
initial program. In our case, the register allocator occurs differently than classic register
allocations. Firstly, because of the memory features of the microthreaded architecture,
we use four classes of register which have been explained previously. The global amount

Strategies for Compiling µTC to Novel Chip Multiprocessors 137

of registers is 31, nevertheless, there are not a fixed number for each class of register.
Our register allocator should perform a dynamic allocation after analyzing the needs of
the source code. To summarize the amount of registers of each class is different depend-
ing on the source program and can differ from one program and another. Classic register
allocations work on a static amount of registers and known before compile-time. How-
ever for our model, at compile-time we have to perform memory and data analysis in
order to determine the needs for each class of register.

Furthermore, the former challenge brings a new one which is the data information.
The data structure indeed is part of our model which introduces classes of variables:
global, local, shared and dependent. Keeping track of data information all along the
compilation stages is a big issue in compiler architecture. The amount of data informa-
tion which are discovered during code analysis can be large. Because of storage issues
and loses between compilation stages, this information can be lost. By using new mem-
ory types in µTC, the language explicitly specifies data information which are needed
for an efficient register allocation.

The dragon book [11] presents a chapter about the issues in the design of a code
generator. Finally these two challenges introduce the need of useful and complete inter-
mediate representations (three within gcc 4.1) in order to keep track of all information
(such as new statements from the µTC language, scopes of variables) from the high-
level to the low-level representation.

8 Initial Results

The µTC compiler is still in development but the front-end supports most of the µTC
language. Source code can be parsed and the compiler is able to display syntax errors
such as misspelled keyword or invalid parameter. It is also capable of basic semantics
checks such as variable declaration for a parameter of a keyword. In the near future we
plan to make more efficient semantic checks for a source program. For instance a sync
statement would have to refer to a valid create statement. One other point is the break
statement has to be used only within a microthreaded code (body of a create statement
or body of thread statement) such as the break from the C language which has to be
used within a loop or if-then-else statement or a switch statement).

From source code, the µTC compiler produces an intermediate tree representation
of the program. In oder to support the new specifications of the language and also
for overcoming the challenges explained before, this representation has been updated.
Moreover we plan to have some analysis on the tree representation in order to make
some experiments about some potential optimizations.

9 Conclusions and Further Research

This paper has shown how the µTC language allows to capture thread-based concur-
rency in the code and the strategies to compile it. We are currently developing the core
compiler based on gcc 4.1 which compiles µTC to assembly code. Secondly one of our
objective is to be able to extract concurrency from sequential code and for this we are
expanding our field of research to include the area of source-to-source compilation and

138 T.A.M. Bernard, C.R. Jesshope, and P.M.W. Knijnenburg

code analysis. We are looking at a parallel source-to-source compiler which has to dis-
cover concurrency in C code and produce µTC code. A µTC-to-C translator has been
already implemented and creates a sequential C source code.

In the future, we plan to do experiments and benchmarks to determine the efficiency
of the code and the performance at run-time by using the µT simulator. Depending on the
results of the experiments, we also plan to make some appropriate code optimizations
in the µTC compiler in order to improve the code for our architecture.

References

1. Jesshope, C.: Microthreading - a distributed paradigm for instruction-level concurrency. Par-
allel Processing Letters. In: Proc. of IFIP 10.3 Workshop 2003 (2006) (to be published)

2. Bousias, K., Hasasneh, N., Jesshope, C.: Instruction-Level Parallelism through Microthread-
ing - a scalable Approach to Chip Multiprocessors. Computer Journal 49(2), 211–233 (2006)

3. OpenMP: OpenMP Version 2.5 Specification (accessed 16/4/2006) (2005),
http://www.openmp.org/drupal/mp-documents/draft spec25.pdf

4. Carlson, W., Draper, J., Cullera, D., Brooks, K.Y.E., Warren, K.: Introduction to UPC and
Language Specification. Technical Report CCS-TR-99-157 (May 13, 1999)

5. Lee, E.A: The Problem With Threads. IEEE Computer 36(5), 33–42 (2006)
6. Swanson, S., Schwerin, A., Mercaldi, M., Petersen, A., Putnam, A., Michelson, K., Oskin,

M., Eggers, S.: The WaveScalar Architecture. Accepted by Transactions on Computer Sys-
tems (TOCS) (to appear, 2006)

7. Scholz, S.B.: Single Assignment C - Efficient Support for High-Level Array Operations in a
Functional Setting. Journal of Functional Programming 13(6), 1005–1053 (2003)

8. Jesshope, C.: µTC - an intermediate language for programming chip multiprocessors. In:
Proceedings Asia-Pacific Computer Systems Architecture 2006, ACSAC06 (2006) (to be
published)

9. AETHER: Self-adaptive computing, http://www.aether-ist.org/
10. ACE: CoSy Compiler Development System,

http://www.ace.nl/compiler/cosy.html
11. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools, pp. 514–

519. Addison-Wesley, Reading (1986)

http://www.openmp.org/drupal/mp-documents/draft_spec25.pdf
http://www.aether-ist.org/
http://www.ace.nl/compiler/cosy.html

Image Quantisation on a Massively Parallel Embedded
Processor

Jan Jacobs1, Leroy van Engelen2, Jan Kuper2, and Gerard J.M. Smit2

1 Océ Technologies BV, P.O. Box 101,
5900MA Venlo, The Netherlands

jan.wm.jacobs@oce.com
2 University of Twente, P.O. Box 217,
7500AE Enschede, The Netherlands

Abstract. Recent advances in embedded processing architectures allow for new
powerful algorithms, which exploit the intrinsic parallelism present in image pro-
cessing applications. This paper describes the results of the mapping process of
stochastic image quantisation on a massively parallel processor. The problem
can be modeled in a parallel way. Despite the fact that the implementation is
IO bound, good speedups are achieved (16× compared to a standard image pro-
cessing package running on a Pentium processor).

1 Introduction

Océ Technologies develops document systems for the office as well as for the design
engineering market. Sample products are: printers, copiers, and scanners, which support
professionals in their daily work. In order to maintain competitiveness Océ is interested
in new algorithms and embedded architectures that raise quality and/or reduce devel-
opment effort. In this paper, we focus on a parallel architecture and a relatively new
algorithm in the context of business graphics. Business graphics are characterised by
large areas filled with a single colour. This type of information, such as presentation
sheets and charts (Fig. 1), is often scanned in an office environment. During scanning
the image is sampled, which leads to distortion. One of the possible distortions is blur-
ring, a kind of smearing, with the effect that more colours are introduced in a scan
than necessary (Fig. 1, rightmost image). Reducing the number of colours in such scans
is essential for image quality and can be useful as a first step in image compression.
This process is called colour quantisation. Popular quantisation algorithms include me-
dian cut and octree algorithms [1]. These algorithms use a statistical approach: they
count the occurrences of each colour and try to assign quantised colours using only
this (frequency) information. The quality can be improved by including spatial (inter-
pixel) relationships. In this paper we use one of the most recent image processing mod-
els, Markov Random Field (MRF) [2]. Simulated Annealing[3], which is an efficient
stochastic procedure to solve combinatorial optimisation problems, is used to execute
the MRF model in an iterative way till convergence is reached. Their combined advan-
tage comes from the little a priori information on the world model and their suitability
for parallel processing.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 139–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

140 J. Jacobs et al.

Fig. 1. Typical office scan containing text and charts. Scanning introduces image degradation: the
number of unique grey-values increases from 10 to 229.

Present practice, however, makes such algorithms unusable since they are far too
inefficient when run on sequential machines. It is our intention to find an embedded
solution with a good performance-cost ratio, therefore we turn to massively parallel
computing to implement these powerful algorithms. In our case we address the perfor-
mance issues with the Aspex Linedancer processing array[4].

These considerations lead to the following research question:
How to map image quantisation, based on Simulated Annealing and using an MRF

image model, on a Linedancer massively parallel processing array?
This study will be presented here in the following manner. In Section 2 we intro-

duce the theoretical concepts that lie at the base of our quantisation algorithm, we give
a mathematical description of our image model and we briefly describe Simulated An-
nealing. The processor used in this research is also introduced. Next, Section 3 describes
the parallel model and the related complexity estimates. Then the implementation is
described in Section 4, followed by the results in Section 5. Finally, conclusions and
recommendations are given in Section 6.

2 Background

2.1 Image Model for Quantisation

The basic problem is to recover a limited set of colours from a scanned business graph-
ics original. The process, which reduces the number of colours by assigning them to a
limited number of classes in an image, is called quantisation. For simplicity we restrict
ourselves in this study to grey-value images since this does not alter the essence of both
algorithm and mapping. See Fig. 2 for a result of a state of the art quantisation algo-
rithm. To better observe quantisation artifacts, the quantised image is visualised in false
colours, see Fig. 2(b). A false colour image is an image that depicts a subject in colours
that magnifies the differences between values that are almost equal and, as a conse-
quence, is good visible for human perception. Note for example the ringing around
edges and the various speckles in Fig. 2(b), showing the substructure in the light and
dark parts barely visible in Fig. 2(c). This false colouring can be steered by a grey-value

Image Quantisation on a Massively Parallel Embedded Processor 141

(a) Original image, 256
grey-values

(b) Resulting false colour
image, 4 grey-values,
dashed arrow indicates
ringing, the others
indicate speckles

(c) Resulting image, 4 grey-
values, ringing just visi-
ble

Fig. 2. Example of state of the art quantisation algorithm

histogram, which can reveal such a situation. See for example the two adjacent peaks as
depicted by the upper diagram in Fig. 3. The problem we want to solve here is to raise
the quality of the quantisation by a postprocessing step in an efficient way.

First, we introduce some basic concepts, followed by two specific image models
and conclude with a general image model based on the theory of MRF. The theory is
described extensively in [2], the image model itself is taken from [5].

Fig. 3. Estimation of classes with associated class means

A pixel si, j is denoted as a tuple (i, j), with i ∈ H = {0, . . . ,h − 1}, j ∈ W = {0, . . . ,
w − 1} in which w and h are the width and height of an image. We define Ni, j =
{(k, l)|

√
(k − i)2 +(l − j)2 ≤ δ,(k, l) �= (i, j)} as the neighbourhood Ni, j of pixel si, j.

Thus, Ni, j contains all pixels within distance δ from si, j , except si, j itself. See Fig. 4 for
a neighbourhood with radius δ = 2.

An image is defined on a grid of pixels S = {si, j|i ∈ H, j ∈ W}. The scanning pro-
cess produces grey-values that are assigned to pixels and denoted by γs ∈ {0, . . . ,255}.
A desired property of quantisation is that it resembles the colour or grey-value of the

142 J. Jacobs et al.

original. This so called fidelity, is optimised when the distance between grey-value and
the mean value of the quantisation class (e.g. µ0···3 in Fig. 3) is minimal for all pixels.

The purpose of quantisation is to determine the optimal quantisation class per pixel.
Each class corresponds to an ordered sub-set of γs (e.g. {30 · · ·40}) and this sub-set is
represented by their class means µgs (e.g. 36). These classes are identified by labels and
denoted by gs ∈ {0, . . . ,L − 1}, where L represents the number of quantisation classes
1 ≤ L � 256. L is determined by inspecting the dominant peaks in the histogram, see
for example Fig. 3 where L = 4.

A desired property of business graphics is the occurence of large planes with a single
colour or label. This property, called regularity, is optimised when the dissimilarity
between neighbouring labels is minimised.

The general MRF image model combines both the fidelity (grey-value) and the reg-
ularity (spatial relation) by simply minimising their weighted sum over all pixels. Find-
ing the optimal label assignment is computationally very hard. However, reasonably

(i,j)(i,j-1)

i

j

Fig. 4. Pixels in a grid with neighbour-
hood. The grey coloured pixels are all
neighbours of the central pixel (i, j).

Fig. 5. Aspex Semiconductor’s Linedancer

good solutions can be found by Simulated Annealing, an efficient procedure for solving
combinatorial optimisation problems [3]. The algorithm repetitively executes the MRF
model and searches a state (class-values or labels of all pixels in an image) where the
weighted sum, or energy, is minimal. Each iteration the label of a single pixel is ran-
domly chosen and its effect on the energy is computed. States which do decrease energy
are always accepted (deterministic acceptance), but occasionally also slight increases
are accepted in order to escape from local minima (probabilistic acceptance). In gen-
eral the combination of MRF and Simulated Annealing is considered a powerful generic
framework that can be used whenever an optimisation model can be constructed of a
problem. See for example half-toning in [6], a more complex application than quan-
tisation. For our purposes, however, the main advantage of this approach is that the
algorithm can be run in parallel for all pixels, as will be shown in Section 3.

Image Quantisation on a Massively Parallel Embedded Processor 143

2.2 Associative Processing

Traditional computers rely on a memory that stores and retrieves data by its address
rather than by its content. In such an organisation (von Neumann architecture), every
accessed data word must travel individually between the processing unit and the mem-
ory. The simplicity of this retrieval-by-address approach has ensured its success, but
has also produced some inherent disadvantages. One is the von Neumann bottleneck,
where the memory-access path becomes the limiting factor for system performance. A
related disadvantage is the inability to proportionally increase the bandwidth between
the memory and the processor as the size of the memory scales up. Associative mem-
ory, in contrast, provides a naturally parallel and scalable form of data retrieval for both
structured data (e.g. sets, arrays, tables, trees and graphs) and unstructured data (raw text
and digitised signals). An associative memory can be extended to process the retrieved
data in place, thus becoming an associative processor. This extension is merely the ca-
pability of writing a value in parallel into selected cells [4]. Applications range from
handheld gaming, multi-media, wireless base stations, on-line transaction processing to
heavy image processing, pattern recognition and data mining [4,7].

Aspex’s Linedancer is an implementation of a parallel associative processor. The
approach taken by Aspex Semiconductor is to use many simple associative processors
in a SIMD arrangement (ASProCore). Each of the 4096 processing elements (PEs)
on the Linedancer device has about 200 bits of memory (of which 64 bits are fully
associative) and a single bit ALU, which can perform a 1 bit operation in 1 clock cycle.
Operations on larger data types take multiple clock cycles. The aggregate processing
power of the Linedancer depends entirely on parallel processing. For example: a 32-
bit add will take many more clock cycles compared to a high-end scalar processor, but
due to the parallelism 4096 additions can be performed in parallel. Multiple Linedancer
devices can be connected together to create an even wider SIMD array.

The Linedancer device (shown in Fig. 5) includes an intelligent DMA controller, to
ensure that data is moved in and out of the ASProCore concurrently with data process-
ing, and a RISC processor (Sparc), to issue high level commands to the ASProCore and
to set-up the DMA controller. All parts of the device run at the same clock frequency,
which can be up to 400 MHz.

A Linedancer is programmed in an extended version of C, with additional syntax for
controlling the ASProCore.

The reason Linedancer was chosen for this application is its scalable property to-
wards the number of labels that can be processed by using its associative functionality
(as opposed to other solutions, e.g. CNN [5]). Other reasons are scalable performance
and its attractive performance-cost ratio.

3 Specification of the Algorithm

The flow of the system is depicted in Fig. 6. The module denoted by MRF and Simulated
Annealing is the topic of this paper. To accelerate the Simulated Annealing procedure
we follow the Modified Metropolis Dynamics (MMD) approach as described exten-
sively in [5]. Contrary to MRF with its global energy, MMD strives for minimising a

144 J. Jacobs et al.

Fig. 6. Context of the quantisation module Fig. 7. The energy decrease of MRF
and MMD

local energy Es per pixel in parallel and therefore converges much faster when run-
ning on a parallel architecture. Although the MRF is in the long run somewhat better
in quality (i.e. lower energy), MMD offers a better ”quantisation result/compute time”
ratio[5]. Fig. 7 illustrates the convergence power of MMD. Let γs be the observed grey-
value image of pixel s, gs be the quantisation class or label of pixel s, and gr be the label
of a pixel in the neighbourhood of s, then the energy of pixel s for the MMD approach
is given by:

Es = (γs − µgs)
2

︸ ︷︷ ︸
fidelity

+ ∑
r∈Ns

βδ(gs,gr)

︸ ︷︷ ︸
regularity

, (1)

where

δ(gs,gr) =

{
−1 if gs = gr,

+1 if gs �= gr
(2)

Minimising the energy E will raise the quality of the quantisation. The fidelity term
depends on the class means µgs , which are constant, initialised by a previously exe-
cuted module in the pipeline, see Fig. 6. The regularity term prefers neighbours having
same labels (2), and β is a positive model parameter controlling the homogeneity of the
regions of the image.

The Simulated Annealing procedure is coded in Algorithm 1. Here g represents the
complete state of all pixels in an image and ĝ represents a randomly chosen state of all
pixels. An essential control variable in this algorithm is T or Temperature, named after
related concepts in Physics [3]. A desired property of this procedure is the controlled
and slow transition from a pseudo-stochastic to a deterministic phase. This transition
corresponds to the transition from a broad search for global minima to the homing in on
one –hopefully the best– minimum. Because T is high in the beginning, the system is
able to jump to states that do (not too excessively) increase the energy (line 8), allowing
escape from local minima. With T getting lower the system will behave more determin-
istic and fewer states that increase energy are accepted (lines 6 and 8). The threshold
α controls the degree of probabilistic acceptance. The procedure can start off with an
arbitrary state.

The values of parameters α, β and initial temperature T0 are obtained from literature
or based on preliminary computational experience. Typical values for these parameters
are: threshold α ∈ [0.01,1), regularity weighting β ∈ [1,100], temperature T0 ∈ [0,16],

Image Quantisation on a Massively Parallel Embedded Processor 145

1: g ← initialisation state
2: for T ← T0,T0 ·C, . . . ,T0 ·Cn−1 do
3: ĝ ← randomly chosen quantisation state g
4: for all s ∈ S do
5: ΔEs ← E(ĝs)−E(gs)
6: if ΔEs ≤ 0 then {Deterministic acceptance}
7: gs ← ĝs

8: else if ΔEs ≤ T ·− lnα then {Probabilistic acceptance}
9: gs ← ĝs

10: end if
11: end for
12: end for

Algorithm 1. Modified Metropolis Dynamics

cooling factor C ∈ [0.95,1) and the number of iterations n ∈ [50,200]. The typical dy-
namic behaviour of MMD versus MRF is illustrated by Fig. 7. In contrast to MRF,
MMD settles around 100 iterations, independent of image size.

The complexity analysis of the sequential implementation of MRF is O(n · w · h).
Here w and h stand for the width and height of an image, respectively. The complexity
analysis of the parallel implementation of MMD is O

(
n·w·h
#PEs

)
, where #PEs stands for the

number of Processing Elements.

4 Implementation Restrictions and Choices

To map this quantisation scheme on a Linedancer several implementation concerns have
to be considered. Four of them: Look Up Table (LUT), tiling, bit-width of variables, and
random number generation, are described below.

For most fine grain SIMD systems the size of the local memory is limited. In order to
really be scalable in the number of labels, one must be able to retrieve the class means
µgs in an efficient way. The associative functionality of the Linedancer is very suitable
in providing lookup functionality for all PEs.

Choosing a pixel-per-PE scheme means that a single Linedancer can host a 64 × 64
tile of pixels. To process larger images we use tiling, i.e. we divide the image in small
chunks (of 64 × 64 pixels) that fit on the Linedancer. When running each tile, one after
another for all n iterations, without providing for inter-tile communication, maximum
speedup will be achieved but quality might be compromised. In order to counter this
loss of quality a multi-pass scheme is used. In this way tiles are fetched multiple times,
using overlapped fetch, effectively allowing for inter-tile communication.

The Linedancer does not support floating point arithmetic. For the various variables
an accuracy analysis is made for determining the necessary bit-width in an integer arith-
metic scheme. For the energy computation (1), the fidelity term takes the largest bit
budget because of the square operation of a subtraction of two 8-bit values. The energy
field is dimensioned to a 20-bit number representation, sufficient for storing the addition
result of both the fidelity and regularity terms.

146 J. Jacobs et al.

For every iteration a new state (ĝ) has to be generated in a random fashion. Pseudo
random generators based on Linear Feedback Shift Register (LFSR) have low memory
footprint and only need simple bit operations: XOR and Shift [8]. A 10 bit LFSR with
only two tap points generates a pseudo random number sequence with cycle length
210 − 1 = 1023, which is sufficient.

5 Results and Discussion

Table 1 summarises the timing results of three distinct implementations for L = 16
quantisation classes. Two of them implement the MMD scheme, one executed on a
2 GHz Pentium Xeon with 1 GB RAM and one on the Linedancer. For comparison also
a state of the art quantisation algorithm Octree[1] is used, which is part of the image
processing package ImageMagick. The current Linedancer implementation is 16 times
faster than Octree running on the above mentioned Pentium processor (and 128× faster
compared to MMD on a Pentium).

Table 1. Execution times of quantisation for L = 16 classes: Octree and the MMD version both
on a Pentium, and MMD on the Linedancer. All MMD processing is performed with n = 100
iterations.

Pixels Time (ms)
Octree on Pentium MMD on Pentium MMD on Linedancer

10000 108 517 5.95
40000 343 2070 23.1
160000 1171 8420 80.3
640000 4406 34600 280
2560000 16796 138000 1080

To give an idea how many cycles the different parts of the algorithm take, we mea-
sured the number of cycles taken for different stages of the algorithm. The results can
be seen in Table 2. For the “For each neighbour”-parts, which take 3592 cycles each,
3200 (estimate based on a communication model) are spent on communication per part.
This is approximately 73% of a total of 8754 cycles for each iteration per tile. However,
clever reuse in communicating the neighbourhood could reduce this overhead, provided
some memory space is available for storing intermediate results. Then 55% of a reduced
total of 5207 cycles is spent in communication, yielding a speedup of 1.7.

A further improvement can be obtained by extending the Linedancer’s synchronous
inter-PE communication with a chordal ring, e.g. with an extra link for each PE with
distance 64. This would yield a total speedup of 3.0 and would turn this realisation into
a processing bound solution; only 20% of a reduced total of 2935 cycles is then spent
in communication.

In quality terms the improvement w.r.t. state of the art quantisation algorithms is
difficult to judge. The ringing at the edges and the speckles have disappeared when
comparing the image in Fig. 2(b) and the image of Fig. 8(a). But the redistribution of
classes lead to larger inhomogeneous areas and further study is needed to reduce this

Image Quantisation on a Massively Parallel Embedded Processor 147

Table 2. Number of measured cycles used for each iteration per tile of the algorithm. Nesting
indicates loops, bold numbers indicate accumulated results.

Activity # Cycles
Preparation 70
Processing one tile

Calculate a new random labeling 44
For each label 352

y−µgs (16×) 22
Square 164
For each neighbour 3592

Add or subtract β (avg) (12×) 299.3
Load y 16
For each label 352

y−µgs (16×) 22
Square 164
For each neighbour 3592

Add or subtract β (avg) (12×) 299.3
Subtract energies, threshold values and update 70

Dump result 338
Total 8754

side-effect. The MMD implementation is single-pass, i.e. process each tile just once.
However, single-pass results in annoying artifacts as can be seen in Fig. 8(a). To counter
this, each tile can be processed multiple times, effectively allowing neighbouring tiles
to communicate their regularity information, see image in Fig. 8(b). This can be done
without performance degradation because on the Linedancer the dumping of the result
of a previous tile and the loading of the next one can be completely hidden in the
processing of the current tile.

6 Conclusions and Recommendations

An MMD implementation on the Linedancer has a high performance gain w.r.t. a state
of the art sequential algorithm (speedup 16×), even in the case of a multi-pass approach.
Careful engineering of the inter-PE communication could increase the speed by an extra
factor of 1.7. When the processing array is extended with a chordal ring interconnec-
tion structure, with extra chords connecting PEs at distance 64, then a total speedup of
approximately 3.0 can be obtained.

Though not the focus of this study some conclusions may be drawn on quality. First
of all MMD promotes the redistribution of classes to larger uniform areas than the
conventional method, as shown in the false coloured visualisations. The speckles and
ringing effects at edges have disappeared. However, the redistribution of classes leads
to larger inhomogeneous areas and further study is needed to reduce this side-effect.

From an architectural point of view we recommended an improvement in the inter-
PE communication of the Linedancer.

148 J. Jacobs et al.

(a) One pass, arrows indi-
cate tiling artifacts

(b) Two passes, no visible
artifacts

(c) Resulting image

Fig. 8. Quantisation by MMD on an image of 128 x 128 pixels, processed in chunks of 64 x 64
tiles

References

1. Freisleben, B., Schrader, A.: An evolutionary approach to color image quantization. In: Pro-
ceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC 97),
Indianapolis, IN, USA pp. 459–464 (1997)

2. Kato, Z.: Modelisations markoviennes multiresolutions en vision par ordinateur. Application a
la segmentation d’images SPOT. PhD thesis, University of Nice, [English translation] (1994)

3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Inc.
Chichester (2001)

4. Aspex Semiconductor Ltd: Linedancer - overview (2005), http://www.aspex-semi.com/
pages/products/products linedancer overview.shtml

5. Sziranyi, T., Zerubia, J., Czuni, L., Geldreich, D., Kato, Z.: Image segmentation using Markov
random field model in fully parallel cellular network architectures. Real-Time Imaging 6, 195–
221 (2000)

6. Geist, R., Reynolds, R., Suggs, D.: A markovian framework for digital halftoning. ACM Trans.
Graph. 12(2), 136–159 (1993)

7. Krikelis, A., Weems, C.: Associative Processing and Processors, 1st edn. IEEE Computer
Society Press, Los Alamitos (1997)

8. Golomb, S.W., Golomb, S.: Shift Register Sequences. Aegean Park Press, Laguna Hills, CA,
USA (1981)

http://www.aspex-semi.com/pages/products/products_linedancer_overview.shtml
http://www.aspex-semi.com/pages/products/products_linedancer_overview.shtml

Stream Image Processing on a Dual-Core Embedded
System

Michael G. Benjamin and David Kaeli

Northeastern University, Computer Architecture Research Laboratory
409 Dana Research Center, 360 Huntington Ave, Boston, MA 02115, USA

{mbenjami,kaeli}@ece.neu.edu

Abstract. Effective memory utilization is critical to reap the benefits of the
multi-core processors emerging on embedded systems. In this paper we explore
the use of a stream model to effectively utilize memory hierarchies. We target im-
age processing algorithms running on the Analog Devices Blackfin BF561 fixed-
point, dual-core DSP. Using optimized assembly to effectively use cores reduces
runtime, but also underscores the need to mitigate the memory bottleneck. Like
other embedded processors, the Blackfin BF561 has L2 SRAM available. Ap-
plying the stream model allows us to effectively make full use of both cores and
the L2 SRAM. We achieve almost a 10X speedup in execution time compared to
non-optimized C code.

1 Introduction

Convergent, embedded architectures combine multiple instruction sets and allow tra-
ditional digital-signal processing (DSP) platforms to also run micro-controller (MCU)
code. To develop applications for these platforms, developers should try to leverage
open source image and video processing libraries to drastically reduce development
time of embedded computer vision applications. By utilizing DSP and other special-
purpose hardware available on the processor, the performance of these applications can
be greatly improved. But with highly compute-optimized code, the memory bottleneck
becomes even more apparent.

The growing gap between processor and memory speeds has long been acknowl-
edged [1] and has been attacked using on-chip caches. But image and video applications
exhibit characteristics not well-suited for conventional caches. Images have 2D spatial
locality, while caches capture only one dimension [2,3]. Image processing shows little
temporal data reuse, causing cache pollution. Cache lines corresponding to processed
data are not reused and must be replaced often. This characteristic of image-based pro-
cessing need cache structures that can accomodate both types of locality [4,5]. An alter-
native use of the on-chip memory is as scratch-pad memory, with data communication
controlled explicitly by the programmer [6].

The stream model of computation has recently been proposed to address memory
bottlenecks. In short, the stream paradigm decouples computation and memory accesses
to ensure parallelism and locality. We examine the use of the stream paradigm in con-
junction with assembly optimizations on a representative set of image processing algo-
rithms, running on the Blackfin embedded processor from Analog Devices, Inc. (ADI)
- a good example of a convergent architecture.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 149–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

150 M.G. Benjamin and D. Kaeli

Section 2 discusses the stream model in further detail. Section 3 discusses the con-
vergent architecture of the dual-core Blackfin BF561 processor. Section 4 describes the
main target application discussed in this paper, an edge detection program. We also
discuss our scheme to produce optimized execution on the convergent Blackfin DSP
architecture. Section 5 presents our results and section 6 concludes the paper.

2 Stream Computing Paradigm

The goal of the stream paradigm is to maximize data locality while exposing paral-
lelism. Stream applications decouple two aspects of computing: performing computa-
tions, and data communication required to feed the computations. Streams are sets of
data elements to be processed by compute kernels, which are sequences of instructions
applied to each element in a stream.

Locality can be maximized because during a kernel’s execution, all data accesses
can be served by local memory storage (maximizing kernel locality) and because re-
sults produced by one kernel are quickly consumed by the next (maximizing producer-
consumer locality).

Given the necessary computational resources, multiple kernels can operate simulta-
neously in a pipeline, exposing thread-level parallelism. For each thread and within a
kernel, independent instructions can operate at the same time, exposing instruction-level
parallelism. A particular instruction could be vectorized and applied to many elements
of the data stream using SIMD hardware, exposing data-level parallelism [7,8].

2.1 Stream Applications, Languages, and Compilers

To quickly process high definition images or video sequences, data should be locally
available to computational units. For large images, a common approach is to partition
the data, effectively maintain intermediate results in low-latency memory, and continu-
ously process the resulting subimages. This fundamental streaming nature is apparent
in a number of applications and modern graphics processing units (GPUs) are designed
around a stream model both in their hardware [9] and software [10] implementations.
A number of languages and compilers have been developed including StreamIT [11],
Stream-C and Kernel-C [12].

2.2 Stream Architectures

The rising demand for media processing has motivated the development of a number of
architectures and re-examination of existing architectures to work with a stream model.
Processors like Imagine [13,14], Merrimac [15], and Stream Processors Inc.’s Storm-
1 [16] have been developed to exploit the stream model. To support diverse, dynamic ap-
plications, architectures that can be reconfigured to execute efficiently for many classes
of applications have been introduced. Architectures such as TRIPS [17] and RAW [18]
can be described as polymorphous - that is, they can morph between a number of oper-
ating modes, each capturing some class of applications.

Stream Image Processing on a Dual-Core Embedded System 151

Researchers have even explored using the stream paradigm on existing general-
purpose processors [19]. By using L2 cache as local storage, and multithreading for
parallelism, scientific applications can achieve moderate speedups (27%). But cache
overhead limits the effectiveness of this approach. For architectures which support L2
SRAM acting more like scratchpad memory (common in many embedded processors,
e.g., the ADI Blackfin), there is potential for higher performance.

3 Blackfin Processor

The Blackfin is an embedded architecture based on the MicroSignal Architecture devel-
oped jointly by ADI and Intel [20]. It supports 8, 16, and 32-bit arithmetic operations,
but is optimized for 16-bit operations. The Blackfin reduces power and part cost by
integrating RISC and DSP processor capabilities into a single chip. But rather than fus-
ing two cores together, the Blackfin ISA was designed from the beginning with this
duality in mind. The 32-bit RISC instruction set is variable-length and supports Single
Instruction, Multiple Data (SIMD) operations. As shown in Fig 1, the DSP instruction
set makes use of dual 16-bit multiply-accumulate (MAC) units. Additionally, a video
pixel instruction set supports four 8-bit video ALUs which can be utilized with vec-
tor instructions for addition, multiplication, averaging, and sum-of-absolute-differences
calculations [21].

The BF561 processor is a Blackfin derivative with two cores, clocked at up to 600
MHz. The BF561 has 128 KB on-chip L2 SRAM, clocked at 300 MHz, and 100 KB
in-core L1 SRAM, which is split between instruction, data, and scratch-pad memories.

Fig. 1. The ADI Blackfin processor core

152 M.G. Benjamin and D. Kaeli

L1 can be configured as either SRAM or cache. The BF561’s L2 memory can not be
configured as cache [22], but the programmer is able to map data into regions in L2.
Without the turn-key solution of using L2 as cache and given the limitations of cache
for image and video processing discussed in the introduction, we examine the use of L2
as a local store in the stream paradigm.

4 Implementation

Many image processing algorithms are made up of a sequence of convolutions, which
transform images using a set of kernel matrices. To avoid confusion with the compu-
tational kernels used in the stream model, we refer to kernel matrices as “masks.” For
example, an image represented by the 2D matrix F := (fx,y)m×n can be transformed into
another image represented by the matrix G by convolving F with a mask, denoted H,
by the 2D convolution equation:

gx,y =
1

∑
i=−1

1

∑
j=−1

h j+2,i+2 × fx− j,y−i

Such convolutions are frequently used to update pixel values based on neighborhood
operations. For example, for images which contain noise, averaging a pixel based on
its neighborhood can reduce the intensity of the noise, thus smoothing or blurring the
image. In order to determine edges in an image, approximations of the first and second
derivative can be used as masks to determine if the intensity level for a pixel neighbor-
hood is uniform or changes (implying an edge). A Gaussian mask implements noise
reduction; two Sobel masks implement horizontal and vertical edge detection:

Gauss = 1
16

⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦ Sobelx =

⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦ Sobely =

⎡

⎣
1 2 1
0 0 0

−1 −2 −1

⎤

⎦

In general such image convolution algorithms can be described as follows, where
memi and memo are data sets in memory for input data and processed output data, re-
spectively:

IMAGEPROCKERNEL (memi,m,n,mask,memo)
1 for y ← 0 to m− 1
2 do for x ← 0 to n − 1
3 do p = GETPIXEL(x,y,memi)
4 2D CONVOLVE(p,mask)
5 SETPIXEL(p,y,x,memo)

The control flow of an image processing program can be described as a sequence
of kernels (such as the IMAGEPROCKERNEL algorithm). To process an image, each
kerneli would execute, convolving every pixel p in the m×n source image src with the
convolution mask(s), and setting appropriate pixel values in the destination image dst.
Performance can be increased by ensuring calls to GETPIXEL and SETPIXEL access
low-latency memory.

Stream Image Processing on a Dual-Core Embedded System 153

PROCESSIMAGE

1 foreach kerneli in Control Flow
2 RUN(kerneli (src,m,n,mask,dst))

We examine an edge detection program using a Gaussian blur convolution to reduce
noise and a Sobel gradient-operator convolution to highlight both horizontal and verti-
cal edges in a high-definition image. The resolution used is 1920x1080 (WxH) which
requires 2,073,600 pixels to be convolved. For a 3x3 mask, this requires 9 multiplica-
tions and 8 additions per pixel. Therefore, a single convolution would require about 18.7
MMACs. Our program uses three such convolutions, and therefore the ideal is about 56
MMACs.

The actual benchmark code used is taken from existing codebases [23] and from
the ADI Blackfin SDK [24]. We examine the assembly-level optimizations given in the
SDK code to reduce the execution time on each core, and then attempt to optimize the
use of both cores to reduce overall execution time. The computational optimizations
underscore the need for efficient memory usage.

4.1 Assembly Optimizations

As discussed in section 3, the Blackfin has a dual-MAC architecture: to carry out con-
volutions, two pixels can be convolved at once. By pushing the unique values of a mask
onto the stack and popping them when needed, the program can quickly fetch hx,y mask
values. Using parallel-issue instructions, the Blackfin can execute two MAC operations
to set two gx,y pixel values while fetching the next fx,y pixel and hx,y mask values in
the same clock cycle. This technique allows the 56 MMACS to require only 28 Mcy-
cles, which running on a 600 MHz core clock is less than 0.05 sec. This runtime is the
theoretical lower limit for the convolutions alone, and the delay added due to memory
latency is substantial - emphasizing the need for efficient memory use.

4.2 Dual-Core Utilization

A natural approach to utilize symmetric cores is to divide the image into partitions,
giving each core its own portion of the data. This can be described as partitioning the
data-flow of the program and has also ben called the “homogenous model” [25]. An-
other approach is to partition the compute kernels and give each core some set of kernels
to perform; the resulting data would flow from one core into the next. This approach
can be described as partitioning the control-flow of the program, and embodies some of
the characteristics of the stream model.

In order to add more kernels to the stream, we utilize C data structures represent-
ing kernels, which include pointers to the input/output records and a callback for the
kernel’s function, and the three routines discussed below:

– ADDKERNEL - adds a kernel to a linked list representing the program’s control flow
– NEWSTREAMREC - allocates memory for input/output records of a kernel
– MAPSTREAM - maps existing records for a kernel

154 M.G. Benjamin and D. Kaeli

At initialization, we use the above routines to set up the control flow of a program.
Following initialization, we call each kernel as specified. To implement other image
processing programs using our method, the addition of new kernels or stream mappings
only requires a new initialization for each core, and does not require a specialized stream
compiler.

To use the two symmetric cores on the BF561, we examined both approaches dis-
cussed above. For data-flow partitioning, each core processes half the image. For control-
flow partitioning, each core processes half of the computational kernels. This approach
is viable for our two convolution kernels, but for programs that lack a balanced set of
computational kernels, a heuristic approach may be needed.

4.3 Memory Hierarchy Utilization

In order to make use of the BF561’s L2 SRAM as local storage memory, we exam-
ined two approaches. The first uses regions of L2 SRAM on a per-kernel basis. It
copies subimages into input records associated with a computational kernel (denoted
kerneli.in), runs the kernel, saves results into output records (denoted kerneli.out), and
saves these records back to SDRAM after computation completes; this process is then
repeated for the next kernel in the control flow of the program. A side-effect of this
approach is that the results of each kernel can be saved, but at the cost of increased
memory access for each kernel. This approach is summarized in the following pseu-
docode:

PER-KERNEL CONVOLUTION

1 foreach kerneli in Control Flow
2 do foreach SUBIMAGE in IMAGE
3 do COPY(SUBIMAGE,kerneli.in)
4 RUN (kerneli(kerneli.in,m,n,kerneli.out))
5 COPY(kerneli.out,SUBIMAGE)

The second approach uses the stream processing paradigm. Under this model,
SDRAM is only accessed for compulsory reads or completion writes (i.e., only after
all k kernels in the control flow have been processed). This approach is summarized in
the following pseudocode:

STREAM CONVOLUTION

1 foreach SUBIMAGE in IMAGE
2 do COPY(SUBIMAGE,kernel1.in)
3 foreach kerneli in Control Flow
4 do RUN(kerneli(kerneli.in,m,n,kerneli+1.in))
5 COPY(kernelk.out,SUBIMAGE)

Unlike the previous approach, the results of each kernel are not saved - only the final
results after every kernel has been run is saved to SDRAM. But for programs where the
intermediate results are not important, reducing the number of main memory accesses
provides higher performance.

Stream Image Processing on a Dual-Core Embedded System 155

5 Results

We produce the following results on a live Analog Devices BF561 system. Figures 2
and 3 show the results using hardware counters.

Figure 2 shows how the different methods reduce the cycle count. For the single-
core (SC) case, the use of L2 in the partitioned data-flow method reduces the runtime
by nearly half. The use of a second core is effective only when the cores are not waiting
for data (i.e., when data is stored in on-chip memory). Ideally, using the second core
would half the runtime, but when SDRAM is used the additional core only provides
a 27% increase in performance. Only when the latency penalty of SDRAM access is
minimized by using L2 do we achieve a 2X speedup due to the second core.

 Gaussian Blur
 Sobel edge detect
 Write Access

 Read Access

 0 DC Stream CoreB

DC Stream CoreA

DC Data Parition CorereB

DC Data Parition CorereA

SC Data Parition Baseline

DC Baseline CoreB

DC Baseline CoreA

SC Baseline

M
cy

cl
es

 1,500

 1,000

 500

 2,000

Fig. 2. C implementations for single-core (SC) and dual-core (DC) approaches

 Gaussian Blur
 Sobel edge detect
 Write Access

 Read Access

 0 DC Stream CoreA

DC Stream CoreB

DC Data Partition CoreB

DC Data Partition CoreA

SC Data Partition Baseline

DC Baseline CoreB

DC Baseline CoreA

SC Baseline

M
cy

cl
es

 1,500

 1,000

 500

 2,000

Fig. 3. Assembly implementation of the 3x3 convolution program

156 M.G. Benjamin and D. Kaeli

Table 1. Runtimes using single and dual-core, using different memory management approaches,
and comparing C and ASM implementations

C ASM
Runtime (Speedup) Runtime (Speedup)
in secs. in secs.

Single-core baseline approach 3.99 (1.0) 3.64 (1.10)
Dual-core split data 3.15 (1.27) 2.45 (1.63)
Single-core with L2 1.80 (2.22) 1.08 (3.69)

Dual-core split data with L2 0.92 (4.34) 0.44 (9.07)
Dual-core streamed approach 0.80 (4.99) 0.42 (9.50)

Figure 3 shows that even though optimized assembly is being used instead of C, the
performance increase is only 10% for a single-core and 63% for a dual-core. Our image
processing application is truly limited by the SDRAM’s memory latency.

Using L2 to alleviate this bottleneck exposes the benefits of using assembly. The
performance speedup is 1.7X when using assembly for the case of a single-core with
L2 - nearly double, as is expected due to the effective use of both MAC units. The same
is true for both dual-core cases as well.

Results from hardware cycle counters are converted to runtimes and given in Table 1,
along with the speedup compared to the single-core baseline. Due to the limiting effects
of memory latency, the streaming paradigm performs better in both C and assembly
cases. The stream approach only accesses SDRAM on compulsory accesses and upon
completion of the convolutions. We see that we are far from the ideal runtime of 0.05
sec because L2 operates at 300 MHz and the operations to manage dataflow dominate
performance.

6 Conclusion

The Blackfin BF561 is a dual-core DSP/MCU convergent architecture with a 128 KB L2
SRAM. For image and video processing applications, we demonstrate that the stream
computing paradigm provides an effective model for making use of the computational
resources and L2 memory of the BF561. Using assembly code that utilizes dual-MAC
hardware doubles the performance but only when most of the memory accesses are
to L2 SRAM. Utilizing the stream model to limit SRAM accesses provides the best
performance.

Acknowledgment

The authors would like to thank Mimi Pichey, Giuseppe Olivadoti, Richard Gentile,
and Ken Butler from Analog Devices for their generous donation of equipment and
support of this work. We also extend our gratitude to the anonymous reviewers for their
comments and suggestions.

Stream Image Processing on a Dual-Core Embedded System 157

References

1. Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious. SIGARCH
Computer Architecture News 23, 20–24 (1995)

2. Cucchiara, R., Massimo Piccardi, A.P.: Exploiting Cache in Multimedia. In: Proc. of Int’l
Conference on Multimedia Computing and Systems, vol. 1, pp. 345–350 (1999)

3. Pati, A.: Exploring Multimedia Applications Locality to Improve Cache Performance. In:
Proc. of 8th Int’l Conference on Multimedia, pp. 509–510 (2000)

4. Naz, A., Kavi, K., Sweany, P., Rezaei, M.: A Study of Separate Array and Scalar Caches. In:
Proc. of the 18th Int’l Symposium on High Performance Computing Systems and Applica-
tions, pp. 157–164 (2004)

5. Naz, A., Rezaei, M., Kavi, K., Sweany, P.: Improving Data Cache Performance with Inte-
grated Use of Split Caches, Victim Cache and Stream Buffers. In: Proc. of the 2004 Work-
shop on Memory Performance: Dealing with Applications, Systems and Architecture, pp.
41–48 (2004)

6. Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., Marwedel, P.: Scratchpad Memory: A
Design Alternative for Cache On-chip memory in Embedded Systems. In: Proc. of the 10th
Int’l Symposium on Hardware/Software Codesign, pp. 73–78 (2002)

7. Dally, W.J., Kapasi, U.J., Khailany, B., Ahn, J.H., Das, A.: Stream Processors: Programma-
bility and Efficiency. ACM Queue 2, 52–52 (2004)

8. Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattso, P., Owen, J.D.: Pro-
grammable Stream Processors. ACM Computer 8, 54–62 (2003)

9. Venkatasubramanian, S.: The Graphics Card as a Stream Computer. In: Workshop on Man-
agement and Processing of Data Streams (2003)

10. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook
for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics 23,
777–786 (2004)

11. Gordon, M.I., Thies, W., Karczmarek, M., Lin, J., Meli, A.S., Lamb, A.A., Leger, C., Wong,
J., Hoffmann, H., Maze, D., Amarasinghe, S.: A Stream Compiler for Communication-
Exposed Architectures. SIGPLAN Not. 10, 291–303 (2002)

12. Mattson, P.: A Programming System for the Imagine Media Processor. PhD thesis, Stanford
University (2001)

13. Rixner, S., Dally, W.J., Kapasi, U.J., Khailany, B., Lopez-Lagunas, A., Mattson, P.R., Owens,
J.D.: A Bandwidth-Efficient Architecture for Media Processing. In: Proc. of the 31th Int’l
Symposium on Microarchitecture, pp. 3–13 (1998)

14. Khailany, B., Dally, W.J., Kapasi, U.J., Mattson, P., Namkoong, J., Owens, J.D., Towles,
B., Chang, A., Rixner, S.: Imagine: Media Processing with Streams. IEEE Micro 21, 35–46
(2001)

15. Dally, W.J.: Merrimac: Supercomputing with Streams. In: Proc. of the Conference on Super-
computing (2003)

16. Stream Processing: Enabling a New Class of Easy to Use, High-Performance Parallel DSPs.
White Paper 1.9, Stream Processors Inc. 455 DeGuigne Drive Sunnyvale, CA 94085, USA
(2007)

17. Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Ranganathan, N., Burger, D.,
Keckler, S.W., McDonald, R.G., Moore, C.R.: TRIPS: A Polymorphous Architecture for
Exploiting ILP, TLP, and DLP. ACM Transactions on Architecture and Code Optimization 1,
62–93 (2004)

18. Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V., Kim, J., Frank, M.,
Finch, P., Barua, R., Babb, J., Amarasinghe, S., Agarwal, A.: Baring It All to Software:
RAW Machines. Computer 30, 86–93 (1997)

158 M.G. Benjamin and D. Kaeli

19. Gummaraju, J., Rosenblum, M.: Stream Programming on General-Purpose Processors. In:
Proc. of the 38th Int’l Symposium on Microarchitecture, Washington, DC, USA, pp. 343–
354. IEEE Computer Society Press, Los Alamitos (2005)

20. Kolagotla, R.K., Fridman, J., Aldrich, B.C., Hoffman, M.M., Anderson, W.C., Allen, M.S.,
Witt, D.B., Dunton, R.R., Booth, L.A.J: High Performance Dual-MAC DSP Architecture.
IEEE Signal Processing 19, 42–43 (2002)

21. Analog Devices, Inc. One Technology Way, Norwood, MA 02062, USA: ADSP-
BF53x/BF56x Blackfin Processor Programming Reference. 1.0 edn. (2005)

22. Analog Devices, Inc. One Technology Way, Norwood, MA 02062, USA: ADSP-BF561
Blackfin Processor Hardware Reference. 1.0 edn. (2005)

23. Green, B.: Edge Detection Tutorial (2002),
http://www.pages.drexel.edu/∼weg22/edge.html

24. Analog.com: Software Development Kit (SDK) Downloads (2007),
http://www.analog.com/processors/platforms/sdk.html

25. Ning, K., Yi, G., Gentile, R.: Single-chip Dual-core Embedded Programming Models for
Multimedia Applications (2005), http://www.ecnmag.com/article/CA502854.html

http://www.pages.drexel.edu/~weg22/edge.html
http://www.analog.com/processors/platforms/sdk.html
http://www.ecnmag.com/article/CA502854.html

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 159–168, 2007.
© Springer-Verlag Berlin Heidelberg 2007

MORA: A New Coarse-Grain Reconfigurable Array for
High Throughput Multimedia Processing

Marco Lanuzza, Stefania Perri, and Pasquale Corsonello

Department of Electronics, Computer Science and Systems
University of Calabria, Arcavacata di Rende - 87036 - Rende (CS), Italy

{lanuzza, perri}@deis.unical.it, p.corsonello@unical.it

Abstract. This paper presents a new coarse-grain reconfigurable array
optimized for multimedia processing. The system has been designed to provide
a dense support for arithmetic operations, wide internal data bandwidth and
efficiently distributed memory resources. All these characteristics are combined
into a cohesive structure that efficiently supports a block-level pipelined
dataflow, which is particularly suitable for stream oriented applications.
Moreover, the new reconfigurable architecture is highly flexible and easily
scalable. Thanks to all these features, the proposed architecture can be
drastically more speed- and area-efficient than a state of the art FPGA in
executing multimedia oriented applications.

Keywords: Reconfigurable systems, coarse-grain array, multimedia
applications.

1 Introduction

Modern multimedia applications, including image processing, digital signal
processing, video stream operations and others, demand high-performance
computations alongside the capability of matching the rapid evolution of the
algorithms. The simultaneous demand for high computational speed and flexibility
makes reconfigurable architectures attractive solutions. In fact, they provide
performances similar to Application Specific Integrated Circuits (ASICs), with
maintaining a level of flexibility not available with more traditional custom circuitry.

In reconfigurable computing, a key role is covered by fine-grained Field-
Programmable Gate Arrays (FPGAs). Commercially available FPGAs consist of a
matrix of reconfigurable logic cells, with bit-level granularity, interacting through a
very flexible programmable routing network. Thanks to this structure, FPGAs offer a
high degree of on-chip parallelism; user control over low-level resources definition
and allocation; and user-defined data format represented efficiently in hardware. As a
drawback, owing to bit-level granularity, many resources have to be used to support
multi-bit operations. This leads to a large routing overhead and to a low silicon area
efficiency of FPGA-based computing solutions. Another disadvantage of the FPGAs
is the large amount of configuration data needed for configuring logic cells and
routing switches. This is particularly limiting in terms of required reconfiguration

160 M. Lanuzza, S. Perri, and P. Corsonello

time and power dissipation especially when multiple hardware reconfigurations are
needed an application process [1]. Such characteristics make FPGAs too expensive or
not efficient enough when supporting multimedia applications.

In order to overcome the above drawbacks, Coarse-Grain Reconfigurable
Architectures (CGRAs) use multiple-bit (typically 8/16-bits) wide arithmetic-oriented
processing elements (PEs) in conjunction with faster and more area- and power-
efficient routing structures [1-2]. As a consequence, greater efficiency is achieved in
executing arithmetic-dominant applications (such as multimedia applications) at
lower power, area, and configuration time with respect to FPGAs [3]. From an
architectural point of view, CGRAs can be classified as systems based on a linear
array or on 2D mesh-based architectures [1]. Linear array based architectures, such as
Piperench [4] and RaPiD [5], aim to speed-up highly regular computation-intensive
applications by deep data-level pipelines. Their 1D architectural organization is
particularly efficient for computations that can be easily linear pipelined. On the
contrary, it appears inappropriate to support block-based applications [6], which are
very common in multimedia processing. Because of the greater flexibility, 2D mesh-
based architectures [6-13] have received more success at both commercial and
academic levels. All these systems are based on a 2D array of arithmetic-oriented
functional unit, but differ often greatly in the special features provided to enhance the
execution of computing intensive-applications.

In this paper a novel 2D coarse-grain reconfigurable array, called MORA
(Multimedia Oriented Reconfigurable Array), is proposed. The new architecture
merges some promising characteristics of the previously proposed reconfigurable
systems with a block-level pipelined computational data flow resulting in a very
efficient platform to support the target applications.

The remainder of the paper is organized as follows: in Section 2, an architectural
overview of the new CGRA is presented; afterwards, the supported computational
models are described in Section 3; examples of applications mapping are presented
and compared to FPGA implementations in Section 4; finally, conclusions are given
in Section 5.

2 Overview of the Proposed Architecture

As shown in Figure 1, the workhorse of the proposed architecture consists of a
scalable 2D array of identical Reconfigurable Cells (RCs) organized in 4X4 quadrants
and connected through a hierarchical reconfigurable network. In order to simplify the
diagram, the interconnection scheme is not drawn. However, the interconnections
topology will be detailed in Section 2.2.

Differently from many competitors, such as [6] and [8], the proposed architecture
does not use a centralized RAM system. Storage for data is partitioned among the
RCs by providing each of them with an internal data memory. This solution supplies a
high memory access bandwidth to efficiently support massively-parallel
computations, while maintaining both generality and scalability.

The external data exchange is managed in a centralized way by an I/O Data
Controller, which can access the memory space of the RCs by using standard memory
interface functions (i.e. performing read and write operations), whereas internal data

 MORA: A New Coarse-Grain Reconfigurable Array 161

flow is controlled in a distributed manner through a handshaking mechanism which
drives the interactions between the RCs.

Finally, the integration with external and/or embedded microprocessors and
systems is guaranteed by a general I/O system interface including a Host Interface
and an External Memory Interface. The former is used to manage the device
configuration and I/O data transfer, whereas the latter is provided to supplement the
on chip memory (when needed).

I/O DATA & CONFIGURATION CONTROLLER

Host Interface External Memory Interface

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

DM

PE CL

 RAM

PE

 RAM

PE

Elab. Data Config. Data

Config. & Elab. Data Data Addr.

Fig. 1. The top level architecture

2.1 The Reconfigurable Cell

The block diagram of the RC is depicted in Figure 2.

Dual Port SRAM

(256*8-bit)

Data_OutA/B_ext

AddrA/B_ext

Config.
Data

Control
Unit

Addr_Out_ext

Input Stage

Operand Registers

Mult1
(8x4-bit)

Mult2
(8x4-bit)

Addition Stage
 (16-bit)

Output Register

Output Stage

Ram Interface

Data_InA/B_ext

C
ontrol signals

Handshake
Signals

PE (8-bit)

Configuartion Data

Instr.
Counter

Instruction
Decoder

Addresses Generator
& Hanshake Control

AddrA_int
AddrB_int
Addr_ext

Control
Signals

op_code Address Descriptors #ops

Config.
Memory

Handshake
Signals

C
ounter C

ontrols

 Operands Dispatcher

Fig. 2. The Reconfigurable Cell

The I/O interface includes two pairs of data/address input ports, two output data
ports, a single output address port, a configuration port, and additional interface signals
needed to synchronize communication between the RCs. As visible in Figure 2, the

162 M. Lanuzza, S. Perri, and P. Corsonello

main building elements of the circuit are: a 256*8-bit SRAM acting as an internal data
buffer; an 8-bit Processing Element (PE); and a Control Unit incorporating the
Configuration Memory.

As explained above, MORA is proposed to efficiently support high-throughput
multimedia applications, in which the most frequently required operations are
addition, subtraction, accumulation, multiplication and multiply-accumulation.
Possible low-area and low-power architectures of PEs able to support some of these
arithmetic operations are those presented in [14] and [15]. The latter do not appear as
the most appropriate for use in MORA, because they require two clock cycles for
performing a 8x8 multiplication (thus limiting the achievable throughput), and do not
support the multiply accumulation. For these reasons, the novel PE depicted in Figure
2 has been purpose-designed for MORA.

The proposed PE consists of I/O registers, two 8x4-bit multipliers, an addition
stage and some auxiliary logic needed for data exchange between the arithmetic
blocks. This simple structure allows performance of single clock cycle 8-bit
operations by exploiting hardware reuse.

The Control Unit is responsible of all the RC operations. It includes a
Configuration Memory containing the program (it consists of up to 16 vector/block
instructions, which are loaded during the configuration phase of the system) to control
the RC elaboration, an Instruction Counter, an Instruction Decoder, and a Handshake
Control Logic. The Instruction Counter is used to sequentially step through the
configured instructions. The Instruction Decoder generates the configuration signals
for the PE at run-time. The Addresses Generator produces input and output
addressing patterns, whereas the Handshake Control Logic manages the
communication between the RCs of the array.

Each configured instruction defines the execution of vector/block operations on a
large data stream. In order to enable this feature, the instructions consist of different
fields: the op_code specifies the operation code; the #ops specifies the number of the
operations to be performed in the current instruction; the address descriptors specify
the operands organization in the memory. The address descriptors are used by the
Internal Address Generator to establish the appropriate memory addresses to be used
for both operands and results during the execution of a given vector/block instruction.

Each RC has two possible operative states: loading and executing. When the RC is
in the loading state, packets of data can be inputted through one or both input ports to
and then stored in the internal SRAM. The latter is dual-ported, thus enabling two

RAM

PE

RAM

PE

RAM

PE

RAM

PE

 (a) (b) (c) (d)

Fig. 3. Functionality of the reconfigurable cell: a) feed-forward mode; b) feed-back mode; c)
route-through mode; d) route-through mode (double throughput)

 MORA: A New Coarse-Grain Reconfigurable Array 163

independent write or read operations per clock cycle. Only when all the required
operands are available, the RC switches to the executing state.

As illustrated in Figure 3, when the generic RC is in the executing state, it can
operate in four different modes. In the feed-forward mode, the packets of data coming
from the internal memory are elaborated by the PE and produced results are
dispatched to one or more RCs using one or both the output data ports. In the feed-
back mode, elaboration results are internally stored to be used by the same cell for
future computations. Note that, each RC can be used also as a route-through cell. This
operation mode is particularly useful to simplify the application mapping process.

The designed RC has some aspects in common with the MATRIX Basic
Functional Unit [7], mostly concerning the top-level organization. On the contrary,
the circuital implementation and the controlling strategy are quite different. Anyway,
the proposed system strongly differs from MATRIX [7] from an architectural point of
view, especially considering the array organization and the interconnection topology.

2.2 The Interconnections Topology

In order to allow the greatest applicability and the expandability of the new
reconfigurable array, a custom interconnection network has been designed. As shown
later, the interconnection structure is highly flexible and easily scalable. Similar to
commercial FPGAs, all routing resources are static, thus the communications between
the RCs are determined during the “configuration phase” of the system and cannot be
changed at run-time. This choice does not require a centralized routing controller with
benefits in terms of performance and area.

The proposed interconnection scheme consists of a hierarchical reconfigurable
network organized on two levels, each routing 8-bit data and address buses plus the
needed synchronization signals.

Switch
Bus

Read Cell

Write Cell

Read/Write
Cell

neighbor interconnections

EW

N NE

SW S SE

NW

interleaved interconnections

(a) (b)

Fig. 4. Interconnections topology: a) the level 1 interconnection scheme; b) the level 2
interconnection scheme

164 M. Lanuzza, S. Perri, and P. Corsonello

The level 1 interconnections are used within each 4x4 quadrant. As depicted in
Figure 4a, these interconnections provide nearest neighbours with horizontal, vertical
and diagonal connectivity. Interleaved horizontal and vertical connectivity with length
two is also furnished. However, each RC can receive input data from at most two cells
(one for each input port) and it can send output data to at most four cells (two for each
output port). Although bidirectional communication is more flexible, a unidirectional
(with cyclic continuation at borders) approach has been used to reduce area
occupancy and power consumption.

Data and controls exchange between the quadrants is guaranteed by the level 2
interconnections scheme that, as depicted in Figure 4b, is a combination of long
unidirectional buses and Programmable Bus Switches. Note that access to global
buses is allowed only to peripheral cells of the quadrants. This greatly simplifies the
structure of the communication network inside the quadrants with consequent
advantages in terms of occupied area and power dissipation.

It is worth noting that the adopted interconnection strategy makes the
reconfigurable array easily scalable by hierarchical extending the level 2
interconnection scheme, thus remaining still cost- and power-efficient.

ExecuteLoad ExecuteLoad ExecuteLoad

ExecuteLoad ExecuteLoad ExecuteLoad

ExecuteLoad ExecuteLoad Load M

Load RC(i-1)

RC(i)

RC(i+1)

RAM(i-1)

PE(i-1)

RAM(i)

PE(i)

RAM(i+1)

PE(i+1)

L(i-1)

LM(i-1) LP(i-1)

L(i)

LM(i) LP(i)

L(i+1)

LM(i+1) LP(i+1)

Fig. 5. Block-level pipelining of the data flow

3 The Computational Model

Applications running on MORA can achieve a very high performance by exploiting
parallelism on different levels. First of all, the RC’s structure enables complex tasks
execution exploiting block level pipelining parallelism. Additionally, many parallel
elaboration data flows can be mapped within several portions of the array.

As is illustrated in Figure 5, block-level pipelining is the natural elaboration model
supported by the proposed architecture. The computation is organized in concurrently
executing block-level pipelining stages where each stage is implemented by a single
RC. The generic RC(i) elaborates its internal data and produces an output data frame
which is transferred at run-time to RC(i+1). Only when all the required input data are
internally available, the RC(i+1) can start its execution phase producing data for the
subsequent processing stage. Note that RC(i)’s elaboration and RC(i+1)’s data
loading are always overlapped. As a consequence, the latency LM(i+1) due to the data

 MORA: A New Coarse-Grain Reconfigurable Array 165

loading into the memory space of RC(i+1) is always hidden by the processing latency
LP(i) of the previous cell. It is important to point out that, through the block level
pipelining, three key objectives are achieved. First, it is possible to maintain
concurrency of each processing stage while providing correct synchronization in data
exchange between the RCs; second, since control signals and elaboration data become
local, higher performances can be achieved by minimizing routing; third, thanks to
the data storage distribution, a high memory bandwidth is also guaranteed.

Another important feature of the proposed architecture is the flexibility offered in
balancing the computational load of the RCs involved in the elaboration.

As illustrated in Figure 6, two strategies can be exploited (also simultaneously) to
balance the computational load of a given RC: spatial computational load balancing
achieved via data parallelism; temporal computational load balancing achieved by
increasing the number of block pipelining stages.
Note that increasing the number of block-level pipelining stages introduces an
additional latency LT due to the transfer of unprocessed data. This technique is always
applicable whereas exploiting spatial computational parallelism is constrained by the
viable input/output cell ports (two only input/output ports are available per cell).

RAM(1)

PE(1)

RAM(2)

PE(2)

RAM(3)

PE(3)

RAM(1)

PE(1)

RAM(2)

PE(2)

RAM(3)

PE(3)

RAM(4)

PE(4)

RAM(2)

PE(2)

RAM(3)

PE(3)

RAM(4)

PE(4)

RAM(1)

PE(1)

LP(1)

LP(2)

LP(3)

LP(1)

LP(2)/2 +LT

LP(2)/2+LT

LP(4)

LP(1)

LP(2)/2

LP(3)

LP(2)/2

 (a) (b) (c)

Fig. 6. Examples of computational load balancing on the application basis where LP(2)/2 >>
LP(1), LP(3) a) Straightforward application mapping (throughput=LP(2), app. latency= LP(1) + LP(2)

+ LP(3)) b) Temporal computational load balancing (throughput=LP(2)/2+LT, app. latency= LP(1)
+ LP(2) + LP(3) +2LT) c) Spatial computational load balancing (throughput=LP(2)/2, app. latency=
LP(1) + LP(2) /2 + LP(3))

4 Application Mapping Results

In order to validate the proposed architecture, a parametrical software circuit emulator
was designed. As a benchmark, three computationally demanding tasks belonging to
our target application domain were considered. The first one is the YCrCb to RGB
color space conversion necessary in many video applications. The second task is a 2D
separable filtering with many applications in medical imaging systems. Finally, the

166 M. Lanuzza, S. Perri, and P. Corsonello

third application is the 2D-DCT which is extensively used for image and video
compression purposes. For each of the considered applications, two solutions were
evaluated. The first one leads to a low-area implementation, whereas the second one
is optimized for high throughput elaboration. In the following they are labeled as LA
and HT, respectively. However, owing to the high flexibility offered by the new
architecture in balancing the computational load of a given elaboration, some other
mappings are possible to achieve the targeted resource-performance trade-off.

LA and HT implementations carried out using MORA were compared to core
generated circuits optimized for the XILINX Virtex-4 devices family [16].
Implementations within a XILINX XC4VLSX200 device with -11 speed grade were
analyzed using the Integrated Software Environment (ISE) 7.1. Throughputs and
occupied resources are summarized in Table 1. Considering that the CORE Generated
circuits often offer the best achievable area-speed trade-off, comparison results
demonstrate that MORA is very competitive. In fact, for all the evaluated
benchmarks, MORA can always reach throughput higher than its counterpart.

Table 1. Resources usage/performance trade-off comparisons: MORA to Virtex-4 FPGA

MORA Virtex-4 FPGA
Resources

Algorithm
Reconfigurable

Cells
(#PEs/Mem.[Kbit])

Throughput
[Samples/cycle] #Slices #Block

Rams

Throughput
[Samples/cycle]

7/14 (LA) 0.32 Color Space
Conversion 16/32 (HT) 0.95 436

2
(36 kbit) 0.85

12/24 (LA) 0.60 2D separable
4x4 FIR 20/40 (HT) 0.90 440

2
(36 kbit) 0.64

15/30 (LA) 0.57 2D-DCT
(8x8) 25/50 (HT) 0.92 786

3
(54 kbit) 0.85

Comparisons with FPGAs were made also in terms of silicon area occupancy and

computational time. Clock speeds achieved by the FPGA implementations were
evaluated through static timing analysis. On the contrary, their silicon area occupancy
was evaluated considering that the generic Virtex4 slice implemented with a 90nm
CMOS technology process occupies about 3442 µm2 [17]. The silicon area occupied
by the generic 18Kb block RAM in the referenced FPGA device was also measured.
To this aim, a 18Kb memory module was purpose-implemented with the commercial
ST 90nm CMOS technology. It was found that the generic block RAM occupies a
silicon area of about 71356 µm2. Also the generic RC used in MORA has been
implemented using the ST 90nm CMOS technology. A critical path delay of about 1.5
ns and area occupancy of 37900 µm2 were measured by Synopsys Design Compiler.

Figure 7 demonstrates that MORA always exhibits silicon area occupancy lower
than FPGAs. This advantage comes from the use of high silicon-efficient domain-
specific data-paths and small distributed memories, instead of fine-grained logic and
relatively large embedded block memories. It is worth underlining that, data reported
in Figure 7 do not include the area occupancy due to routing resources. However, as
discussed in Section 3.2, MORA uses much less complex interconnections schemes
than FPGAs. Therefore, it can be expected that for FPGAs the area overhead owing to
routing resources is much higher than MORA.

 MORA: A New Coarse-Grain Reconfigurable Array 167

Figure 8 shows that the proposed HT implementations always outperform the
optimized FPGA circuits. In particular, for color space conversion, 2D separable FIR
and 2D-DCT algorithms the circuits realized with MORA are about 6, 7 and 4.6 times
faster, respectively, than their FPGA counterparts. Also the LA implementations are
up to 4.6 times faster than FPGAs.

0,0

0,2

0,4

0,6

0,8

1,0

Color Space Conversion 4x4 Separable FIR 2D-DCT

MORA_LA

MORA_HT

FPGA

0

1

2

3

4

5

6

7

Color Space Conversion 4x4 Separable FIR 2D-DCT

MORA_LA

MORA_HT

FPGA

 Fig. 7. Normalized Area Comparison Fig. 8. Normalized Performance Comparison

Figure 9 shows a comparison in terms of performance per area. The HT
implementation reaches the best performance-area trade-off for color space
conversion, whereas the LA implementations exhibit the best performance-area trade-
off for the other two considered applications.

The high-level evaluations discussed above demonstrate potential significant
advantages over commercial FPGAs. Even larger benefits are expected once the new
architecture is fully implemented.

0

2

4

6

8

10

12

14

16

18

Color Space Conversion 4x4 Separable FIR 2D-DCT

MORA_LA

MORA_HT

FPGA

Fig. 9. Normalized Performance/Area Comparison

5 Conclusions

In this paper a new coarse-grain reconfigurable array for high-throughput multimedia
processing has been presented. The architecture has been evaluated in terms of perfor-
mance and area occupancy for several image processing algorithms. Results demons-
trate impressive advantages with respect to conventional FPGA implementations.

168 M. Lanuzza, S. Perri, and P. Corsonello

References

1. Hartenstein, R.: A Decade of Reconfigurable Computing: a Visionary Retrospective. In:
Proc. of Design, Automation and Test in Europe (DATE), pp. 642–649, March 13-16,
2001 Munich, Germany (2001)

2. Ristimaki, T., Nurmi, J.: Reconfigurable IP blocks: a survey. In: Proc. of Int. Symp. on
System-on-Chip (SoC), pp. 117–122, November 16-18, 2004 Tampere, Finland (2004)

3. Marshall, A., Stansfield, T., Kostarnov, I., Vuillemin, J., Hutchings, B.: A reconfigurable
arithmetic array for multimedia applications. In: Proc. of Int. Symp. on Field-
Programmable Gate Arrays (FPGA), pp. 135–143, February 21-23, 1999 Monterey,
California, USA (1999)

4. Schmit, H., Whelihan, D., Tsai, A., Moe, M., Levine, B., Taylor, R R.: PipeRench: A
virtualized programmable datapath in 0.18 micron technology. In: Proc. of the IEEE Conf.
on Custom Integrated Circuits (CICC), pp. 63–66, May 12-15, 2002 Orlando, Florida,
USA (2002)

5. Cronquist, D.C., Fisher, C., Figueroa, M., Franklin, P., Ebeling, C.: Architecture design of
reconfigurable pipelined datapaths. In: Proc. of 20th Anniversary Conf. on Advanced
Research in VLSI (ARVLSI), pp. 23–40, March 21-24, 1999, Atlanta, Georgia, USA (1999)

6. Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N., Filho, C.: MorphoSys: an
integrated reconfigurable system for data-parallel and computation-intensive applications.
IEEE Transactions on Computers 49(5), 465–481 (2000)

7. Mirsky, E., DeHon, A.: MATRIX: A Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable Resources. In: Proc. of the IEEE
Symp. on FPGAs for Custom-Computing Machines (FCCM), Napa, California, USA,
April 17-19, 1996, pp. 157–166 (1996)

8. Miyamori, T., Olukotun, K.: A Quantitative Analysis of Reconfigurable Coprocessors for
Multimedia Applications. In: Proc. of the IEEE Symp. On FPGAs for Custom-Computing
Machines (FCCM), Napa, California, USA, April 14-17, 1998, pp. 2–11 (1998)

9. Veredas, F.J., Scheppler, M., Moffat, W., Bingfeng, M.: Custom implementation of the
coarse-grained reconfigurable ADRES architecture for multimedia purposes. In: Proc. of
15th Int. Conf. on Field Programmable Logic and Applications (FPL), Tampere, Finland,
August 24-26, 2005, pp. 24–26 (2005)

10. Elixent Ltd. http://www.elixent.com
11. Motomura, M., Dynamically, A.: Reconfigurable Processor Architecture, Microprocessor

Forum, October 10,2002, California, USA (2002)
12. Baumgarte, V., Ehlers, G., May, F., Nuckel, A., Vorbach, M., Weinhardt, M.: PCT-XPP A

Self-Reconfigurable Data Processing Architecture. The Journal of Supercomputing 26(2),
167–184 (2003)

13. MathStar™, http://www.mathstar.com/products.html
14. Lanuzza, M., Perri, S., Margala, M., Corsonello, P.: Low-cost fully reconfigurable data-

path for FPGA-based multimedia processor. In: Proc. of 15th Int. Conf. on Field
Programmable Logic and Applications (FPL), Tampere, Finland, August 24-26, 2005, pp.
13–18 (2005)

15. Lanuzza, M., Margala, M., Corsonello, P.: Cost-effective low-power processor-in-
memory-based reconfigurable datapath for multimedia applications. In: Proc. of Int.l
Symp. on Low Power Electronics and Design (ISLPED), San Diego, California, USA,
August 8-10, 2005, pp. 161–166 (2005)

16. Virtex-4 User Guide, http://www.xilinx.com
17. Ebeling, C., Fisher, C., Guanbin, X., Manyuan, S., Liu, H.: Implementing an OFDM

receiver on the RaPiD reconfigurable architecture. IEEE Transactions on Computers
53(11), 1436–1448 (2004)

FPGA Design Methodology for a
Wavelet-Based Scalable Video Decoder

Hendrik Eeckhaut, Harald Devos, Philippe Faes,
Mark Christiaens, and Dirk Stroobandt

Ghent University, ELIS, Parallel Information Systems
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
Hendrik.Eeckhaut@elis.UGent.be

Abstract. Client-side diversification led the video-coding community to develop
scalable video-codecs supporting efficient decoding at varying quality levels.
This scalability has a lot of advantages but the corresponding decoding algorithm
is complex and really stresses the system bandwidth as it replaces the block-
based DCT-approach with frame-based wavelets. This has a tremendous impact
on the hardware architecture. We present the implementation of the RESUME de-
coder using reconfigurable hardware designed through the use of state-of-the-art
HW/SW-codesign techniques. These techniques were augmented with automatic
loop transformations and regression testing. Our efforts resulted in a design ca-
pable of decoding more than 25 frames per second at lossless CIF resolution.

1 Introduction

The RESUME1 project [1] explores the benefits of using reconfigurable hardware for
the implementation of scalable multimedia applications by building an FPGA imple-
mentation of a scalable, wavelet-based video decoder. The term ‘scalable video’ refers
to a coding scheme that can easily accommodate changes in a QoS-level (Quality Of
Service) with minimal computational overhead. A scalable video stream can be decoded
at varying frame rates, resolutions and image quality by skipping redundant parts in the
video stream, only decoding those parts that will contribute to the displayed video.

In SAMOS-IV [10] we explored the performance and resource requirements of RE-
SUME’s scalable wavelet-based video decoder through analytical means. We predicted
that modern FPGAs would offer enough computational power but managing the mem-
ory bandwidth would be really challenging. In this paper we present the applied design
methodology and the actual implementation results.

In the remainder of this paper we present an overview of the scalable video coding
algorithm and the system specification for the decoder in Section 2. We elaborate on our
design methodology, architecture, software and decisions in Section 3. We emphasize
the importance of testing in Section 4 and illustrate the magnitude and complexity of
our design by enumerating the applied design automation tools in Section 5. Finally,
Section 6 summarizes the implementation results and Section 7 concludes this paper.

1 Reconfigurable Embedded Systems for Use in Scalable Multimedia Environments.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 169–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 H. Eeckhaut et al.

PDWTMEIn AEMS
WEE

DP

QoS Adaptation & Transmission

ADMS
WED

IDWTMCOut

Encoder

Decoder

Fig. 1. High-level overview of the video encoder and decoder

R
1

R
2

H
8

H
4

H
12

H
2

H
6

H
10

H
14

H
1

H
3

H
5

H
7

H
9

H
11

H
13

H
15

1
Frames/GOP

2

4

8

16

Fig. 2. Temporal scalability. Motion estimation processes one GoP (Group of Pictures) consisting
of 16 consecutive frames. The arrows illustrate which frames are used as a first approximation of
the intermediate frames at lower compositional levels. R1 is the reference frame of this GoP, R2

is the reference frame of the next GoP and the Hi are the intermediate frames.

2 System Overview and Specifications

The algorithmic structure of the RESUME scalable video encoder is shown at the top
of Figure 1 and is described in [6,10]. The encoder consists of the following parts:

ME: “Motion Estimation” [8] exploits the temporal redundancy in the video stream by
looking for similarities between adjacent frames. To obtain temporal scalability (i.e. ad-
justable frame rate), motion is estimated in a hierarchical way as illustrated in Figure 2.
This dyadic temporal decomposition enables decoding of the video stream at different
frame rates. The decoder can choose up to which (temporal) level the stream is decoded.
Each extra level doubles the frame rate.

An intermediate frame is predicted from its reference frames by dividing it into mac-
roblocks and comparing each macroblock to macroblocks in the reference frames. The
relative positions of the macroblocks in the reference frames with respect to the inter-
mediate frame are stored as motion vectors. The difference between the predicted and
the original frame is called an “error frame”.

DWT: The “Discrete Wavelet Transform” takes a reference or error frame and separates
the low-pass and high-pass components of the 2D image. Each LL-subband is a low
resolution version of the original frame. The inverse wavelet transform (IDWT) in the
decoder can stop at an arbitrary level, resulting in resolution scalability.

WEE: The “Wavelet Entropy Encoder” [6] is responsible for entropy encoding the
wavelet transformed frames. The frames are encoded bit layer by bit layer (from most
significant to least significant), yielding progressive accuracy of the wavelet coefficients

FPGA Design Methodology for a Wavelet-Based Scalable Video Decoder 171

Fig. 3. Quality scalability: the wavelet transformed frames are displayed as height fields (height=
absolute value of the wavelet coefficient). Decoding more bit layers gives a more accurate
wavelet-transformed frame. The different subbands are illustrated for the lowest quality wavelet
image. The distortions of the decoded images are slightly exaggerated for visual clarity.

(Figure 3) which results in quality scalability. The WEE itself consists of two main
parts: the “Model Selector” (MS) and the “Arithmetic Encoder” (AE). The MS provides
the AE with continuous guidance about what type of data is to be encoded by selecting
an appropriate statistical model for the symbol (a bit) that has to be encoded next. It
exploits the correlation between neighboring coefficients in different contexts. Finally
the AE performs the actual compression of the symbol stream.

P: The “Packetizer” packs all encoded parts of the video together in one bit stream
representing the compressed video.

Scalability in color depth is obtained by encoding luminance and chrominance infor-
mation in three different channels in the YUV 4:2:0 format. Omitting the chrominance
channels yields a grayscale version of the sequence, allocating more bits to these chan-
nels increases the color depth. Motion estimation is computed from luminance infor-
mation only, but is also applied to the chrominance channels. In the other parts of the
algorithm the channels are processed totally independently.

By inverting the encoding operations we obtain the scalable video decoder illus-
trated at the bottom of Figure 1. It consists of three major blocks: a WED (Wavelet
Entropy Decoder), an IDWT (Inverse Discrete Wavelet Transform) and a MC (Motion
Compensator). Similar to the WEE, the WED consists of a MS and an AD (Arithmetic
Decoder). This paper focuses on the hardware implementation of the decoder.

The design goals of our implementation were real-time, lossless decoding of CIF-
sequences (352×288 pixels) at 25 frames per second. The available hardware platform
was an Altera PCI high-speed development board [2] equipped with a Stratix S60 FPGA
plugged into a standard PC with two monitors, one dedicated to displaying the decoded
video, the other to interact with the system.

3 Implementation

This section elaborates on the implementation of our design. First it gives an overview
of our design methodology. Next it presents an overview of the architecture (both in

172 H. Eeckhaut et al.

hardware and in software). Finally, it illustrates some trade-offs we made and explains
our clocking scheme.

3.1 Methodology

Implementing a complete video decoder is a complex undertaking that requires careful
planning. The following methodology was applied to the project. As a first step, the en-
tire code base was cleaned-up and we made sure that the algorithms used were properly
understood. At this point, it was clear to us that the entire decoder was too complex
to completely implement in reconfigurable hardware. As a consequence, we chose to
use a HW/SW-codesign approach leaving as much of the algorithm as possible in SW
running on a CPU while implementing the time-critical parts in reconfigurable HW.

Locating the time-critical parts was performed through extensive profiling. The re-
sulting HW/SW-partitioning was evaluated further: since the design would need to fit
on a PCI-plugin board, it was crucial that the bandwidth requirements over the PCI-bus
between the HW and the SW could be met. This led us to the decision to move ad-
ditional functionality from SW to HW so that in essence the partially decoded video
stream (which constitutes the bulk of the data bandwidth) could stay on the PCI-card
and did not need to cross the PCI-bus.

Having established a HW/SW-partitioning, we encapsulated the HW parts into Sys-
temC blocks. The data structures used in these blocks had a number of drawbacks:
substantial amounts of floating-point code was used and certain data structures where
too irregular for efficient hardware implementation.

Prior experience taught us that too many resources would be required for floating-
point computation. SystemC support for the use of fixed-point arithmetic (with con-
trollable accuracy) was used to replace all floating-point arithmetic and to establish the
required accuracy. It turned out that moderate accuracy (e.g., 18 bit for the representa-
tion of the wavelet coefficients) would suffice to reach perfect decoding performance.

Next we converted the C-code of the decoder to Java. The reason for this is that
Java tools provide excellent support for the substantial refactoring we foresaw in order
to cleanly encapsulate the HW components from the rest of the code. We developed
a library (called mmregion) and a communication protocol for performing commu-
nication between the SW and HW parts of the design. This library functions as an
abstraction layer between HW and SW (bridge pattern). The advantage is that SW and
HW can be interchanged readily. As such, different implementations of the HW func-
tionality can be interchanged as the need arises: high-level SW mock-ups, RTL-VHDL
version in co-simulation or direct communication with live hardware are all supported.

We built VHDL Avalon components for the use in Altera’s SOPC (System-On-a-
Programmable-Chip) framework for each of the components. Once these components
passed the tests in simulation, we moved to actual hardware.

When the individual components passed the HW tests, we developed an SOPC de-
sign containing all HW components. In addition, we replaced the mock-up objects in
the control SW by code that directly drives the HW design resulting (after many hours
of careful debugging) in a working decoder.

FPGA Design Methodology for a Wavelet-Based Scalable Video Decoder 173

3.2 Architecture

In order to move from a pure software version of the video decoder to a hardware
accelerated HW/SW-codesign, we refined the basic structure at the bottom of Figure 1
to the architecture shown in Figure 4.

The main control over the decoder still resides in the CPU. It drives an Altera Stratix
development board that is connected to the PCI bus. The development board is equipped
(among others) with an Altera Stratix S60 FPGA and 256 MiB of DDR SDRAM mem-
ory. On the FPGA, the entire decoding pipeline is implemented. The pipeline is fed by
the CPU who copies coded video data into the DDR memory where it is consumed by
the decoding pipeline. The pipeline consists of a WED, an AS (ASsembler), an IDWT,
a MC and a CC (Color Convertor). After decoding the video, the resulting data is trans-
ferred from the on-board DDR to an NVidia GeForce 5200 VGA card on the PCI bus.

As can be seen in Figure 4, the software architecture (Figure 1) was substantially
modified. For example the entropy decoder was split into three main components: MS,
AD and AS. The partitioning into MS and AD was performed to keep the design man-
ageable. In addition the MS and AD no longer produce ready-made wavelet frames but
instead they construct individual bit layers of the wavelet frames. The AS was intro-
duced to reconstruct the wavelet frames from the individual bit layers produced by the
MS and AD. The use of the AS substantially improves the memory bandwidth.

Functionally, the IDWT and the MC are identical to their software counterparts. The
frames produced by the MC are in YUV format and the visualization of the frames
occurs in RGB mode. Therefore, the frames need to be converted from the YUV to the
RGB color space. This is the responsibility of the CC.

Another notable difference in the hardware architecture is that communication be-
tween the components of the decoding pipeline occurs explicitly through the use of
DDR SDRAM. This is caused by the fact that the S60 FPGA does not house sufficient
memory to buffer the intermediate results of the decoding process, forcing off-chip
buffering. Of course, this results in large bandwidth requirements between the DDR
and the FPGA. To alleviate this problem, much of this communication occurs through
the use of DMA transfers in efficient burst mode. In Figure 4 dashed arrows indicate
that the communication goes via the DMA engine, the continuous arrows indicate direct
communication between the component and the DDR.

Fig. 4. Overview of hardware architecture of the RESUME coder. Continuous lines indicate direct
(master) write transfers, dashed lines indicate DMA (slave) transfers.

174 H. Eeckhaut et al.

3.3 Control Software

RESUME’s control software was written using Java. Although somewhat uncommon,
the choice for Java for hardware development has a substantial advantage (on top of the
classical advantages for software development). When developing a complex hardware
application, a large fraction of the effort is located in refactoring the code: cleaning up,
encapsulating components, modifying data types, . . . Modern Java development tools
provide excellent support for this process through extensive refactoring capabilities.

Since the control software did not constitute our core business, its main design cri-
teria were correctness and simplicity. The basic design of the control software is a
processing pipeline consisting of control objects and FIFOs. The control objects are
responsible for sending commands to the corresponding hardware components and to
process their results. They communicate with each other through the use of FIFOs.

The control object at the head of the pipeline is responsible for parsing the basic
structure of the coded video stream and submits jobs, based on the stream, into the FIFO
of the next component which processes the job and so on. The FIFOs are responsible
for flow-control between the components of the pipeline. All communication between
control objects and hardware occurs asynchronously. When a control object has no more
work to do it simply passes control (through a priority-based round-robin scheduler) to
the next control object. An improvement to the design might be to use interrupts instead
of polling, but currently the decoder performs sufficiently well.

3.4 Trade-Offs

As in all designs some trade-offs had to be made.

Line-Based IDWT (area vs. design time): Initially, a manual design of a Row-Column-
based IDWT was made, but its bandwidth requirements could not be met. Therefore,
loop transformations to improve the data locality were performed on the original algo-
rithm using the WRaP-IT/URUK tool set [4]. We wrote CLooGVHDL, a back-end to
this tool [5], to generate control hardware from the internal polyhedral representation
used by this tool set. Currently, only parallelism within statements is supported. The
data path was generated semi-automatically as it does not depend on the transforma-
tions. After comparing several generated variants, one was selected to be extended with
a memory hierarchy and integrated in the decoder. The semi-automatic generation of
the hardware resulted in a huge reduction of the design time but comes with a large area
cost, mainly due to excessive use of multiplexers.

Wavelet Entropy Decoder (area vs. execution time): The WED has to produce ap-
proximately 50 million decoded symbols per second. Because of its sequential nature
it was very hard to design an efficient hardware implementation that could reach this
decoding rate. But by denormalizing look-up tables and speculating on multiple levels,
we managed [6] to produce one decoded symbol per clock cycle (at max. 60 MHz on
the S60). This way we use some extra memory and logic in exchange for throughput,
small latency and predictability.

Memory Alignment (memory space vs. bandwidth): To fully exploit the bandwidth
boost of using DMA for DDR-memory transfers, we sacrificed some memory as padding

FPGA Design Methodology for a Wavelet-Based Scalable Video Decoder 175

to align all data objects to 128-bit addresses. Since we have more than enough DDR-
memory available (256 MiB), this was a very straightforward decision to make.

3.5 Clocking Scheme

With such a diverse set of hardware components in the design, some components differ
substantially from others with respect to their maximum clocking frequency. In order to
accommodate this, the design is subdivided into multiple clock domains. The PCI-core
runs partially with an external clock at 66 MHz, the DDR core at 65 MHz and each of
the hardware components in the video pipeline can run at its own clock speed. Thanks
to the use of SOPC Builder this can be achieved fairly easily by assigning different
clocks to each of the Avalon components.

In addition, many of the hardware components use DMA to transfer large blocks of
data between the DDR memory and local dual-port memories. Using DMA has the ad-
vantage that burst transfers are enabled and that there are fewer masters communicating
with the DDR which is beneficial to the clock speed. The DMA engine transfers data to
and from the dual-port memories using one access port while the hardware component
uses the other. After some experimenting, we noticed that it is highly beneficial to have
the two memories involved in the DMA transfer run at the same clock speed. There-
fore, hardware components that use DMA are subdivided into two clock domains. The
DMA side of the dual-port memories runs at the DDR clock speed while the rest of the
component runs at its own optimal speed. Clock boundary crossing is then performed
partly by the SOPC infrastructure and partly by the dual-port memories.

4 Testing

Thanks to our software engineering background we avoided the traditional approach of
using tailored scripts and ad-hoc solutions for building and testing our design. Instead
we made use of existing software engineering methods such as test driven development,
code reuse, regression testing and continuous integration. As explained in Section 3.1
we used the bridge pattern to extensively test our components using the same infrastruc-
ture (mmregion) during the entire journey from algorithm to RTL SOPC-component.
By using the same infrastructure at the various levels of abstraction, we prevented the
error-prone process of writing multiple test benches; we only had to scale the length of
our test vectors to accommodate the simulation time span.

In order to automate building and testing, we used the popular Java project manage-
ment tool Maven (2.0) from the Apache Software Foundation. This tool can compile,
test and deploy Java projects. Additionally it tightly integrates with our version control
system, Subversion. We extended Maven with a plug-in to support hardware projects in
the same way as Java projects. A hardware design project describes an entire (FPGA)
chip configuration. The compilation of a hardware design yields an FPGA bit stream,
which is used to configure an FPGA. These projects depend on hardware components,
which they glue together on the FPGA chip. Hardware components are in turn Maven
projects which contain HDL code. Using Maven not only saved us considerable time, it
also made the build process more reliable and reproducible.

176 H. Eeckhaut et al.

We also adopted continuous integration [7,9] to ensure a continuous quality of the
entire hardware project, in particular the quality of the reusable components. During
the lifetime of a component, many enhancements occurred such as introduction of ad-
ditional features or performance enhancements. While each of these enhancements may
consist of a small incremental change, the cumulation of all enhancements is very large.
Likewise the odds of introducing a bug during one modification may be small, but the
odds of introducing a bug over many modifications in the lifetime of a hardware com-
ponent are close to 100%. While the component designer could run regression tests
manually after each code change, we side with the ever increasing number of software
programmers advocating the use of a continuous testing server. The server makes sure
no code change is ever left untested, and it keeps track of failed and succeeded tests.
It makes it easy to confirm whether (and when) a component gets broken. We used
Maven and Continuum for the continuous integration of our designs. Every time a de-
signer checks in a code change in our version control system, the Continuum server
invokes Maven to rerun all relevant tests. These tests are kept as fast as possible to
provide fast feedback to the designer. Every night, a heavier set of regression tests is
applied to the changed code. These tests may include a full system synthesis and a thor-
ough HW/SW co-simulation. If a nightly test breaks, the responsible designers find an
automated e-mail in their in-box.

In addition to our automated and continuous tests which tested functional correctness
of the design, we also had to check the real-time requirements and test performance. To
that end, the control software and the hardware components were instrumented to pro-
vide profiling information on the run-time behavior of the video decoder. The control
software keeps statistics about the execution times of each of the hardware compo-
nents and about the amount of memory allocated at any time to each of the steps in the
processing pipeline. In addition, each of the hardware components was equipped with a
performance counter, counting the number of clock ticks required to finish a command.
Using this profiling infrastructure, execution times of the hardware, communication
overhead and memory consumption can be measured.

5 Design Automation Tools

For our design we used a very wide spectrum of design automation tools. During the
exploration of the decoder algorithm we used SystemC to determine the required ac-
curacy for the floating-point to fixed-point transition. The original C-specification of
the decoding algorithm was converted to Java so that we could use the powerful refac-
toring tools available for the Java language (e.g., Eclipse, Netbeans . . .). This enabled
automatic code transformations that were not feasible to do manually. Furthermore Java
facilitates the use of Apache Continuum. Continuous integration ensured the health of
our code base by building and testing our code on a daily basis. Because the software
blocks were seamlessly replaced by their hardware counterparts, this same infrastruc-
ture could be used during the entire design process. To track our code we used the
version control system Subversion.

For the RTL-description of our design, we used VHDL. All VHDL-code was custom-
built. For the line-based implementation of the inverse discrete wavelet transform we

FPGA Design Methodology for a Wavelet-Based Scalable Video Decoder 177

used the WRaP-IT/URUK tool set to perform loop transformations and the CLooG-
VHDL back-end to generate VHDL-code from the internal polyhedral representation.
All HDL-code (and also some timing annotated net lists) was simulated with Mentor
Graphics ModelSim. The different steps of the decoding pipeline were designed as cus-
tom SOPC-components for Altera’s SOPC Builder tool. SOPC Builder facilitated sys-
tem integration although a number of uncovered problems needed to be circumvented.
For synthesis, place and route of our HDL-code we used Altera Quartus II 6.1. For
hardware debugging we used Altera’s SignalTap II for on-chip logic analysis but also
some traditional logic analyzers and oscilloscopes.

6 Implementation Results

The results of synthesizing the design with Quartus 6.1 are described in Table 1. As a
point of reference, a 8-bit, 16-tap parallel FIR filter uses 58 LEs, four 9×9-multipliers
and can be clocked at 133 MHz [3].

Table 1. Resource consumption of the video decoder

Component #LE #9×9 #18×18 #Regs Mem Clk
IDWT 19733 0 9 1978 395752 54
PCI 4284 0 0 1816 23568 65(&66)
WED 4133 1 0 1716 107392 59
AS 2894 0 2 1402 65024 65
MC 2115 0 0 1112 25344 65
CC 1315 0 0 500 36894 65
DDR 1356 0 0 978 4608 65
DMA 767 0 0 313 16384 65
Others 7161 0 0 3448 0 65
Total 43758 1 11 13263 674966

#LE: number of logic elements, #9×9: number of 9-bit multipliers, #18×18: number of 18-
bit multipliers, #Regs: number of 1-bit registers, Mem: bits of on-chip RAM, Clk: the clock
frequency of the component (in MHz).

The substantial system resource usage of the IDWT is a direct consequence of its
automatic generation [5]. Although its external memory behavior is near optimal, its
internal structure is not. In a second iteration of the design, this will be improved. This
component also contains the critical path of the design. The last line of the table, Others,
consists mostly of the Avalon Switch Fabric (Altera SOPC Builder) that interconnects
the different steps of the decoder and takes care of clock domain crossings. In the de-
sign, four clock domains are used: one for the IDWT, one for the WED and one for the
rest of the design. The fourth clock rate is dictated by the PCI bus. More clock domains
are possible but would not contribute to a global higher frame rate since the IDWT is
currently the bottleneck.

With the clock settings of Table 1, the design decodes 26.5 lossless CIF-frames per
second. The maximum usage of the on-board DDR memory is less than 16 MiB. The
largest part (8 MiB) is occupied for buffering the error frames.

178 H. Eeckhaut et al.

7 Conclusions

In the scope of the RESUME project we developed a wavelet-based, scalable video
decoder on a Stratix PCI development board. The design is clocked at multiple clocks
(54-65 MHz) and decodes more than the required 25 lossless CIF frames per second.
Our approach was unique due to the large number of advanced tools and methods we
combined. We adopted a write-tests-first strategy and used well founded engineering
techniques as code reuse, refactoring, regression testing and continuous integration.
We implemented a very high-speed WED capable of decoding one symbol per clock
cycle and added an AS component to resolve bandwidth congestion. We automatically
generated a line-based IDWT using a polyhedral representation of its iteration structure
to tailor the wavelet processing to the specific access pattern of the external on-board
DDR-memory.

Acknowledgment

This research is supported by the I.W.T. Vlaanderen, grant 020174, the F.W.O., grant
G.0021.03 and by GOA project 12.51B.02 of Ghent University. Altera provided de-
velopment boards and tools through the Altera university program. Philippe Faes is
supported by a PhD grant from the I.W.T. Vlaanderen.

References

1. The RESUME: project: Reconfigurable Embedded Systems for Use in Scalable Multimedia
Environments, http://www.elis.UGent.be/resume

2. Altera: PCI Hight-Speed Development Kit, Stratix Pro Edition, 1.1.0 edn. (October 2005)
3. Altera: Stratix Device Handbook (January 2006)
4. Cohen, A., Girbal, S., Parello, D., Sigler, M., Temam, O., Vasilache, N.: Facilitating the

search for compositions of program transformations. In: ACM International Conference on
Supercomputing (June 2005)

5. Devos, H., Beyls, K., Christiaens, M., Van Campenhout, J., D’Hollander, E.H., Stroobandt,
D.: Finding and applying loop transformations for generating optimized FPGA implementa-
tions. Transactions on HiPEAC 1(1), 151–170 (2007)

6. Eeckhaut, H., Christiaens, M., Devos, H., Stroobandt, D.: Implementing a hardware-friendly
wavelet entropy codec for scalable video. In: Proceedings of SPIE: Wavelet Applications in
Industrial Processing III, vol. 6001, pp. 169–179, Boston (October 2005)

7. Fowler, M., Foemmel, M.: Continuous integration (2000) Online at http://www.
martinfowler.com/articles/continuousIntegration.html

8. Munteanu, A., Andreopoulos, Y., van der Schaar, M., Schelkens, P., Cornelis, J.: Control
of the distortion variation in video coding systems based on motion compensated temporal
filtering. In: Proceedings. International Conference on Image Processing, IEEE Computer
Society Press, Los Alamitos (2003)

9. Smith, E.: Continuous Testing. In: Proceedings of the 17th International Conference on Test-
ing Computer Software (2000)

10. Stroobandt, D., Eeckhaut, H., Devos, H., Christiaens, M., Verdicchio, F., Schelkens, P.: Re-
configurable hardware for a scalable wavelet video decoder and its performance require-
ments. Computer Systems: Architectures, Modeling, and Simulation 3133, 203–212 (2004)

http://www.elis.UGent.be/resume
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 179–189, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluating Large System-on-Chip on Multi-FPGA
Platform

Ari Kulmala, Erno Salminen, and Timo D. Hämäläinen

Tampere University of Technology, Institute of Digital and Computer Systems,
P.O. Box 553, Korkeakoulunkatu 1, FI-33101 Tampere, Finland

ari.kulmala@tut.fi

Abstract. This paper presents a configurable base architecture tailorable for
different applications. It allows simple and rapid way to evaluate and prototype
large Multi-Processor System-on-Chip architectures on multiple FPGAs with
support to Globally Asynchronous Locally Synchronous scheme. It allows early
hardware/software co-verification and optimization. The architecture abstracts
the underlying hardware details from the processors so that knowledge about
the exact locations of individual components are not required for
communication. Implemented example architecture contains 58 IP blocks,
including 35 Nios II soft processors. As a proof of concept, a MPEG-4 video
encoder is run on the example architecture.

1 Introduction

The contemporary FPGA chips are large enough to hold complete System-on-Chips
(SoCs). However, architectures that contain tens of processors and other Intellectual
Property (IP) blocks are still too large for a single FPGA. Therefore, a logically single
SoC architecture may need to be divided to several chips for prototyping and to
enable early start in software development.

Traditionally, multiple FPGAs have been utilized in emulators as in [1]. Typical
emulators are expensive and require special synthesis and partitioning tools. In [2], an
industrial example of mapping multi-million gate SoCs on FPGAs is given. The point
of view in that paper is slightly different than in this since the multi-FPGA platform is
used much like an emulator: functional verification and software development.

Table 1 lists few recent publications on FPGA SoC architectures utilizing multiple
processors and possibly multiple FPGAs. The Xilinx FPGA is used in other works
than in this. The notation 3+1 means that there are 3 processors in one board and 1 in
another. The proposed scalable architectures have usually been evaluated using only a
few CPUs. Device and platform independency of the inter-FPGA links with rapid and
effortless adoption have not been considered. For example, using MGT links between
boards means that all FPGAs must have this capability.

This paper shows our scalable, vendor-independent SoC architecture design
method. In particular, we concentrate on how the architecture can be rapidly divided
across several FPGAs for prototyping. The multi-FPGA architecture can be
prototyped with the exactly same program code as the final product and there are only

180 A. Kulmala, E. Salminen, and T.D. Hämäläinen

Table 1. Recent related work on Multiprocessor SoCs on FPGA(s)

Ref # CPUs CPU type #IPs MHz Net. Inter-FPGA link Application
[3] 4 µBlaze 1 80? Shared bus No DWT
[4] 4 µBlaze - 100 p2p No Img. filter
[5] 14 µBlaze - 100 p2p No IPv4 fwd
[6] 3+1 µBlaze - n/a p2p MGT integrated Molec. dyn.

[7] 2+2 N-core - 12.5 Mesh
No details, globally
synchronous

-

This
12+11
+12

Nios II
7+9
+7

50 Hier. bus
Synthesizable,
asynchronous

MPEG-4

µBlaze = Xilinx Micro Blaze, p2p = Point-to-Point interconnect, MGT = Multi-Gigabit Transceivers

minor additions to the hardware. Thus, also the code development can be started in
early phase along with co-verification and optimization. As a proof of concept, we
implemented a Multi-Processor SoC (MP-SoC) MPEG-4 video encoder distributed to
three FPGA boards, comprising 58 IPs, including 35 synthesizable Nios II processors
in three FPGAs. The architecture size and complexity is significantly larger than
typical architectures found in related work. In addition, we performed a study on the
MPEG-4 video encoder architecture communication details.

This paper is structured as follows. The Section 2 reviews our SoC Architecture
design method. An example architecture using this method is illustrated in Section 3
and the hardware is discussed. In Section 4, results are shown and Section 5
concludes the paper.

2 SoC Architecture Design Method

The base of our architecture design method is that the architecture should support
many applications, be scalable, vendor-independent, rapidly upgradeable, and allow
quick prototyping and evaluation. To cope with continuously increasing complexity,
the architecture separates computation from communication and supports Globally
Asynchronous Locally Synchronous (GALS) scheme with arbitrary number of
independent clocks. Software design is simple because the underlying physical
hardware is abstracted so that the IP blocks can view the whole architecture logically
as just one big chip. The communication procedure is always similar no matter how
many boards are utilized, and whether the IPs are on the same board or not. The
mapping of the components to FPGAs is arbitrary and based on designer’s decisions.

The simplified design flow is demonstrated in Fig. 1. In this paper, we follow the
a-branch, prototype design. Most importantly, the design process goes exactly alike
until the platform analysis. Several FPGAs are needed if the prototype of the design
cannot fit to a single FPGA. However, we can use the same configurable architecture
to implement these chips. Only a few parameters need to be set individually to the
boards, such as the bridge configuration. Also, we are not tied to any existing
prototyping platform since the implementation is device independent. The scalability
of the architecture and software can be simply and rapidly evaluated as well as, for
example, different memory configurations, different amounts of IP blocks, or

 Evaluating Large System-on-Chip on Multi-FPGA Platform 181

Architecture design

Product requirement analysis

Implementation with re-usable IP

HW Compilation

Product Platform
Analysis and Mapping

Architecture
configuration

Prototype Platform
Analysis and Mapping

HW Compil. HW Compil.HW Compil.

Architecture configurations

Configurable architecture

ProductFPGA prototype using multiple boards

b) Implementation of the
product

a) Implementation of the
prototype

Simulation (optional)

Fig. 1. The simplified flow of product design using our design method

parallelization schemes. The device-independency and configurability of the
architecture allows comprehensive analysis of the architecture. These are the main
benefits in addition to the practical methods presented in [2].

It is possible to analyze and measure the performance limiting factors with real
platform and application, even if the architecture does not currently fit into a single
FPGA and ASIC has not been produced yet. Arbitrary large designs can be evaluated
rapidly because the number of connected FPGA devices is not limited. In comparison
to emulators, our method is cheaper and more flexible (device-independent, thus not
bounded by platform restrictions because the platform can be easily changed). By
changing the clock frequencies of the components of the architecture, the
performance limits can be identified. For example, one may run IP blocks at 1 MHz
and the interconnection at 100 MHz to approximate the system performance with
(nearly) ideal interconnection. This approach can be used to individually evaluate the
IP blocks so that the optimization efforts can be targeted optimally.

3 Studied Example Hardware Architecture

In order to test our design method, example SoC architecture was developed. First, it
was specified that the scalability and feasibility of our design method will be
evaluated with very large architecture. A test case application is MPEG-4 encoder
[10]. The MP-SoC architecture contains single master processor (M), 34 slave
processors (S), one SDRAM control (SD), one resource manager (RM), 1 HIBI
network monitor (HM), 9 full-pixel motion estimators (ME), and 9 IPs (DQ) that
perform four functions: DCT, Inverse DCT, Quantization, and Inverse Quantization.

182 A. Kulmala, E. Salminen, and T.D. Hämäläinen

ME

SS

RM SD HM M

SS SS SS SS

ME ME DQ DQDQ

S

DQ S SME ME

SS SS SS SS

ME DQ DQ DQ

S

SS S ME ME

SS SS SS SS

ME DQ DQS

HIBI On-Chip Network

FPGA board #0

Stratix II S180

FPGA board #1

Stratix II S180

HIBIHIBI

FPGA board #2

Stratix II S180

HIBI

SoC Architecture

SM RMME DQ SDMaster
CPU

Slave
CPU

Resource
Manager

Full-Pixel
Motion est.

DCT-Q-
IDCT-IQ

SDRAM
control

Legend HM HIBI
Monitor

Mapping to FPGA prototype

bridge bridge
ha

nd
sh

.

ha
nd

sh
.

H
IB

I w
ra

p.

H
IB

I w
ra

p.

H
IB

I w
ra

p.

H
IB

I w
ra

p.

ha
nd

sh
.

ha
nd

sh
.

Fig. 2. The studied architecture

That totals 56 separate IPs. In the mapping phase, also HIBI bridges are added. For
evaluation purposes, we added a HIBI network monitor to each of the buses so the
amount of monitors became 3, thus total of 58 IP blocks were utilized in three boards.

The IPs are interconnected with 32-bit HIBI on-chip network [8] but the
methodology is also generalizable. The architecture is depicted in Fig. 2. After
designing this architecture, the platform was analyzed and mapping of the IP blocks
to FPGA boards was done by the procedure shown in Fig. 3. The memory amount in
each FPGA device was the limiting factor so three FPGA boards were required to
implement this architecture. The chosen criterion of distribution was to balance the
amount of processors and accelerators in each board. The shared memory controller
and RM were located in the board #1.

Compare with
device resources

Determine IP block properties:
• Memory requirements
• Area requirement
• Required clocks
• External I/O requirements

Select the criteria to
distribute the IPs

Configure the
architectures

Fig. 3. The process to determine the initial mapping to multiple FPGAs

It should be noted that no video application specific mapping optimizations were
made because the performance optimizations of the prototype are out of the scope of
this paper.

The used external chips (e.g. memories) and processor configurations are omitted
from Fig. 2 for simplicity. The FPGA board #1 contains also access to the external
peripherals. SDRAM memory is used as shared picture memory. The Ethernet is used
to download frames to be encoded and to upload encoded frames.

Master processor uses external instruction memory and the slave processors are
programmed using Single Program Multiple Data paradigm so they can share
identical memories. Thus, in each board, slaves share a dual-port 128KB on-chip
instruction memory. The processors also have 8KB instruction caches to alleviate the

 Evaluating Large System-on-Chip on Multi-FPGA Platform 183

shared memory contention and 64 KB local data memory. The CPUs use DMA to
transfer the data over HIBI. Also, the SDRAM control contains a special SDRAM
DMA unit to improve the efficiency of memory accesses.

CPUs may request certain functionality via resource manager that selects and
reserves a free hardware accelerator for the requester. This simplifies scaling as the
number of accelerators can be easily modified without affecting the software.
Currently, the location of the accelerator is not considered at the selection. The used
FPGA boards are Altera’s DSP Development Kit Professional Editions, utilizing
Stratix 2S180 FPGA. The architecture is run at 50MHz.

3.1 HIBI Bridge

All agents connect to the bus network by using a synthesizable HIBI wrapper. A bus
bridge is basically constructed from two wrappers. There is fully synchronous (mainly
for on-chip) and an asynchronous bridge that is also suitable for connecting FPGA
boards together. This paper uses the asynchronous one since there is no global clock.
The bridge communication protocol between bridge halves is delay-insensitive so that
totally asynchronous (unrelated) clocks can be used on the connected boards if
required. The synthesizable synchronization technique is presented in [9].

We utilize 40-pin prototyping header connectors available in the FPGA board. The
HIBI bridge properties are summarized in Table 2. The maximum throughput with
data with n=6 bits is 43 Mbits/s for the bridge whereas 32-bit on-chip HIBI achieves
1.6 Gbits/s at 50 MHz. The data that is sent over the bridge includes the 32 bit bus
data and 4 control bits. With six data pins (n=6), 36 bits is chopped to 6 transmissions
of 6 bits each. One transfer takes 6 cycles (36 cycles for 32+4 bit transfer) when the
boards have the same frequency but possibly different clock phases.

Table 2. HIBI Bridge essential properties

Property Value(s)
Control signals 2: request and acknowledge
Signal lines Uni-directional
Protocol Transition-encoded
Data width n, serial or parallel, compile-time adjustable
Clocking Fully Asynchronous, 2 DFF synchronization
HDL Description RT-level
Timing Constrains Data lines cannot have delay over 2x of control lines
Max. throughput (50 MHz, n=6) 43 Mbits/s

4 Results

As a proof of concept, a parallel, highly scalable MPEG-4 video encoder [10] was run
on the platform. Then, the communication of the architecture was studied. A photo of
the platform used is shown in the Fig. 4. It contains the architecture as depicted in
Fig. 2 and the corresponding FPGA boards are marked in the photo.

184 A. Kulmala, E. Salminen, and T.D. Hämäläinen

Bridge 0 1 Bridge 1 2

FPGA board #1FPGA board #0 FPGA board #2

Fig. 4. A photo of the platform used with necessary cabling

4.1 MPEG-4 Video Encoder

A standard CIF sequence salesman (352x288) was used in the measurements. It was
run 10 times for 10 frames for each configuration and the averages were counted. The
encoder works so that the master CPU orders slaves to encode an evenly sized slice of
the current frame. Master does not encode. The image slices are distributed with
macroblock (MB) granularity. A CIF frame has 396 MBs. With high number of
processors (> 22), the parallelization efficiency gets limited due to unbalanced
number of macroblocks per processor.

Fig. 5 shows encoding time of one frame as a function of slave processors. First, 10
slaves in board #1 are utilized, then 12 slaves in board #0, and at last, 12 slaves in
board #2. In the benchmarks, only the three MEs and three DQs residing in board #1
have been utilized. The encoding time gets worse when the number of slaves
increases over 10, just when the first processor on the other board is taken into use.
This clearly indicates that the communication over the bridge becomes a bottleneck.

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

cl
o

ck
 c

yc
le

s
p

er
 C

IF
 fr

am
e

slave CPUs

Elapsed Time with HW acceleration

Elapsed Time with only Software

x106

BOARD #1 BOARD #0 + #1 BOARD #0 + #1 + #2

Fig. 5. Video encoding time for one frame using HW accelerators and with only software

 Evaluating Large System-on-Chip on Multi-FPGA Platform 185

Adding the third board’s processors does improve the performance (22 to 23 slaves)
slightly with HW acceleration. That is because the traffic over the bridge between
boards #1 and #2 is reduced.

HW accelerators drastically increase the bus utilization (totaling up to 30%) due to
increased data fetches to SDRAM. Therefore, software only (utilization max. 9%) is
better than the one with hardware accelerators with multiple boards because the traffic
over the bridges is smaller and the SDRAM is also less utilized.

As of particular interest, we also obtained the HIBI bus usage statistics for each of
the buses (one per board). Due to space limitations, Fig. 6 shows only to segments in
configuration which utilized hardware accelerators. HIBI #1 is the segment where the
master CPU is. In the figure, payload is the necessary application data and control.
Overhead consists of the information that is required to route the data. In HIBI,
overhead consists of an address sent before an arbitrarily long data transfer. Retries
happen when the receiver has been unable to accept data and the previous transfer had
to be interrupted. They are mostly caused by the bridges. Fig. 6 shows how the
amount of retries rapidly increases when the traffic over bridge starts (first time with
11 slaves). The amount of data in HIBI #1 does not decrease because the shared
image memory is in that board. HIBI #0 has higher addressing overhead because the
slow bridge splits the transfers coming from HIBI #1 into short bursts each requiring
an address.

0
5

10
15
20
25
30
35

1 3 5 7 9 11 31 51 7 1 9 1 1 2 32 52 72 9 2 1 3 33

Slave CPUs

HIBI #0 payload
HIBI #0 overhead
HIBI #0 retries

x105

b) HIBI #0

0
5

10
15
20
25
30
35

1 3 5 7 9 11 31 51 71 9 1 12 3 2 5 2 7 2 9 2 13 33

sdro
w b23

Slave CPUs

HIBI #1 payload
HIBI #1 overhead
HIBI #1 retries

x105

a) HIBI #1

Fig. 6. HIBI on-chip bus usage statistics per frame with video encoder using HW acceleration.
A) HIBI #1 (master), b) HIBI #0.

Overall, we were able to rapidly distribute and evaluate the application and
hardware architecture on multiple FPGAs. Only a few person-days of work was
required to implement the architecture on multiple FPGAs after the initial architecture
was designed, taking into account the 6-hour hardware compilation time per iteration.
Also, we were able to test the functionality of the video encoder in reasonable speed.

4.2 Detailed Analysis of the Communication

To evaluate the communication in the architecture, we performed a data transfer
round-trip time testing. Fig. 7 shows the arrangements to measure round-trip time
with software timers. The software was compiled with highest optimization level. It

186 A. Kulmala, E. Salminen, and T.D. Hämäläinen

FPGA #1FPGA #0

C1

FPGA #1

H
IB

I

B
rid

ge

H
IB

I

H
IB

I

FPGA #1 FPGA #2

C1

FPGA #0

H
IB

I

B
rid

ge

H
IB

I

H
IB

I

B
rid

ge

a) b) c)

C
1

C
2

C
2

C
2

Fig. 7. Round-trip time measuring arrangements. A) Within one board (1-board), b) with two
boards (2-boards), c) with three boards (3-boards).

performs no computation on the received data and the data it sent back was from a
pre-defined constant table, thus the time spent in SW is minimal. The purpose is to
break the communication time into individual components. The bus, DMA, bridge,
and CPU IRQ response times were measured using a clock-cycle-accurate logic
analyzer.

The average round-trip times (calculated from 10 000 iterations) are summarized in
Table 3. For 64 bytes, the 1-board (Fig. 7a) is 4.1x faster than the 2-board (Fig. 7b),
and 5.4x faster than 3-board (Fig. 7c) configuration. With 1024 bytes, the 1-board
configuration is 23.4x-24x faster than 2-board or 3-board setups. The bridge crossing
has remarkable effect on performance and it increases with transfer length. The effect
of crossing 2 bridges instead of one, however, only has an insignificant increase in
total time with 1024 byte transfer. This is further explained shortly.

Table 3. The round-trip times to send 64 and 1024 bytes and relative delay increase

1-board 2-boards 3-boards 1-board 2-boards 3-boards 1-board 2-boards 3-boards
Min 657 2 774 3 539 1 579 37 324 38 174 2.4 13.5 10.8
Avg 680 2 800 3 640 1 600 37 520 38 456 2.4 13.4 10.6
Max 746 3 029 3 854 1 673 37 974 39 084 2.2 12.5 10.1

t(1024)/t(64)

clock cyclesclock cycles clock cycles

64 bytes round-trip 1024 bytes round-trip

Fig. 8 shows the round-trip time breakdown for all the configurations. The whole
round-trip is the time elapsing when CPU1 starts to the time when it receives the last
datum back from CPU2. In all the cases, the CPU processing time stays constant.
Total time spent on software (SW), Tx1+Irq2+Tx2+Irq1, is in all cases 605 clock
cycles. For clarity, latency caused by DMA (Tx+Rx totaling about 8 clock cycles) is
added to the bus time. Time spent on hardware (HW), however, varies greatly: from
75 cycles in 1-board case to 2182 and 3026 cycles spent on 2 and 3-board setup,
respectively. In 3-board setup, all the buses and bridges can work in parallel, which
somewhat reduces the total latency.

Fig. 9 shows a detailed, cycle-accurate breakdown of the component activity when
sending 64 bytes forth and back with 3-board configuration. The communication
bottlenecks, namely the bridges, are marked to the figure as limiting. When the bridge
utilization reaches (nearly) 100%, it stalls the bus and DMA transfers repeatedly.

 Evaluating Large System-on-Chip on Multi-FPGA Platform 187

CPU 1 tx bus
CPU 2 IRQ CPU 2 tx
bus CPU 1 IRQ

CPU1_tx 125

bus 38

bridge 1 054

CPU2_irq 177

CPU2_tx 120

bus 38

bridge 1 054

CPU1_tx 184

CPU_1 tx 125

buses+bridges 1513

CPU_2 irq 177

CPU_2 tx 120

buses+bridges 1513

CPU_1 irq 184

0 500 1000 1500 2000 2500 3000 3500 4000
Clock Cycles

1-
bo

ar
d

2-
bo

ar
ds

3-
bo

ar
ds

Fig. 8. Breakdown of sending 64 bytes forth and back in configuration 1-board (top), 2-boards
(middle), and 3-boards (bottom)

Fig. 9. Detailed breakdown of sending 64 bytes in 3-board configuration forth and back with
two CPUs. The bars show how long the component is active.

Therefore, buses and DMAs are active so long although the optimum case takes
only 38 clock cycles in one direction. The bus, however, is not reserved all the
time during the transfer. The utilization of bus is under 2% and the remaining
bandwidth can be used for other transfers. DMA finishes faster than bus since the
DMA fills up the 20-byte transmit buffers at the bus wrapper although the data is
not right away sent over to the bridge. The bridge also buffers 20 bytes of the
incoming data from the bus in the same board, so the bus transfer stops before the
bridge.

These observations encourage to speed-up the bridge communications. For
example, investigations on increasing the clock frequency of the bridges, using more
pins for data transferring, and opting burst transfers are under way.

188 A. Kulmala, E. Salminen, and T.D. Hämäläinen

4.3 Area Utilization

Table 4 summarizes the resource utilization of the components on FPGA board #1.
Adaptive LUT (ALUT) basically contains 4-input LUTs and a flip-flop. The used
Stratix II 2S180 device has 143 520 ALUTs and the architecture consumes 91% of
the capacity. The resource utilization for the corresponding components (e.g. slaves)
in other boards is the same. Most strikingly, the SDRAM DMA logic utilization is
26% of the total. That is because it was decided to add tens of channels to the
SDRAM DMA to improve its performance, because it is being shared to all the
components. CPU area includes the DMA. A HIBI wrapper is required for each
component to connect to HIBI. Again, SDRAM uses a special HIBI wrapper that is
larger.

The HIBI bridges require very small amount of logic in top of the HIBI wrapper,
due to the simplicity of the protocol used. This is in line with our objective that the
prototype implementation means only small additions to the final architecture.

Practically all of the available memory of the architecture is dedicated to the CPUs.
Therefore, all the internal FIFO buffers, for example, have been implemented in logic
instead of utilizing memories. HIBI wrappers and especially SDRAM DMA, for
instance, would be notable smaller with on-chip memories.

Table 4. The architecture area utilization in Stratix II S180 FPGA (board #1)

ALUTs # Total ALUTs % of Total Note.
CPU, Master 5 143 1 5 143 4.0 % Includes 13-channel DMA
CPU, Slave 4 398 10 43 980 33.8 % Includes 12-channel DMA
DQ 2 691 3 8 072 6.2 %
ME 4 502 3 13 505 10.4 %
RM 545 1 545 0.4 %
SDRAM controller 395 1 395 0.3 %
SDRAM DMA 33 485 1 33 485 25.7 % Parameterized for highest performance
HIBI Wrapper a) 840 21 17 630 13.6 % For each component to connect to HIBI
HIBI Wrapper b) 1 858 1 1 858 1.4 % For SDRAM
HIBI Bridge 83 2 166 0.1 % Needs also a HIBI wrapper
HIBI Monitor 5 280 1 5 280 4.1 %
Total (Architecture) - - 130 059 100.0 % 2S180 has 143 520 ALUTs

5 Conclusions

An efficient and rapid method to prototype and evaluate large MP-SoC architectures
has been presented. The method is based on re-usable, flexible, and scalable hardware
architecture. The architecture allows large architecture prototypes that do not fit into
single FPGAs to be easily distributed over to several chips in a device-independent
and platform-independent way. A MPEG-4 video encoder with tens of processors and
other IPs was successfully prototyped using the presented method.

The proposed design method allows using the exactly same software as in the final
product to be used also in the prototype, thus allowing an early start in the software
development. The architecture for the prototype includes only minor additions
compared to the final architecture. Therefore, the evaluation of different
configurations and functionality verification is simple, reliable, and fast. It also allows

 Evaluating Large System-on-Chip on Multi-FPGA Platform 189

testing of different hardware configurations straightforwardly. When combined with
ability to control the clocking of individual components, this configuration allows
analysis of the software and hardware, their co-optimization and co-verification in
early phases of the development.

In the future, the bridge latency will be optimized (wider data, wave-pipelining
etc.) and true GALS (different clocks for boards) operation will be evaluated. In
addition, other applications will be evaluated as well.

References

1. Chang, C., Kuusilinna, K., Richards, B., Brodersen, R.W.: Implementation of BEE: a
Real-time Large-scale Hardware Emulation Engine. In: Proc. FPGA’03, Monterey,
California, pp. 91–99. ACM Press, New York (2003)

2. Krupnova, H.: Mapping Multi-Million Gate SoCs on FPGAs: Industrial Methodology and
Experience. In: Proc. DATE, France, vol. 2, pages 6. IEEE Computer Society Press, Los
Alamitos (2004)

3. Borgio, S., et al.: Hardware DWT accelerator for MultiProcessor System-on-Chip on
FPGA. In: Proc. SAMOS, Samos, pp. 107–114. IEEE Computer Society Press, Los
Alamitos (2006)

4. Mouhoub, R.B., Hammami, O.: System-level design methodology with direct execution
for multiprocessors on SoPC. In: Proc. ISQED, Paris, France, IEEE Computer Society
Press, Los Alamitos (2006)

5. Ravindran, K., Satish, N., Jin, Y., Keutzer, K.: An FPGA-based soft multiprocessor system
for IPv4 packet forwarding. In: Proc. FPL, Tampere, Finland, pp. 487–492. IEEE
Computer Society Press, Los Alamitos (2005)

6. Patel, A., et al.: A Scalable FPGA-based Multiprocessor. In: Proc. FCCM, Napa,
California, pp. 111–120. IEEE Computer Society Press, Los Alamitos (2006)

7. Niemann, J.-G., Porrmann, M., Ruckert, U.: A scalable parallel SoC architecture for
network processors. In: Proc. VLSI, pp. 311–313. IEEE Computer Society Press, Los
Alamitos (2005)

8. Salminen, E., et al.: HIBI Communication Network for System-on-Chip. Journal of VLSI
Signal Processing-Systems for Signal, Image, and Video Technology, vol. 43(2-3), pp.
185–205. Springer, Heidelberg (2006)

9. Kulmala, A., Hämäläinen, T.D., Hännikäinen, M.: Reliable GALS Implementation of
MPEG-4 Encoder with Mixed Clock FIFO on Standard FPGA. In: Proc. FPL, Spain, pp.
495–500. IEEE Computer Society Press, Los Alamitos (2006)

10. Kulmala, A., Lehtoranta, O., Hämäläinen, T.D., Hännikäinen, M.: Scalable MPEG-4
Encoder on FPGA Multiprocessor SOC. EURASIP Journal on Embedded Systems 2006,
15 pages (2006)

Efficiency Measures for Multimedia SOCs

Hartwig Jeschke

Institut für Mikroelektronische Systeme,
Gottfried Wilhelm Leibniz Universität Hannover,

Appelstr. 4, 30167 Hannover, Germany
jeschke@ims.uni-hannover.de

Abstract. This paper discusses efficiency measures for the evaluation
of high performance multimedia systems on a chip (SOC), considering
a throughput rate R, chip size A, power dissipation P, and a flexibility
criterion F. Based on the analysis of recently published multimedia chips,
the paper shows equivalences between the ratio of R over AP, a weighted
sum on 1/R, A, P, and a fuzzy multicriteria analysis on R, A, P. The
paper indicates the fuzzy multicriteria analysis as generalization of the
other efficiency measures, which can be easily applied to multiple cost
and performance criteria. Because of the application of fuzzy set theory,
the multicriteria approach supports quantitative criteria with a physical
background as well as qualitative criteria by linguistic variables.

1 Introduction

Advances in semiconductor technology enable a wide field for the implemen-
tation of complex multimedia systems on a single chip. Because of the high
data volume of continuously processed image sequences (high throughput rate),
the video signal processing part of multimedia applications requires most of the
computational performance. Hence the design of systems on a chip (SOC) for
multimedia frequently must focus on high performance architectures, which sup-
port the specific requirements of video signal processing at reasonable costs of
silicon.

Depending on the specific target application, the best tradeoff on conflicting
design objectives must be found, such as low power, low cost, high computational
performance, high quality of implemented signal processing algorithms and a
high flexibility for processing of different applications on the same hardware.
Mobile communication prefers for low power implementations and low device
costs rather than a high quality by a computation intensive implementation
of all possible features of a video coding standard. Because of highest quality
requirements, video coding of HDTV results in a feature rich implementation
of the processed video coding standard. The complexity of the processed video
coding algorithms and real-time processing of high data volumes result in highest
performance requirements for HDTV, while low power and low cost are less
important. Additional video signal processing applications may emphasize more
on the flexibility for processing of different applications on the same hardware.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 190–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficiency Measures for Multimedia SOCs 191

Problems at early conceptual phases of a new SOC design are the selection of
the most appropriate architecture, e. g. the best matching IP cores, as well as
the parameter optimization of the envisaged target architecture. The selection
of IP cores as well as the optimization of their parameters need a figure of merit
for the evaluation of alternatives, which considers performance criteria, such as
throughput rate R, and multiple cost criteria, such as silicon area of the SOC
modules A, power dissipation P, and others.

This paper addresses efficiency measures for SOC designs, which are based
on R, A, P and more qualitative performance criteria. These efficiency measures
are the ratio of the throughput rate R to the product of silicon area and power
dissipation R/(AP), a weighted sum of R, A and P, and a fuzzy multicriteria
analysis (MCA) on R, A, P and as an example for other qualitative performance
criteria, a flexibility measure F. The proposed efficiency measures are discussed
with respect to their common features, their limitations, their advantages, and
their disadvantages. The paper is organized as follows. Section 2 introduces spec-
ifications of the proposed efficiency measures. Based on recently published video
signal processor designs, in section 3 the efficiency measures are analyzed with
respect to their equivalences. Section 4 discusses the extension of the fuzzy mul-
ticriteria analysis (MCA) for the inclusion of qualitative performance criteria.

2 Specification of Efficiency Measures

2.1 AT-Product and Its Extensions

The evaluation of alternative IP cores for a system on a chip (SOC), the selection
of VLSI processors, and the optimization of new processor designs need a figure
of merit, which helps to find the best tradeoff on cost and performance criteria
for a specific application. Traditionally the AT-Product of silicon area A and
processing time T is a well established efficiency measure for the local module
selection or the optimization of arithmetic modules. A small processing time T is
a necessary condition for high performance. Because of the manufacturing yield,
a small silicon area A indicates to low costs. The most efficient solution of a set
of architectural alternatives is represented by the minimum AT-Product.

In the case of pipelined arithmetic modules, such as adders, multipliers, ALUs,
and MACs, T can be derived from the period length of the clock of a synchro-
nous design. As pipelined arithmetic modules continuously process a stream of
data samples, their clock rate (1/T) is the same as the throughput rate (R). Con-
sidering modern processor designs with parallel processing and with processing
of sequences of different tasks at different times under software control, the clock
rate is no longer a sufficient performance indicator. The throughput rate of a sig-
nal processing system (R) is a preferable performance criterion, to be maximized.
Similar to the locally applied AT-Product, efficiency at the global processor level
can be defined by the ratio of A/R [1], which has to be minimized. Alternatively
the ratio of R/A can be used [2], which must be maximized with respect to the
most efficient solution.

192 H. Jeschke

An important problem of efficiency measures in product or quotient form is
their limited extensibility to more cost and performance criteria. In the case of
power dissipation (P), the extension to a product of ATP or R/(AP) may be
frequently justified. Additionally the importance of A,T,P can be considered by
individual weighting exponents for each criterion (AwAT wT PwP). The impor-
tance of the silicon area A may be reduced for some deep submicron designs,
if the PAD cells dominate the lower bounds of SOC chip sizes (PAD limited
designs). On the other hand, leakage currents and highest clock rates raise the
importance of the power dissipation P. Hence a power delay product has been
recently proposed as an efficiency measure for deep submicron SOC designs [3]
as a special case of AwAT wT PwP with wA = 0.

Within the AwAT wT PwP -Product, the investigated criteria are inherently com-
pensatory. A small SOC with a low throughput rate may be rated equivalent to
a large SOC with a high throughput rate. Only if an application allows to choose
either numerous small chips or a few large chips at a comparable overall system
performance, the compensation of A and T may be well reasoned.

In real situations, hard cost or performance constraints, such as a maximum
power dissipation for mobile applications, limit the design space. Hence the com-
pensation of multiple criteria is restricted by constraints, too. An extension of
ATP to a general efficiency measure with multiple and arbitrary cost and per-
formance criteria is not useful.

2.2 Weighted Sum

An improved extensibility can be realized by a weighted sum (S) of multiple cost
and performance criteria, which is to be minimized:

S = wsA · A + wsR · 1/R + wsP · P (1)

As an advantage, the weighted sum can be used for optimization in a lin-
ear programming environment for task mapping and scheduling as well as for
optimization of architectural parameters [4]. S inherently compensates the inves-
tigated cost and performance criteria. As an advantage constraints on cost and
performance can be separately considered within a linear programming environ-
ment. As a disadvantage, it is difficult to motivate an extension of the weighted
sum to less quantitative but more qualitative criteria, such as the flexibility of
an architecture for processing of different applications.

2.3 Fuzzy Multicriteria Analysis (MCA)

Considering constrained compensatory and non-compensatory cost and perfor-
mance criteria as well as qualitative criteria, a fuzzy multicriteria analysis (MCA)
has been proposed as an efficiency measure for VLSI architectures [5],[6]. This
section first introduces fuzzy numbers, which support the specification of design
objectives as well as uncertainty in modeling problems. Then a fuzzy multi-
critearia approach (MCA) is introduced, which is based on fuzzy numbers.

Efficiency Measures for Multimedia SOCs 193

The application of fuzzy numbers as a measure of possibility. Modeling
values x of X with μA(x) = 1 are members of fuzzy set A and may represent
realization values, which are certainly possible for a SOC implementation. Para-
meter values x of X with μA(x) = 0 are not members of Set A and may represent
realization values, which certainly can not be realized in a later SOC design.
Other values are more or less members of the Set A. Using the trapezoidal shape
(Fig. 1), a fuzzy set can be specified by four parameters [m1, m2, a, b]. A fuzzy
set with trapezoidal shape can be interpreted as a fuzzy number and can be used
for fuzzy arithmetic as an extension to arithmetic with real numbers as well as
an extension to classical interval arithmetic [6].

�

Xm1 m2m -a1 m +b2

1

0

Fig. 1. Fuzzy Number X = [m1, m2, a, b] with trapezoidal shape

In this paper, the discussion of fuzzy sets is focused on the specification of
design objectives (Fig. 2). The most feasible values of the realization criteria of
throughput rate R, silicon area A, and the power dissipation P may certainly be
members of their related fuzzy set. The degree of membership is μ = 1. Infeasible
values, which are excluded by constraints, do not to belong to the related fuzzy
set. Their degree of membership is μ = 0. All other parameter values are more
or less feasible candidates for an envisaged design. Their feasibility increases
according to their degree of membership. Hence various kinds of design objectives
can be easily specified by fuzzy sets.

Fig. 2 shows a design objective of a throughput rate R, to be as much as
possible, where Rmax may characterize the largest known image size and its video
format. The design objective of the chip size A represents as small as possible
and never more than Amax. The design objective of the power dissipation P
represents as low as possible and never more than Pmax. A design objective for
a flexibility measure can be specified as as much as possible.

Once a known or an estimated criterion on cost or performance (R, A, P) is
specified by a fuzzy number, a degree of fulfillment of the related design objective
μf can be defined [5]. First the intersection of the fuzzy sets of the criterion and
its design objectives is derived from the minimum of both shapes (Fig. 3). μf

�

1

0

�

1

0

R PARmax Amax
Pmax

�

1

0

�

1

0

Flexibility F

Fig. 2. Design objectives specified by fuzzy numbers with trapezoidal shape

194 H. Jeschke

can be calculated from the ratio of the area under the intersection over the area
under the criterion and ranges from 0 to 1 (Eq. 2).

μf =
Area(design objective ∩ criterion)

Area(criterion)
(2)

In the case of a real (in terms of fuzzy sets: crisp) criterion, the trapezoidal
shape reduces to a vertical line. Then μf is directly represented by the degree of
membership of the design objective at the value of the criterion.

Design Objective Criterion

0< < 1�
f

�
f
= 0

�
f
= 1a) Intersection

b) Design objective not fulfilled

c) Design objective totally fulfilled

Fig. 3. Intersection of a cost or performance criterion with its design objective

The aggregation of multiple cost and performance criteria. Yager [7] has
proposed a method, which results in an overall degree of fulfillment of multiple
design objectives μMCA. Eq. 3 shows this overall degree of fulfillment for the
introduced cost and performance criteria R,A,P and a flexibility measure F.
Each individual degree of fulfillment μf , with f ∈ {A, R, P, F}, is weighted by
an exponent, which is related to the importance of the criterion.

μMCA = μ
wμR

R · μ
wμA

A · μwμP

P · μ
wμF

F (3)

According to the values of the single criteria, μMCA ranges from 0 to 1. In
the case of μMCA = 0, the design objectives are not fulfilled. In the case of
μMCA = 1, the design objectives are completely fulfilled.

The weighting exponents. A method for the derivation of the weighting
exponents has been proposed by Saaty [8]. He suggests a pair wise comparison
of the importance i of each two criteria. The ratios of the pair wise comparisons
are written in a matrix M (Eq. 4), which is shown for the proposed criteria R,
A, P, F.

M =

⎛

⎜⎜⎝

1 iR

iA

iR

iP

iR

iF
iA

iR
1 iA

iP

iA

iF
iP

iR

iP

iA
1 iP

iF
iF

iR

iF

iA

iF

iP
1

⎞

⎟⎟⎠ (4)

The weighting exponents for the multicriteria analysis (Eq. 3) are represented
by the components of the eigenvector of M.

Efficiency Measures for Multimedia SOCs 195

3 Equivalence of the Different Efficiency Measures

In this section the three efficiency measures R/(AP), S and MCA are compared
with respect to their equivalences. In the case of MCA, the flexibility measure F
is not considered (wμF = 0), because the other approaches have no corresponding
criterion. The design objectives are for A [0, 0, 0, 100]mm2 (as small as possible
and smaller than 100mm2), for R [120, 120, 120, 0]Mpixel/s (as fast as possible),
and for P [0, 0, 0, 10000]mW (as low as possible).

The following comparison is based on recently published VLSIs for multime-
dia and video signal processing. These VLSIs have been designed in different
technologies from 0.09μm to 0.18μm. They are motivation examples for the dis-
cussion of the proposed efficiency measures. The design of new architectural
concepts as well as IP core selection need the unified evaluation of architectural
alternatives in one target technology. Table 1 shows the characteristic realization
data and a ranking of the VLSIs with respect to the R/(AP) efficiency measure.
The best solution is a processor, which operates up to VGA resolution [9]. At the
last position is a programmable multimedia processor, capable of processing of
TV formats [10]. These examples are analyzed with the three efficiency measures
R/(AP), S, and MCA.

Table 1. Realization data of multimedia VLSIs and ranking by R/(AP) (1: best value)

Processor Technology R A P Flexibility for Ranking
(μm) (Mpixel/s) (mm2) (mW) Processing of by

different Applications R/(AP)
TV [10] 0.18 10.4 82 4300 High 8
HDTV [11] 0.18 27.7 32 785 Medium 6
VGA [12] 0.09 9.2 33 90 Medium 5
HDTV [13] 0.13 27.7 31 120 Low 4
Mobile [14] 0.13 3.0 80 120 High 7
TV [15] 0.18 10.4 15 12 Low 2
HDTV [16] 0.13 62.2 8 320 Low 3
VGA [9] 0.18 9.2 3 18 Low 1

One problem is the comparison of the efficiency measures. They are basically
used for comparison of different solutions, which can be represented by ranking
of the investigated VLSIs. In the case of identical rankings for the different
efficiency measures, they are equivalent for the considered examples. Another
problem is caused by the undetermined weights in S (wsR ,wsA , wPA) and MCA
(wμR ,wμA ,wμP). Hence, only if suitable weights can be found, an equivalence of
the discussed measures can be indicated.

Fig.4 shows a strategy for the comparison. In a first step the figures of merit
are calculated for the three efficiency measures, starting with arbitrary values
of the weights. In a next steps a ranking of the examples is performed for each
efficiency measure. The results of the rankings with S and MCA are compared to
the ranking of R/(AP), which is used as a reference. The number of differences

196 H. Jeschke

in the ranking positions are individually counted. In the case of differences, the
values of the weights are varied and the calculation is performed again until
the best match of the models (minimum of ranking differences) is found. The
parameter search has been performed by a genetic optimization algorithm. The

�
MCAS

R / (AP)

Ranking RankingRanking

No No

Yes Yes

Reference

Identical
Ranking ?

Identical
Ranking ?

Weighted
Sum

Multicriteria
Analysis

Design Data of 8 Processor Samples (R, A, P)

Weights Weights

w = 0.008 Mpixel/ssR

w = 0.882 mm

w = 0.031 mW
sA

sP

-2

-1

w = 0.01
�R

w = 0.057

w = 0.93
�

�

A

P

Best matching
Weights

Search for better
matching Weights

Search for better
matching Weights

Fig. 4. Search strategy for best matching weights for S and MCA

optimized weights are shown Fig. 4. They result in an identical ranking of the
analyzed processor examples, as shown in the last column of Table 1. Hence,
this result indicates a strong relationship between the investigated efficiency
measures.

4 Extension of the Multicriteria Analysis with a
Flexibility Criterion

The previous section has indicated a relationship between the three efficiency
measures R/(AP), the weighted sum S, and the multicriteria analysis MCA.
Hence, the MCA can perform as other measures do. First the MCA has a higher
flexibility in the specification of the design objectives. Their trapezoidal shapes
specify, whether a criterion must be minimized or maximized. Additionally hard
constraints are considered by their shape, too (μ = 0).

Another advantage of the MCA is a better expandability to multiple eval-
uation criteria, which may be independent to a physical background, such as
qualitative measures. In fuzzy set theory so called lingustic variables are dis-
cussed. In the context of the investigated VLSI examples, such a qualitative
measure could be the flexibility for processing of different applications on the
same hardware. An architecture with dedicated modules for the most computa-
tion intensive parts of multimedia applications will have a low flexibility. Archi-
tectures with a standard RISC core and additional extensions for multimedia
may have a medium flexibility. VLIW architectures with parallelism at the in-
struction level offer a high flexibility. Table 1 shows a qualitative characterization

Efficiency Measures for Multimedia SOCs 197

Linguistic variable: Flexibility

low medium high �
1

0
Design objective: Maximum flexibility

1

0

�

Fig. 5. Linguistic variable flexibility and a design objective maximum flexibility

of the analyzed architectures with respect to their flexibility. Fig. 5 shows the
specification of a linguistic fuzzy variable on flexibility. Low flexibility is specified
as [10, 30, 10, 10], medium flexibility is defined as [40, 60, 10, 10],and high flexibil-
ity is defined as [70, 90, 10, 10]. A design objective maximum flexibility can be
specified as [100, 100, 100, 0].

In the following an example for a multicriteria analysis is performed for design
objectives for A with [0, 0, 0, 100]mm2 (as small as possible and smaller than
100mm2), for R with [120, 120, 120, 0]Mpixel/s (as fast as possible), for P with
[0, 0, 0, 10000]mW (as low as possible), and a maximum flexibility. The MCA
starts with equally weighted criteria (wμR = wμA = wμP = 1). A next step
investigates, whether an increased importance for a single criterion results in a
feasible ranking result. For each criterion a multicriteria analysis is performed,
where this criterion is arbitrarily considered as 10 times more important than
the others. According to the eigenvalue approach [8] the resulting weights are
shown in Table 2. Table 3 shows the results of the multicriteria analyses. If
flexibility is most important, a VLIW multimedia processor [10] is best rated. A
mobile processor [14] with 3 RISC cores and a programmable DSP follows. With

Table 2. Weighting exponents: One criterion is 10 times more important than others

10 x important wμR wμA wμP wμF

R 0.769 0.077 0.077 0.077
A 0.077 0.769 0.077 0.077
P 0.077 0.077 0.769 0.077
F 0.077 0.077 0.077 0.769

Table 3. Ranking results for MCA for each criterion weighted 10 times higher than
others

Equal weights Throughput rate Chip size Power dissipation Flexibility
R A P F

TV [10] 7 6 8 8 1
HDTV [11] 3 3 5 6 6
VGA [12] 4 5 6 3 3
HDTV [13] 2 2 4 2 5
Mobile [14] 8 8 7 7 2
TV [15] 6 4 3 5 8
HDTV [16] 1 1 1 1 4
VGA [9] 5 7 2 4 7

198 H. Jeschke

respect to low power, this processor loses, because the potential for low power
is limited, when using standard cores. Processors for HDTV are best ranked for
equal weights and if the throughput rate R is most important. With emphasis on
P, HDTV VLSIs with special mechanisms for low power remain in top positions
[13],[16] while [11] loses in its ranking position. The HDTV chips lose in their
ranking position, if flexibility counts more. Their performance R is gained from
dedicated (less flexible) processing units. The overall result of the rankings with
emphasis on each of the criteria R,A,P,F seems to be plausible.

5 Conclusion

This paper has discussed three different efficiency measures for the evaluation of
multimedia systems on a chip. The efficiency measures are based on the through-
put rate R, chip size A, power dissipation P, and a flexibility criterion F. The
paper has shown for recently published multimedia VLSIs, that equivalences
can be found for the R/(AP)-measure, a weighted sum S of R,A,P, and a fuzzy
multicriteria analysis MCA on R,A,P. The paper has indicated, that MCA can
be considered as an extendable generalization of the other efficiency measures.

References

1. Jeschke, H., Gaedke, K., Pirsch, P.: Multiprocessor Performance for Real-Time
Processing of Video Coding Applications. IEEE Transactions on Circuits and Sys-
tems for Video Technology 2(2), 221–230 (1992) Special Issue On: VLSI Circuits
And Systems for Video Applications

2. Pirsch, P., Demassieux, N., Gehrke, W.: VLSI architectures for video compression-
a survey. In: Proceedings of the IEEE. 83(2), pp. 220–246. IEEE Computer Society
Press, Los Alamitos (1995)

3. Sengupta, D., Saleh, R.: Generalized Power-Delay Metrics in Deep Submicron
CMOS Design. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 26(1), 183–189 (2002)

4. Schwiegershausen, M.: Ein Verfahren zur Optimierung heterogener Multiprozes-
sorsysteme mittels linearer Programmierung. In: Ph.D. Thesis, Fachbereich Elek-
trotechnik und Informationstechnik, Universität Hannover (1997)

5. Jeschke, H.: Fuzzy Multiobjective Decision Making On Modeled Architectural Con-
cepts. In: Proceedings of the IEEE International Symposium on Circuits and Sys-
tems (ISCAS 1998), vol. 6, pp. 151–154. IEEE Computer Society Press, Los Alami-
tos (1998)

6. Jeschke, H.: Kosten- und Performance-Modellierung applikationsspezifischer VLSI-
Architekturen. In: Ph.D. Thesis, Fakultät für Elektrotechnik und Informatik, Uni-
versität Hannover (2005)

7. Yager, R.: Fuzzy Decision Making Including Unequal Objectives. In: Fuzzy Sets
and Systems, vol. 1, pp. 87–95. North-Holland, Amsterdam (1978)

8. Saaty, T.L.: Exploring the Interface Betweeen Hierarchies, Multiple Objectives
and Fuzzy Sets. In: Fuzzy Sets and Systems, vol. 1, pp. 57–68. North-Holland,
Amsterdam (1978)

Efficiency Measures for Multimedia SOCs 199

9. Lin, C.-P., Tseng, P.-C., Chiu, Y.-T., Lin, S.-S., Cheng, C.-C., Fang, H.-C.: A
5mW MPEG4 SP encoder with 2D bandwidth-sharing motion estimation for mo-
bile applications. In: Digest of Technical Papers of the 2005 IEEE International
Solid-State Circuits Conference, pp. 1626–1635. IEEE Computer Society Press, Los
Alamitos (2006)

10. Stolberg, H.-J., Moch, S., Friebe, L., Dehnhardt, A., Kulaczewski, M.B., Berekovic,
M., Pirsch, P.: An SoC with two multimedia DSPs and a RISC core for video com-
pression applications. In: Digest of Technical Papers of the 2004 IEEE International
Solid-State Circuits Conference, pp. 330–340. IEEE Computer Society Press, Los
Alamitos (2004)

11. Huang, Y.-W., Chen, T.-C., Tsai, C.-H., Chen, C.-Y., Chen, T.-W., Chen, C.-S.,
Shen, C.-F., Ma, S.-Y., Wang, T.-C., Hsieh, B.-Y., Fang, H.-C., Chen, L.-G.: A
1.3TOPS H.264/AVC single-chip encoder for HDTV applications. In: Digest of
Technical Papers of the 2005 IEEE International Solid-State Circuits Conference,
pp. 128–588. IEEE Computer Society Press, Los Alamitos (2005)

12. Fujiyoshi, T., Shiratake, S., Nomura, S., Nishikawa, T., Kitasho, Y., Arakida, H.,
Okuda, Y., Tsuboi, Y., Hamada, M., Hara, H., Fujita, T., Hatori, F., Shimazawa,
T., Yahagi, K., Takeda, H., Murakata, M., Minami, F., Kawabe, N., Kitahara, T.,
Seta, K., Takahashi, M., Oowaki, Y.: An H.264/MPEG-4 audio/visual CODEC
LSI with module-wise dynamic voltage/frequency scalings. In: Digest of Technical
Papers of the 2005 IEEE International Solid-State Circuits Conference, pp. 128–
588. IEEE Computer Society Press, Los Alamitos (2005)

13. Yamauchi, H., Okada, S., Watanabe, T., Matsuo, Y., Suzuki, M., Ishii, Y., Mori, T.,
Matsushita, Y.: An 81 MHz, 1280 × 720pixels × 30frames/s MPEG-4 video/audio
CODEC processor. In: Digest of Technical Papers of the 2005 IEEE International
Solid-State Circuits Conference, pp. 130–589. IEEE Computer Society Press, Los
Alamitos (2005)

14. Torii, S., Suzuki, S., Tomonaga, H., Tokue, T., Sakai, J., Suzuki, N., Murakami,
K., Hiraga, T., Shigemoto, K., Tatebe, Y., Ohbuchi, E., Kayama, N., Edahiro,
M., Kusano, T., Nishi, N.: A 600MIPS 120mW 70 μ/A leakage triple-CPU mobile
application processor chip. In: Digest of Technical Papers of the 2005 IEEE In-
ternational Solid-State Circuits Conference, pp. 130–589. IEEE Computer Society
Press, Los Alamitos (2005)

15. Liu, T.-M., Lin, T.-A., Wang, S.-Z., Lee, W.-P., Hou, K.-C., Yang, J.-Y., Lee, C.-Y.:
A 125 μw, fully scalable MPEG-2 and H.264/AVC video decoder for mobile appli-
cations. In: Digest of Technical Papers of the 2005 IEEE International Solid-State
Circuits Conference, pp. 1576–1585. IEEE Computer Society Press, Los Alamitos
(2006)

16. Lin, C.C., Guo, J.I., Chang, H.C., Yang, Y.C., Chen, J.W., Tsai, M.C., Wang,
J.S.: A 160kgate 4.5kB SRAM H.264 Video Decoder for HDTV applications. In:
Digest of Technical Papers of the 2005 IEEE International Solid-State Circuits
Conference, pp. 1596–1605. IEEE Computer Society Press, Los Alamitos (2006)

On-Chip Bus Modeling for Power and
Performance Estimation

Je-Hoon Lee1, Young-Shin Cho2, Seok-Man Kim3, and Kyoung-Rok Cho3

1 CBNU BK21 Chungbuk Information Technology Center, Rep. of Korea
leejh@hbt.cbnu.ac.kr

2 PDP development team, Samsung SDI, 508, Sungsung-dong, Cheonan, Korea
3 CCNS Lab., San 12, Gaeshin-dong, Cheongju, Chugnbuk, Rep. of Korea

Abstract. This paper presented a latency and power model to deter-
mine the bus configuration of a target SoC system at its early design
stage. The latency model analyzed the latencies of an on-chip bus and
provided throughput reflecting the bus configuration. The power model
provided power estimation based on the pre-determined bus architec-
ture. This paper showed new parameters to devise the proposed models
such as bus usage, active bridge ratio, etc. Moreover, we evaluated the
throughput of the bus and compared this with the required throughput
of the target SoC, including a number of real IPs. This target SoC was
configured based on the estimation results obtained from the proposed
bus model. This estimation were compared with the simulation results
of target SoC design for verifying the accuracy of the proposed model.
The evaluation showed that the accuracies of the proposed model for the
latency and the power model were over 85% and 92%, respectively. This
result set the standard for an efficient bus structure for a SoC design.

Keywords: SoC, on-chip bus, bus modeling, bus latency.

1 Introduction

The platform-based SoC (system on a chip) design was proposed to save de-
sign time and to integrate the more complex system in a chip [1-2]. As reusable
IP libraries are becoming increasingly feature packed, on-chip bus architecture
becomes a relatively significant design issue, especially with respect to the per-
formance and power consumption. The more we know precise bus latency and
power consumption of on-chip bus in its early design stage, the more we have
chance to design SoC system efficiently with respect to the performance and
power consumption.

The research shows that the power consumed by an on-chip bus, accounted for
15% of the total power consumed in a SoC [3]. This is comparable in magnitude
to well-known primary power consumption such as a processor. The increasing
number of IPs induces a slow down in operation speed, caused by the compe-
tition for getting ownership of the bus, and it thereby becomes a bottleneck,
limiting system performance. A substantial number of research results, such as

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 200–210, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On-Chip Bus Modeling for Power and Performance Estimation 201

the AMBA, Coreconnect and WishBone, have been proposed to resolve these
problems [4-6]. However, it is difficult to estimate the required bus throughput
and power consumption. This results in difficulty determining the bus configu-
ration at its early design stage.

The following design issues must be considered in its early design stages. First,
the bus configuration is an important design issue. The single shared bus archi-
tecture suffers from limited bandwidth. Complex SoC needs wider bandwidth
to transfer data on time. If the required bandwidth exceeds the allowable band-
width, this results in a bottleneck [7]. This problem is solved by a bus hierarchy
with multiple bus layers [8-10]. This bus hierarchy partitions a whole bus system
into several layers. When IPs through the same layer communicates, each layer
works independently. The bandwidth increases in proportion to the number of
layers. However, this makes the system bus more complicated.

Second, the bus logic is important to analyze the bus. A state-of-art on-chip
bus contains multiple bus layers comprising several components, such as an ar-
biter, a multiplexer, and a decoder. A bridge is used to connect two different bus
layers. A transaction across more than one layer is split into the corresponding
number of transactions. It needs more cycles compared with a single shared bus.
K. Lahiri claimed that the power consumed by the bus lines represents only 14%
of the total power consumed by the system bus architecture [3]. In contrast, the
total power consumed by the logic components constitutes approximately 51%.
We need to analyze the correlation between the SoC system performance and
the system power consumption, and find the trade-off between them.

Finally, the transfer mode is important in analyzing the bus performance.
Most on-chip buses provide the variable transferring options such as burst and
single transaction. Pipelining overlaps the address phase and the data phase for
high performance. A burst transaction is defined as one or more data transac-
tions, initiated by a bus master, which has a consistent width of transaction to
an incremental region of address space. It reduces the wastage of bandwidth.
This method makes the bus master hand over at the end of a burst transfer.

This paper presents a multi-layer system bus modeling method. The proposed
latency model is to estimate the performance according to the architectural con-
figuration. The proposed power model comprises two parts: the power estimation
over bus lines, and the power estimation for logic components. We measure the
power consumption of each component after a system synthesis. The accuracy
is verified through an example of SoC.

2 Bus Modeling Environment

The overall bus system model is depicted in Figure 1. All IPs are allocated to
a corresponding layer. Each layer contains logic components such as read/write
multiplexers, arbiters, and address decoders. In this figure, i, j, and k IP modules
are connected to the first, second, and Nth bus layer, respectively. (N-1) bridges
and N bus logics are needed to connect N layers. NM and NL represent the
number of master IPs and the number of layers, respectively.

202 J.-H. Lee et al.

Fig. 1. The architecture of a multi-layer on-chip bus

Table 1. Definitions of parameters

The presented bus model supports a pipelined and burst transfer. A burst
mode needs only one arbitration to transfer one more data words consecutively.
A pipeline mode is used to reduce the input latency for each master IP. Both of
them are used to enhance the performance of a bus system. In general, there are
two kinds of data transfer mode; single transfer and burst one. A single transfer
ratio S means the proportion of the single transfer to the total one. The burst
transfer ratio can be represented as 1-S. The burst size B represents the number
of data transferred during one burst mode transaction.

Figure 1 shows three kinds of datapaths in a multi-layer bus. The number of
active bridges is determined by the required datapath. Path A includes no bridge
for datapath. In addition, each layer operates independently. Path B and Path
C need one and two activated bridges, respectively. We define parameters with
respect to the bridge. The bridge factor α is the latency overhead caused by the
datapath, and including the active bridge. The parameter β is the number of
datapath making the bridge active, and γ represents the total number of datap-
ath including an active bridge. Table 1 shows definitions of the parameters used

On-Chip Bus Modeling for Power and Performance Estimation 203

in this paper. This paper assumes the IS (ideal-slave) model, which disregards
the state of slave IPs on a bus and makes bus modeling simple. It assumes that
slave IPs have no wait-state in response to the master IPs. A slave IP always
responds to the master’s request without delay. Also, we assume the bridge can
always acquire a grant to make our model simple.

3 Latency Model for an On-Chip Bus

The bandwidth and latency determine the throughput of an on-chip bus. The
latency depends on the bus configuration and the transfer mode. This section
presents a latency model reflecting various bus architectures.

A single-layer bus allows only one master to transfer data over the bus at a
time. It supports a single transfer and a burst one. An address and a data phase
can be overlapped to improve the throughput. The latency of a single layer bus
can be calculated by Eq. 1. The bus can support the pipelining operation in
a burst mode. The first term is the latency to transfer data using the single
transfer mode. The second term is the number of cycles to control the burst
mode. The third term is the latency during the pipelined burst mode. Eq. 1 can
be written as Eq. 2 when this bus can support a pipelined single transfer mode
as well as a pipelined burst transfer mode. The first term is the only difference of
both equations. We will now define a bus usage. It increases when transactions
occur frequently by different master IPs. The bus usage is defined the ratio of a
required bus bandwidth in an available bandwidth. It is easy to get the required
bus bandwidth because the system designer can easily estimate the required data
rate for each IP and get the summation of all required bus bandwidth.

LBus B Pipeline = 3ND × S + �ND × (1 − S)
B

� + ND × (1 − S) (1)

LBus S/B Pipeline = (3 − 2U)NDS + �ND(1 − S)
B

� + ND(1 − S) (2)

Here ND is the number of transferring data, S is the proportion of the single
transfer, B (0 ≤ B ≤ 1) is the size of a burst, and U (0 ≤ U ≤ 1) is the usage
of the bus. Lbus means the total number of cycles to transfer entire data ND.
The multi-layer bus needs additional parameters: the number of layers and the
number of active bridges. Eq. 3 defines the latency of a multi-layer bus reflecting
the number of active bridges and the number of layers. The latency decreases
along with the number of layers, NL. This equation includes the active bridge
ratio A (0 ≤ A ≤ 1) and the bridge factor α.

The parameter A is the probability that a datapath would be established in-
cluding the active bridges. Table 2 shows the possible datapaths and patterns of
active bridge on the 3-layer on-chip bus. It needs two bus bridge to connect each
layer. in this case, there are three different kinds of possible datapath combina-
tion. The longest datapath is the communication between the IP on the layer0
and the IP on the layer2. It needs two activated bus bridges. The shortest data-
path is the communication between the IPs on the same layer. It does not need

204 J.-H. Lee et al.

Table 2. Datapath patterns and number of active bridges due to number of bus layes

to activate the bus bridge. The other case need only one active bus bridge for
communication. Parameter A is obtained by dividing all datapaths in the layers
by the number of active bridges. Thus, this division ratio is the proportional of
the datapath using the same bridge over the total datapath. The bus latency
is inversely proportional to the number of layers and it is proportional to the
bridge usage. The first and second terms represent the latency with and without
bridge connections, respectively.

LMulti layer =
NM

NL
× LBus × (1 − A) + α × A (3)

The bridge factor α is the latency overhead due to the bridge usage. The band-
width varies according to the number of active bridges. β is the number of
datapaths using the same number of bridges. Factor i represents the number of
bridges used in a datapath. That is, β means the summation of datapaths using
the same bridge. γ is the total number of datapaths using the active bridges.
Consequently, γ is bigger than β. The latency overhead due to bridges can be
derived from Eq. 5.

α =
ND−1∑

i=1

(
β

γ
× NM

NL − i
× LBus), β = CNL−1

i , γ =
NL−1∑

j=1

×CNL−1
j (4)

LMulti layer =
NM

NL
LBus(1 − A) +

ND−1∑

i=1

(
β

γ
× NM

NL − i
× LBus)A (5)

Equation 5 shows the latency model for a multi-layer bus. To make it simple, we
are not concerned about a request-grant model through layers. We assume the
bridge can always acquire a grant without an additional cycle although every
change of layer requires re-acquiring a grant by a bridge. The bus latency of the
system can be improved based on these factors. The bus latency can be reduced
by means of estimation on the bandwidth of IPs and a datapath between IPs.

Figure 2 shows a distribution of the active bridge ratio A. This parameter
is obtained by dividing all datapaths reflecting the number of active bridges. It
is the proportion of datapaths using the same bridge over the total number of
datapaths. The throughput increases in proportional to the number of layers, NL,
with the same active bridge ratio, A. This throughput decreases as A increases.
The bus latency is inversely proportional to NL and proportional to A.

On-Chip Bus Modeling for Power and Performance Estimation 205

Fig. 2. The portion of parameter A on the multi-layer shared bus

The proposed latency model depends on the bus configuration, the transfer
mode, and the communication channel. The bus configuration decides the num-
ber of IPs, layers, and bridges. The transfer mode decides the single transfer
ratio, the burst size, and the number of transferring data. All of these factors
can be easily estimated in the early design stage except for the usage of a bus,
U ; and an active bridge ratio, A. The proposed latency model can be used to
design the bus reflecting the effect caused by the varying bus usage and the
active bridge ratio.

4 The Proposed Power Model

This section describes the proposed power estimation model as shown in Fig. 3.
The power consumed by a system bus is the sum of power consumed by all bus
components and the power consumed by signal transition over the bus wire. It is
possible to get the power consumed by the bus logics using the commercial design
tools like a NanoSim [11]. We generated a synthesizable RT-level description of
those bus logics. We set the number of IPs and layers according to the bus system
configuration and the constant bus width. Some physical parameters like a wire
length and capacitance can be obtained from the specific CMOS process. We
can measure an average power of those logics through a simulation after precise
post-layout extractions.

We use a transaction model to estimate the power consumed by a bus line.
We analyze the impact of varying traffic characteristics, as well as the impact
of varying SoC complexity, based on the proposed latency model. One way to
estimate the power consumption of an on-chip bus depends on the number of
switching such as Eq. 6 [12]. We employ the trace block for bus transaction to
obtain the hamming distance for transferring data. Figure 3 shows how to trace
the bus and how to merge the hamming distance into the SoC simulator, MaxSim
[13]. We add additional functions for the bus tracing and power estimation to
the transactor in order to trace the bus transaction. The transactor links and

206 J.-H. Lee et al.

Fig. 3. Power estimation scheme for an on-chip bus

converts signal levels between an accurate level of a cycle and a transaction level
in the SoC simulator.

CW = NBA × Cphy ×
n∑

i=1

Pi(0 → 1) = HDW × Cphy (6)

Cphy is the physical capacitance of wires, and Pi(0 → 1) is the average probability
of a zero to one transition between two successive samples in the data stream for
the bit i. NBA and Pi(0 → 1) can be replaced HDW . Here HDW is a hamming
distance on a bus line. The power consumed by the bus wire is represented by

Pw =
ND∑

i=1

(Parb + Paddr + Pdata) =
V 2

ddf

2

ND∑

i=1

(Carb + Cphy + (HDaddr + HDdata))

(7)
Carb is the load capacitance for arbitration. HDaddr and HDdata are the ham-
ming distance of the address line and data line, respectively. Each term represents
the power consumed to transfer signals. Parb is a power consumed by the con-
trol signal transfer, request and grant. Paddr is a power consumed by the address
transfer. Pdata is a power consumed on a data line. The power consumed by each
bus layer, PLayer during the burst mode with a pipelining can be represented by
Eq. 8.

Consequently, the power consumed by the multi-layer bus can be represented
as Eq. 9. Nactive bridge is the number of active bridges and Pbridge is the power
consumed by the bridge. The sum of power consumption of each part is the total
power consumed by the on-chip bus. This equation is based on the proposed
latency model. It is used to estimate the power consumption of an on-chip bus
in its early design stage.

PLayer =
NDS∑

i=1

(Parb+Paddr+Pdata)+Parb�
ND(1 − S)

B
�+

B�ND(1−S)
B �∑

j=1

(Paddr+Pdata)

(8)

On-Chip Bus Modeling for Power and Performance Estimation 207

Fig. 4. The comparison results of the latencies

PBus =
Nactive layer∑

i=1

Pwire i + Nactive bridgePbridge (9)

5 Simulation Results

This section presents simulation results based on the proposed bus models. The
simulation results are compared with the results from MaxSim tool [13].

Figure 4a shows the comparison results according to the data transfer type
and bus usage during transferring 1,000 words. The latency increases when either
the single mode transfer ratio or the bus usage becomes higher. The effect of a
single transfer is only 10%, compared to a burst transfer when the bus usage
exceeds 90%. The latency reflecting a burst transfer is independent of the bus
usage. Figure 4b shows the latency according to the number of layers and IPs.
The latencies of the 2–layer and the 3–layer cases are reduced by 45% and 63%,
respectively, compared to the single-layer case. Although the bus usage changes
the latency, the reduction rate remains the same since the parameter A remains
the same.

An MPEG encoder SoC is used to decide the number of layers. Figure 5a
shows a simple procedure of a video processing, which shows the data flow of
compressing and displaying of an image. The color VGA displays at 30 frames/s.
The same throughput is required at each stage 1, 2, 3 and 5. The total required
system bus bandwidth is 110.6 MBps. In other case, when this system connected
to the USB 2.0, it must have a 60 MBps bus bandwidth because USB 2.0 interface
provides a transmission rate of 60 MBps. The analysis assumes a bus frequency
of 100 MHz and a channel width of 4 bytes for the proposed multi-layer latency
model as shown in Fig. 5b. These curves are from the proposed latency model.
From these results, a MPEG encoder SoC can have five master IPs in the two
layers. The results of Okada’s work have three layers and are similar to the
simulation result as shown in Fig. 5b.

208 J.-H. Lee et al.

Fig. 5. The architecture of a MPEG SoC and the simulation results: (a) An example
of a MPEG SoC; (b) The expected throughput of each shared-bus according to the
number of layers

Fig. 6. Average power of a multi-layer bus

The multi-layer bus comprises the multiple layer carrying similar logic com-
ponents. If each layer works in parallel, the power consumed by the bus logic
increases two times as the number of layer increases by two times. However, all
layers do not work in parallel in a real bus system. We get the power consump-
tion based on the active bus usage as shown in Fig. 2 for fair comparison. The
average power consumption reflecting the increase of the bus layer is shown in
Fig. 6. It shows a linear increase in the power consumption. However, it does
not increase as a multiple of the power consumed by a single layer. The bus has
4 layers consumed 14% more power than the bus with 3 layers. The latencies
of the 2-layer and the 3-layer cases are reduced by 45% and 63%, respectively,
compared to the single-layer case as shown in Fig. 6b. However, the powers of
2-layer and 3-layer cases are increased by 25% and 56%, respectively. It proves
that the increasing the number of layer is more efficient reflecting the power and
latency of an on-chip bus. The comparison results are shown in Table 3 for the

On-Chip Bus Modeling for Power and Performance Estimation 209

Table 3. Accuracy of average power estimations

proposed power estimation scheme based on Eq. 9 and the results obtained from
the power simulation tool, NanoSim [11]. We use Synopsys Design Compiler and
the Hynix 0.35-μm CMOS process to design AMBA bus model for simulation
NanoSim from Synopsys is used to estimate the power consumption of the bus.
Table 3 shows the comparison of the total average power with respect to the
proposed technique. The proposed method has an accuracy of 92.4% comparing
to the simulation result using NanoSim.

6 Conclusion

This paper presented a latency model that can be used to efficiently design the
bus architecture on a SoC platform. The latency model focuses on a shared bus
architecture consisting of multiple bus layers. Latencies of shared bus on a SoC
were analyzed using the model. The throughput of an example bus design was
evaluated for a SoC platform including IPs such as MPEG and USB 2.0. The
latency result of the proposed model was compared with the simulation result
from MaxSim tool for verification purposes. The proposed latency model makes a
way of a power estimation of bus lines. Our evaluations show that the accuracies
of the proposed model for the latency and the power are over 85% and 92%,
respectively. The proposed latency and power model can be useful in the early
phases of SoC design, to estimate the performance and power consumption of
bus architecture.

Acknowledgments

This research was partially supported by the center of SoC design technology
(CoSoC) which was conducted by the Ministry of Commerce, Industry and En-
ergy of the Korean Government.

References

1. Cesario, W.O., Lyonnard, D., Nicolescu, G., Paviot, Y., Yoo, S., Jerraya, A.A.,
Gauthier, L., Diaz-Nava, M.: Multiprocessor SoC platforms:a component-based
design approach. In: Design and Test of Computers, December 2002, vol. 19(6),
pp. 52–63. IEEE Computer Society Press, Los Alamitos (2002)

210 J.-H. Lee et al.

2. Li, L., Gao, M., Cheng, Z., Zhang, D., He, S.: A new platform-based orthogonal
SoC design methodology. In: Proc. 5th ASIC 2003, vol. 1(3) pp. 428–432 (2003)

3. Lahiri, K., Raghunathan, A.: Power analysis of system-level on-chip communication
archi-tectures. In: Proc. Of CODES+ISSS’04, pp. 236–241 (September 2004)

4. AMBA Specification Rev2.0, ARM co. (May 1999)
5. CoreConnect Bus Architecture, IBM Co. (1999)
6. Peterson, W.: WISHBONE: SoC Architecture Specification, Revision B.2, Silicore

Co. (2001)
7. Lee, S.H., Lee, C.H., Lee, H.J.: A new multi-channel on-chip-bus architecture for

system-on-chips. In: Proc. of IEEE International SOC Conference, pp. 305–308
(September 2004)

8. Ryu, K.K., Shin, E., Mooney, V.J.: A comparison of five different multiproces-
sor SoC bus architecture. In: Proc. of Euromicro Symposium on Digital Systems
Design, pp. 202–209 (September 2001)

9. Okada, S., Takada, N., Miura, H., Asaeda, T.: System-on-a-chip for digital still
camera with VGA-size clip shooting. IEEE Trans. On Consumer Electronics 46(3),
622–627 (2000)

10. Srinvasan, S., Li, L., Vijaykrishnan, N.: Simultaneous partitioning and frequency
assign-ment for on-chip bus architecture. In: Proc. Design, Automation and Test
in Europe, March 2005, vol. 1, pp. 213–218 (2005)

11. http://www.synopsys.com/product/mixedsignal/nanosim/
12. Zhang, Y., Ye, W., Irwin, M.J.: An alternative architecture for on-chip global

intercon-nect: segmented bus power modeling. In: Proc. on ACSSC1998, vol. 2,
pp. 1062–1065 (November 1998)

13. MaxSim developer suite user’s guide Ver 5.0, AXYS Design Automation Inc.
(March 2004)

http://www.synopsys.com/product/mixedsignal/nanosim/

A Framework Introducing Model Reversibility in
SoC Design Space Exploration

Alexis Vander Biest, Alienor Richard, Dragomir Milojevic, and Frederic Robert

BEAMS Department, Université Libre de Bruxelles, Belgium

Abstract. In this paper we present a general framework for the support
of flexible models representation and execution in the context of SoC de-
sign space exploration. Coming as a C++ library, it allows the user to
gather models from its own and existing models into larger and more
complete models. Compared to existing modeling systems we introduce
the notion of model reversibility that allows the user to turn any parame-
ter appearing in a model into the output : it increases the model flexibil-
ity and enables its reuse in very different problems. Aside from providing
specification and execution support, the framework also permits dynamic
model sensitivity analysis and efficient parameter sensitivity analysis for
closed-formed models. Through this paper we explain our original 3-level
hierarchical representation of model and explain meanwhile how it offers
flexibility and model robustness using a XML schema grammar.

1 Introduction

Nowadays designing a system-on-chip requires many different and antagonist
constraints to be satisfied in terms of silicon area, power consumption, relia-
bility, computation power. Apart from these requirements related to the chip
performance, additional economical parameters need to be taken into account
like yield, production and design cost, time-to-market and so on. In such a con-
text where many compromises are possible between all the preceding criteria, the
need for efficient design space exploration as early as possible in the design flow
becomes highly critical to find a solution that fits the requirements [1]. In order
to perform this exploration efficiently one have to take both exploration time and
accuracy into account : while synthesis tools can lead to very accurate perfor-
mance estimation results at the expense of the time devoted to the estimation of
one solution, simplified models trade accuracy for estimation speed [2] : this last
solution is more efficient for the exploration of heterogeneous, complex and large
systems like SoCs [3]. In this context we have developed a framework providing
support for the specification and execution of flexible performance models. By
allowing the user to associate multiple expressions to a model so that inputs and
outputs can be reversed, models become reusable in different contexts.

The remainder of the paper is divided as follows : section 2 defines how we use
the vast term model in the scope of this paper by presenting some model tax-
onomies and reviews some existing modeling systems for performance prediction.
In section 3 we describe the hierarchical model structure of our framework while

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 211–221, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

212 A. Vander Biest et al.

highlighting its features and present in section 4 our implementation choices and
XML based models grammar. Finally we conclude in section 5.

2 State of the Art

Many performance prediction systems have already been defined in the literature
but many of them are hard-coded and models remain most of the time hidden
to the user. However models in themselves are the cornerstone of performance
estimation and often need to be compared in order to find the best suited model
for a given problem : this is called model sensitivity analysis. Before presenting
these systems we will first define our notion of a model to avoid any ambiguity
in the following sections.

2.1 Model Taxonomy and Definition

Basically a model could be defined as a simplified representation of a ”real” and
measurable phenomenon in order to capture its main effects[4].

Below we list some interesting model taxonomies trying to gather model clas-
sification criteria :

– VSIA defined in 2001 a model taxonomy capturing the behaviour of numeri-
cal systems [5] . This classification consists in five axes namely the temporal,
the data, the functional, the structural and the software programming reso-
lutions each one defined with its own specific metrics. A model of a system
is defined by its value on all these axes (further details can be found in the
very comprehensive [6]).

– The model of computation is also a precious information for classifying mod-
els (Petri Nets, Finite State Machines, Data Flow Graphs. . .) and refers to
the type of building blocks and their interaction mechanisms. Most of these
models of computation can be found in the Ptolemy II framework [7].

– In the field of analog systems, the SAE published the J2546 Model Specifi-
cation Process Standard [8] proposing a classification in eight levels of model
completeness based on criteria like the presence of a textual description of
the model, its accuracy, execution capability, interface, time representation
(static or dynamic) [9] . . .

By mixing all these criteria it is possible to find a more general model classi-
fication although the usefulness of such a vast model space taxonomy remains
highly dependent on the context in which the model is used. For the purpose of
our talk we will thus characterize a model by its interface, execution capability
(whatever its semantics of execution), having a certain accuracy and defined by
its building assumptions.

2.2 Modeling with GTX

Many models targeting fast performance estimation exist and it should barely
be impossible to enumerate all of them. However some systems devoted to pro-
cessor performance estimation developed during the last ten years deserve some

A Framework Introducing Model Reversibility 213

special attention (like GENESYS[10], RIPE[11], BACPAC[12]). They permit the
evaluation of important parameters like power consumption, maximum clock fre-
quency and wire related performance metrics. However all of these tools are using
hard-coded models preventing the user from making them evolve over time and
make easy model comparison. To cope with these limitations, a very interest-
ing model-centric framework called GTX [13] has been developed by the GSRC.
It was also meant to be used as a base for online model repository but never
achieved in the success it deserved.

GTX defines three objects : parameters, rules, rule chains.

– Parameters represent all the physical data that have to be considered in the
model (for instance power consumption, wire resistivity, technology node. . .).

– Rules represent the model and describe how the parameters are related. For
instance the dynamic power consumption depends on the capacitance to
switch, the operational clock frequency and the supply voltage as follows :

Pdyn = Cswitch ∗ fclock ∗ V 2
dd (1)

Different types of rules can be used like hard-coded, ASCII closed-formed
expressions and tables.

– Rule chains are formed by the gathering of rules allowing the user to build
larger models based on several sub-models. For instance if we have at disposal
a rule of the total capacitance based on technological parameters, we can use
it as an input for the dynamic power.

Rule chains are the cornerstone of GTX giving the framework a lot of flexibility
and enabling model-sensitivity analysis. However it suffers from some limitations:

– Each rule is defined in a such a way that it defines one parameter as the
output, the other ones being implicitly defined as inputs : GTX then au-
tomatically composes the resulting rule chain. Depending on the context of
use, we however may want to turn some inputs of the model into outputs
and inversely. For instance, all the microprocessor systems presented above
estimate the clock frequency based on the technological parameters but it
may sometimes be much more useful for a designer to express that same
clock frequency as a model input rather than an output so that he can fix
constraints on it and find the resulting possibilities for the technological
parameters.

– Parameter sensitivity is supported in GTX at the expense of evaluating
several times the same rule chain while varying each input parameter value
around its nominal value. This leads unavoidably to multiply the number
of experiments hence the time required to carry them out and is not very
efficient in the context of finding extrema for the output parameters values.

– GTX relies on ASCII textual files to specify rules and their meta-information.
Mechanisms to manage rules storage, parameters and rules name uniqueness
and a grammar to specify studies were never implemented.

In this paper we present principles that we did implement in our framework to
respectively overcome the above limitations :

214 A. Vander Biest et al.

– By introducing a three-level hierarchical model description we remove in-
put/output reversibility limitations both at rules and rule chains levels.

– Closed-formed expressions may be represented by trees composed out of basic
operations allowing both dynamic model execution and faster evaluation of
output parameter extrema based on input constraints values.

– The underlying framework grammar for models and parameters is entirely
specified by XML schemas to offer automatic verification along with powerful
elements constraint mechanisms.

Oppositely to GTX appearing as a standalone tool with its GUI, our framework
comes as an easy-to-use C++ library that was originally meant to suit our own
needs but may finally be interesting to share. The main functionalities of this
library are the following :

– Construction and grammatical verification of user defined models
– Composition of larger models based on the gathering of smaller models
– Single execution of models and parameter sweeps
– Fast evaluation of output parameters extrema for closed-formed expressions
– Easy model sensitivity analysis

In the coming section we detail the general principles listed above.

3 Framework Description

3.1 Hierarchy

In our representation, models are described in a hierarchical way : each level
of abstraction exchange information through parameters i.e. the data on which
models operate. The parameters are characterized by a unique name and a value
(or a list of values).
The three types of entities used for our model description are the following :

– Generic rules are equivalent to rules in GTX except that they do not assume
any underlying semantics of execution but only requires execution capability.

– A Relation is a logical link between n parameters meaning that they are not
independent so that we can only fix the n-1 parameters values among the
n possible. A relation encompasses generic rules associated to parameters in
order to make the relation executable.

– A behaviour is a complete model with several input and output parameters
and is based on a network of relations.

1 : Behaviour

2 : Relation

3 : GenericRule

A Framework Introducing Model Reversibility 215

The improved flexibility and context adaptability of our models precisely relies
on the introduction of the relation and behaviour levels in our model represen-
tation. Let us now have a closer look at these three levels.

3.2 Generic Rules

A generic rule is an executable model as it has been defined in 2.1 for a given
output and its corresponding input parameters.

The generic rule for equation 1 is represented as follows :

Pdyn = GR1(Cswitch, fclock, Vdd) (2)

Examples of generic rules are to be found everywhere like wire delay models
based on technological inputs [14] (inter-wire dielectric value, wire resistivity,
wire pitch. . .), any hard-coded model or any algorithm linking the output pa-
rameter value with its input value. Each particular model class inherits from the
properties of the generic rule definition so that it is easy to derive new model
classes. However, we provided special support for analytical closed-formed rules
in order to enlarge the framework features to include :

– A well-defined representation of closed-formed expressions
– An efficient parametric sensitivity estimation method based on input param-

eters value constraints

Closed-formed tree representation To allow the user to choose among rules
interactively at run-time, we need to find an adequate way to represent closed-
formed expression. In order to turn a textual closed-formed expression into a
dynamically executable model, we used the Dijkstra shunting yard algorithm
[15] to translate it into a tree. Each vertex represents a parameter, each directed
edge a basic operation pointing to the vertex that is the output parameter of
this basic relation.

D = (log(A) +
C

2
) ∗ B (3)

For instance, the closed-fromed expression 3 is represented by the following
graph:

D

∗
��

int3

����
B

����

+

��

int1

����
int2

����

log

��

/

��

A C

�����
2

�����

216 A. Vander Biest et al.

As we can see, intermediate parameters are added resulting from some basic
operations : there have no significant meaning but are necessary to ensure the
executability of the generic rules. Only input and output parameters are terminal
vertices hence are the only visible parameters outside the rule.

Each basic operation, apart from its pure functionality, derives from a more
general operation type characterized by its number of required input parameters,
its execution associativity and priority. Thus it is very easy to add basic opera-
tions without any change in the shunting yard algorithm. The basic operations
supported actually are multiplication, division, addition, subtraction, logarithm
and power operator. With this basic set of operation and the use of parenthe-
sis to force execution priority, we can already represent a lot of closed-formed
model.

Fast extrema evaluation. Parametric sensitivity analysis can become highly
time-consuming when the number of parameters and values per parameter to
sweep increases. If the purpose of this study is to find out the statistical dis-
tribution of the output parameter, the time devoted to the study cannot be
reduced because all solutions need to be explored. But when it comes to find
out extremum values, our representation can save a lot of time. Indeed if we
consider any of the previously defined basic operations, it is easy to find out the
minimum and maximum output values knowing the input value bounds.

For instance, if we proceed to a parameter sensitivity analysis for two pa-
rameters a and b by fixing their respective bounds between [mina, maxa] and
[minb, maxb] then we can compute the minimum and maximum values for the +
operator as being respectively [mina + minb, maxa + maxb]. Using a depth-first
algorithm, we can easily compute the output extrema of the leaves and prop-
agate it to the root. Hence only a sole tree evaluation is needed to get output
extrema values (algorithm complexity of O(1)) compared to hard-coded rules
for which the spanning of all possible input values within the defined bounds
would require much more time (algorithm complexity of O(M ∗ N) where M is
the number of relations and N the number of values per parameters to explore).

3.3 Relations

A relation is a logical dependence between a set of parameters : it expresses that
they are related in a certain way and that their value cannot be fixed arbitrarily.
The exact dependence is precisely specified by one generic rule defining a pa-
rameter as being the output, the others becoming inputs. So if a relation links
n parameters together, each parameter may be associated with a generic rule
(regardless to its exact nature) so that the value of the other n−1 parameters is
sufficient to determine the output value. This mechanism of association relates
to the reversibility property of some models : based on the knowledge of one
generic rule associated with one specific parameter, it may be possible to derive

A Framework Introducing Model Reversibility 217

the generic rules for the other parameters. For instance if we take back equation
1 we can easily associate a new generic rule (either manually either automatically
using a solver) to Cdyn, fclock and Vdd defining the following relation:

GR1 :Pdyn = Cswitch ∗ fclock ∗ V 2
dd

ReldynPow(Pdyn, Cswitch, fclock, Vdd) ��

���������

��						

��

GR2 :Cswitch = Pdyn

fclock∗V 2
dd

GR3 :fclock = Pdyn

Cswitch∗V 2
dd

GR4 :Vdd =
√

Pdyn

Cswitch∗fclock

It is important to note that not all generic rules may be inverted (like algorithmic
based rules) : in that case, the corresponding association may remain empty. For
closed-formed rules using our graph based representation, a simple algorithm
can automatically associate all the parameters from a single rule.

3.4 Behaviours

A behaviour gathers relations to make a complete model without any restriction
on the number of outputs and inputs. Starting from a collection of relations, an
adequate representation of the relations has to be used in order for the behaviour
to be executable.

Graph representation of behaviours. Again we used a graph-based repre-
sentation of the relations :

– Each relation is represented by a multi-edge
– Each parameter is represented by a vertex
– The parameters (identified by their name) shared by several relations form

in turn a whole graph expressing their mutual dependences.

Here is a simple example of a behaviour composed out of four relations and
expressed as a system of four equations :

Rel1(A, C, D, E) Rel2(B, E, H) Rel3(D, F, G) Rel4(E, G, H)

The number of degrees of freedom of the resulting behaviour equals
#parameters − #relations and represents the number of parameter values we
have to fix in order for the equation system to be completely specified.

Translated in our non-oriented graph representation, this behaviour expresses
as the following (all the vertices linked to a same Rel vertex belong to the same
relation) :

218 A. Vander Biest et al.

A B

C Rel1 Rel2

D E

Rel3 Rel4

F G H

Behaviour association. In order for the behaviour to be executable, we have to
specify which are the input and the output parameters i.e. associate each relation
with an output parameter (which corresponds to orientate the graph). If the
maximum combination number equals

∏#relations
i=1 #parametersInRelationi, all

these solutions are not leading to directly executable behaviours. To illustrate
that, let us take back our previous system of four equations (relations) and
choose a rule association for each of them.

E = GRRel1 (A, C, D) E = GRRel2 (B, H)

D = GRRel3 (F, G) G = GRRel4 (E, H)

Looking at these associations we can notice two important things about the way
the equation system is formed:

– First, E is the result of two different rules which has no sense at all as it can
only have a single value.

– Second, if we try to solve this system by a simple substitution of rules
GRRel1 , GRRel3 and GRRel4 we get the following result :

E = GRRel1 (A, C, GRRel3 (F, GRRel4 (E, H))) (4)

As we can see, this equation is not explicit because the parameter E appears
in both members. This directly implies that it prevents the equation from
being evaluated without using a numerical solver.

Coming back to our behaviour graph representation, these two considerations
involve two rules that an oriented graph should respect in order to be valid and
executable:

– Each vertex of the oriented graph should have one and only one edge pointing
to it

– The graph must be acyclic (in other words, starting from a vertex, there
should be no path of consecutive oriented edges that could lead the same
vertex).

A Framework Introducing Model Reversibility 219

The following figure shows two valid graphs for our studied behaviour : com-
pared to non-oriented graphs, each relation gets one oriented edge and output
parameters are surrounded by boxes while input parameters are surrounded by
dashed boxes :

� ��
�

�
�

� �A
� ��
�

�
�

� �B A B

� ��
�

�
�

� �C Rel1

��

Rel2

��

� ��
�

�
�

� �C Rel1

��

Rel2

��

D
� ��
�

�
�� �E D E

Rel3

��

Rel4

��

Rel3

��

Rel4

��

F G H
� ��
�

�
�

� �F
� ��
�

�
�

� �G
� ��
�

�
�

� �H

As we can see a same non oriented graph may lead to oriented graphs with
different number of outputs : these different behaviour orientations can in turn be
used to solve different problems while still using the same underlying models. To
find all the rule association combinations that satisfy both previous conditions
for the behaviour, we developed a simple algorithm based on a backtracking
method. Starting from the graph, the main steps are the following:

1. Gather all the relations into a unexplored relations list using a depth-first
search algorithm

2. Check the unexplored relations list :
– If the unexplored relations list isn’t empty select the next relation of the

unexplored relations list. We go on to point 3.
– If it is empty, it means that we have explored the whole graph without

violating any of our two rules for each of them : this behaviour is valid
and all relation associations are memorized. We restore the context (lists
states) of the next association to check and go back to point 2.

3. Test the next available association for the current relation :
– If the relation adjunction to the graph does satisfy both non acyclic

graph and one output per vertex conditions, move the relation from the
unexplored relations list to the explored relations list and go back to
point 2 to associate the next relation.

– If it doesn’t, retry another association for the relation as long as there
are any : otherwise go to point 2 to try another relation.

This algorithm explores all possible associations while eliminating all associa-
tions that do not satisfy both rules for the graph. To keep track of the state of
the graph (associations of the relations and lists) along the algorithm execution,
we used an incremental context saving mechanism so that only elements that
have been modified since the last valid possibility need to be restored saving
both memory and computation time. When a partial association of the graph
violates one of the conditions, all subsequent associations are not explored as
they will unavoidably lead to non-valid solutions.

220 A. Vander Biest et al.

4 Implementation Choices

4.1 XML Model Grammar

As explained in section 2, despite its very interesting engine regarding model
estimation GTX offers only a relatively partial support for model grammar spec-
ification and parameter naming constraints. When it comes to verify that users
have correctly encoded rules or chosen parameters names, problems may occur
if no strict grammar has been defined.

To provide our framework with a strict yet easy to modify grammar, we
decided to use XML for storing parameters and models related information.
The XML schema grammar used respects the structure of generic rules (and its
different derivated types), relations and behaviours as described in section 3 and
defines for each of them a separate schema. We made an extensive use of XML
schema features regarding element occurrence and value uniqueness constraints.
Practically here are some examples of schema based constraints :

– Restrictions to a defined subset of possible basic operations for closed-formed
generic rules

– Relations having from one to n parameter association (with n being the
number of parameters in the relation) each one corresponding to a unique
parameter name defined in the relation

– Name uniqueness guarantee for all parameters occurring in the behaviour

Any XML parser can check a behaviour, a relation or a generic rule XML instance
and automatically verify if it is well-formed and valid against the corresponding
schema, requiring no additional programming to perform this verification even
if the grammar is modified later.

Additionally XML is a good choice in a possible perspective of an online
model repository because stylesheets provide a direct way to convert XML files
into browsable documents.

4.2 Framework Engine

The framework engine is actually being written in C++ (its different functional-
ities can be found at the end of section 2.2). Its object structure also follows our
hierarchical based model representation so that we can easily switch from the
XML model representation to the C++ object structure and inversely offering
a very convenient way of loading/storing models.

The framework comes as a simple library allowing the user either to compose
a behaviour with existing or new relations or to use already existing behaviours.
The output parameters values estimation is based on XML input files describing
the type of analysis desired by the user (single fixed input values, sweeps or
input sensitivity) or can be defined at run-time by passing input values to the
behaviour.

A Framework Introducing Model Reversibility 221

5 Conclusions

To cope with new VLSI designs complexity, model-based methodologies become
crucial to cover the vast design spaces and ensure design flow convergence. As
a contribution to that effort, we proposed in this paper a framework for per-
formance model execution and specification. The most important features are
flexible association for model reusability in different problems, improved model
and parameter sensitivity analysis and strict model grammar for easy verification
user-based relations.

References

1. Vincentelli, A.S.: Defining platform-based design. EEDesign of EETimes (2002)
2. Bossuet, L., Gogniat, G., Philippe, J.: Fast design space exploration method for

reconfigurable architectures (2003)
3. Kahng, A.B.: Design technology productivity in the dsm era. In: Proc. Asia and

South Pacific Design Automation Conf., pp. 443–448 (2001)
4. Robert, F.: How do we learn models? introducing the supposed range vs real range

hypothesis. International Journal of Emerging Technologies in Learning 2(1) (2007)
5. VSIA: Vsia system level design model taxonomy document (2001)
6. Panagopoulos, I.: Models, specification languages and their interrelationship mod-

els, specification languages and their interrelationship for system level design. Tech-
nical report, HPCL,The George Washington University (2002)

7. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity - the ptolemy approach. Proceedings
of the IEEE 91(1), 127–144 (2003)

8. SAE: Sae model specification process standard (2002)
9. Vachoux, A.: Méthodes et outils pour la modélisation de soc-ams. Technical report,

EPFL, Lausanne (2002)
10. Codrescu, L., Nugent, S., Meindl, J., Wills, D.S.: Modeling technology impact

on cluster microprocessor performance. IEEE Trans. Very Large Scale Integr.
Syst. 11(5), 909–920 (2003)

11. Mangaser, R., Rose, K.: Facilitating interconnect-based vlsi design. In: MSE ’97.
Proceedings of the 1997 International Conference on Microelectronics Systems Ed-
ucation, Washington, DC, p. 139. IEEE Computer Society Press, Los Alamitos
(1997)

12. Sylvester, D., Keutzer, K.: System-level performance modeling with bacpac – berke-
ley advanced chip performance calculator (1999)

13. Caldwell, A.E., Cao, Y., Kahng, A.B., Koushanfar, F., Lu, H., Markov, I.L., Oliver,
M., Stroobandt, D., Sylvester, D.: GTX: the MARCO GSRC technology extrapo-
lation system. In: Design Automation Conference, pp. 693–698 (2000)

14. Sylvester, D., Keutzer, K.: Getting to the bottom of deep submicron ii: A global
wiring paradigm (1999)

15. Redziejowski, R.R.: On arithmetic expressions and trees. Commun. ACM 12(2),
81–84 (1969)

Towards Multi-application Workload Modeling in
Sesame for System-Level Design Space Exploration

Mark Thompson and Andy D. Pimentel

Computer Systems Architecture group, Informatics Institute
University of Amsterdam, The Netherlands
{thompson,andy}@science.uva.nl

Abstract. The Sesame modeling and simulation framework aims at early and
thus efficient system-level design space exploration of embedded multimedia sys-
tem architectures. So far, Sesame only supported performance evaluation when
mapping a single application onto a (multi-processor) architecture at the time.
But since modern multimedia embedded systems are increasingly multi-tasking,
we need to address the modeling of effects of executing multiple applications
concurrently in our system-level performance models. To this end, this paper con-
ceptually describes two multi-application workload modeling techniques for the
Sesame framework. One technique is based on the use of synthetic application
workloads while the second technique deploys only real application workloads
to model concurrent execution of applications. For illustrative purposes, we also
present a preliminary case study in which a Motion-JPEG encoder application is
executed concurrently with a small synthetic producer-consumer application.

1 Introduction

The increasing complexity of modern embedded systems has led to the emergence of
system-level design [1]. A key ingredient of system-level design is the notion of high-
level modeling and simulation in which the models allow for capturing the behavior of
system components and their interactions at a high level of abstraction. As these high-
level models minimize the modeling effort and are optimized for execution speed, they
can be applied at the very early design stages to perform, for example, architectural
design space exploration. Such early design space exploration is of eminent importance
as early design choices heavily influence the success or failure of the final product.

In recent years, a fair number of system-level simulation-based exploration environ-
ments have been proposed, such as Metropolis [2], GRACE++ [3], Koski [4], and our
own Sesame [5] framework. The Sesame modeling and simulation framework aims at
efficient system-level design space exploration of embedded multimedia systems, al-
lowing rapid performance evaluation of different architecture designs, application to
architecture mappings, and hardware/software partitionings. Moreover, it does so at
multiple levels of abstraction. Key to this flexibility is the separation of application and
architecture models, together with an explicit mapping step to map an application model
onto an architecture model.

So far, Sesame has only supported the mapping of a single application onto an
architecture model at the time. But since modern multimedia embedded systems are

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 222–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Towards Multi-application Workload Modeling in Sesame 223

increasingly multi-tasking, we need to address the modeling of effects of executing
multiple applications concurrently in our system-level architecture models. To this end,
this paper presents two multi-application workload modeling techniques. One technique
is based on the use of synthetic application workloads while the second technique de-
ploys only real application workloads to model concurrent execution of applications.
The presented techniques are currently being implemented in our Sesame framework.
This implies that this paper mostly discusses concepts while detailed results will be
published in a follow-up paper. However, for illustration purposes, we do present a
preliminary case study in which a Motion-JPEG encoder application is executed con-
currently with a small synthetic producer-consumer application.

The remainder of the paper is organized as follows. The next section provides an
introduction to the Sesame modeling and simulation framework. Section 3 presents
the two proposed multi-application workload modeling techniques for Sesame. This
section also contains a discussion on how these workload modeling techniques can be
used for the modeling of reactive application behavior. In Section 4, we present a small
case study in which we model the concurrent execution of two applications. Section 5
describes related work, after which Section 6 concludes the paper.

2 Sesame

The Sesame modeling and simulation environment [5], illustrated in Figure 1, addresses
the performance analysis of embedded multimedia system architectures. To this end, it
recognizes separate application and architecture models, where an application model
describes the functional behavior of an application and the architecture model defines
architecture resources and captures their performance constraints. After explicitly map-
ping an application model onto an architecture model, they are co-simulated via trace-
driven simulation. This allows for evaluation of the system performance of a particular
application, mapping, and underlying architecture. Such an explicit separation between
application and architecture opens up many possibilities for model re-use. For example,
a single application model can be used to exercise different hardware/software parti-
tionings or can be mapped onto a range of different architecture models.

For application modeling, Sesame uses the Kahn Process Network (KPN) model
of computation [6], which nicely fits the targeted multimedia application domain [7].
KPNs are structured as a network of concurrent communicating processes, connected
via unbounded FIFO channels. Reading from these channels is done in a blocking man-
ner, while writing is non-blocking. The computational behavior of an application is cap-
tured by instrumenting the code of each Kahn process with annotations that describe the
application’s computational actions. The reading from and writing to Kahn channels
represent the communication behavior of a process within the application model. By
executing the Kahn model, each process records its computational and communication
actions to generate its own trace of application events, which is necessary for driving
an architecture model. There are three types of application events: the communication
events READ and WRITE and the computational event EX(ECUTE). These application
events typically are coarse grained, such as EX(DCT) or READ(channel id,pixel-block).

224 M. Thompson and A.D. Pimentel

Mapping layer

OP cycles

X
Y

750
150
1500Z

Architecture model layer

Application model layerevent
trace

Scheduler

processor

Process DProcess A

Process C

Buffer

processor processor
Virtual

Buffer

Buffer
Buffer

processor
Virtual

Process B

= application event trace

Virtual Virtual

FIFO

Bus

P1P0

Shared

P2

Memory

Fig. 1. The three layers in Sesame’s modeling and simulation infrastructure

An architecture model simulates the performance consequences of the computation
and communication events generated by an application model. To this end, each architec-
ture model component is parameterized with a table of operation latencies (illustrated for
Processor 0 in Figure 1). The table entries could, for example, specify the latency of an
EX(DCT) event, or the latency of a memory access in the case of a memory component.

To map Kahn processes from an application model onto architecture model compo-
nents and to support the scheduling of application events when multiple Kahn processes
are mapped onto a single architecture component (e.g., a programmable processor),
Sesame provides an intermediate mapping layer. This layer consists of virtual proces-
sor components and FIFO buffers for communication between the virtual processors.
There is a one-to-one relationship between the Kahn processes in the application model
and the virtual processors in the mapping layer. This is also true for the Kahn channels
and the FIFO buffers in the mapping layer, except for the fact that the latter are limited
in size. Their size is parameterized and dependent on the modeled architecture. A vir-
tual processor in the mapping layer reads in an application trace from a Kahn process
and dispatches the events to a processing component in the architecture model. Com-
munication channels – i.e., the buffers in the mapping layer – are also mapped onto the
architecture model. In Figure 1, for example, buffers can be placed in shared memory or
can use the point-to-point FIFO channel between processors 0 and 1. Accordingly, the
architecture model accounts for modeling the communication (and contention) behavior
at transaction level, including arbitration, transfer latencies and so on.

The mechanism used to dispatch application events from a virtual processor to an
architecture model component guarantees deadlock-free scheduling of the application
events from different event traces [5]. In this mechanism, EX(ecute) events are always
immediately dispatched by a virtual processor to the architecture model component
that models their timing consequences. Scheduler components in the mapping layer
(see Figure 1) allow for scheduling the dispatched application events from different

Towards Multi-application Workload Modeling in Sesame 225

virtual processors that are destined for the same (shared) architecture model resource.
Communication events, however, are not immediately dispatched to the underlying ar-
chitecture model. Instead, a virtual processor that receives a communication event first
consults the appropriate buffer at the mapping layer to check whether or not the com-
munication is safe to take place so that no deadlock can occur. Only if it is found to be
safe (i.e., for read events the data should be available and for write events there should
be room in the target buffer), then communication events may be dispatched. As long
as a communication event cannot be dispatched, the virtual processor blocks. This is
possible because the mapping layer executes in the same simulation as the architecture
model. Therefore, both the mapping layer and the architecture model share the same
simulation-time domain. This also implies that each time a virtual processor dispatches
an application event (either computation or communication) to a component in the ar-
chitecture model, the virtual processor is blocked in simulated time until the event’s
latency has been simulated by the architecture model.

Essentially, the mapping layer can be considered as an abstract RTOS model, in
which the virtual processors are abstract representations of application processes that
are executing, ready for execution or blocked for communication. Here, the scheduler
components in the mapping layer provide the scheduling functionality of the RTOS.

3 Multi-application Workload Modeling

As mentioned before, Sesame has up to now only supported the mapping of a single ap-
plication onto an architecture model at the time. Modern multimedia embedded systems
are however increasingly multi-tasking. Therefore, we need to address the modeling of
effects of executing multiple applications concurrently in our system-level architecture
models. To this end, we propose two multi-application workload modeling techniques.
One technique, which we will discuss first, is based on the use of synthetic applica-
tion workloads while the second technique deploys only real application workloads to
model concurrent execution of applications.

3.1 Synthetic Multi-application Workload Modeling

Multi-application modeling using synthetic application workloads is illustrated in Fig-
ure 2. Note that the FIFO buffers between virtual processors are not depicted in Figure 2
for the sake of simplicity. On the left-hand side, a Sesame system-level model with a
single, primary application is shown. The three processes in this application are mapped
onto two processing cores (P0 and P1) in the underlying architecture. Since processes
A and B are mapped onto the same resource, a scheduler named Local-Scheduler (or
L-Scheduler) is used for scheduling the workloads (i.e., application events) from both
processes. However, a second level of scheduling hierarchy is added by introducing
so-called Global-Schedulers (or G-Schedulers). These global schedulers are basically
equivalent to local schedulers in terms of functionality but instead of intra-application
events they schedule application events from different applications. Evidently, the local
and global schedulers can also deploy different scheduling policies. When, for exam-
ple, the interleaving of processes inside an application is statically determined at com-
pile time, the local scheduler can model this by ‘merging’ the events from the event

226 M. Thompson and A.D. Pimentel

traces according to this given static schedule. At the same time, the global scheduler
can schedule application events from different applications in a dynamic fashion based
on, for example, time slices, priorities, or a combination of these two. Here, we would
like to note that although the schedulers support preemptive scheduling, this can only
be done at the granularity of application events. The simulation of a single application
event is atomic and thus cannot be preemted in Sesame. Furthermore, we currently do
not model any overheads caused by the context switching itself (e.g., OS overhead,
cache misses, etc.). This is considered as future work.

VP VP

Primary application
Secondary application(s)

m
od

el
 la

ye
r

A
pp

lic
at

io
n

M
ap

pi
ng

 la
ye

r
m

od
el

 la
ye

r
A

rc
hi

te
ct

ur
e

L−Sched.

VP VP

P0 P1

G−Sched.G−Sched.

VP

application eventC generator

s

Stochastic
A

s

B

Fig. 2. Multi-application modeling using synthetic ap-
plication workloads

In synthetic multi-application
modeling, the application events ex-
ternal to the primary application
(see Figure 2) are generated by a
stochastic event generator. Hence,
this event generator mimics the con-
current execution of one or more
application(s) besides the primary
application. Based on a stochastic
application description, which will
be discussed later on, the applica-
tion generator generates traces of
EX(ecute), READ and WRITE appli-
cation events and issues these event
traces to special virtual processors,
indicated by VPS in Figure 2. Mul-
tiple instances of these event gener-
ators, each with their own stochastic
application description, can be used
to model concurrent execution of more than two applications.

The virtual processors (VPS) used for the trace events from the stochastic event gen-
erator are special in the sense that they, unlike normal virtual processors, are not con-
nected to each other according to the application topology (see Section 2). Rather than
explicitly modeling communication synchronizations, a VPS models synchronization
behavior stochastically. To illustrate the interactions between the event generator, a VPS

and a global scheduler of a system-level model, consider Figure 3. The figure shows
these interactions in the case an ”EX(A) , EX(B) , READ , WRITE ” event sequence
is generated by the event generator. At (simulation) time t0, the EX(A) event is con-
sumed by the VPS. The VPS immediately forwards this event to the global scheduler it
is connected to, and waits for an acknowledgment from the scheduler. After the EX(A)
event has been scheduled for execution on the architectural resource (taking T(sched)
time units) and the actual execution (taking T(A) time units), control is returned to the
VPS by sending it an acknowledgment. Hereafter, the VPS can consume another appli-
cation event again. In the case of the example in Figure 3, the VPS now consumes the
EX(B) event which is handled in an identical fashion as the EX(A) event. However,
VPS handles the READ and WRITE events, which are consumed at times t2 and t3 re-
spectively, in a slightly different way. Instead of directly forwarding these events to the

Towards Multi-application Workload Modeling in Sesame 227

Read

Read

Write

Write

Lo
gi

ca
l t

im
e

0t

0t + T(A) + T(sched)

Ex(B)Ex(B)

Ex(A) Ex(A)

event generator
From stochastic

VPs G−Scheduler

t + T(sync)

t + T(sync)

t + T(B) + T(sched)1

t + T(sync) + T(Read) + T(sched)2

t + T(sync) + T(Write) + T(sched)3

t

3

2

2

t3

t1

Fig. 3. Interaction between Virtual Processor (VPS) and G(lobal)-Scheduler in synthetic multi-
application modeling

global scheduler, like is done with EX events, VPS now first models a synchronization
latency. This latency refers to the time the read and write transactions need to wait for
data or room in the buffer from/to which is read/written. The synchronization latency,
indicated by T(sync) in Figure 3, is a stochastic parameter of VPS, as discussed below.

Table 1 lists the parameters used by the stochastic event generator as well as a VPS.
These parameters can be specified both globally – describing the behavior for all traces
(for the event generator) or ports (for a VPS) – and on a per-trace/per-port basis. De-
scriptions on a per-trace/per-port basis overrule global descriptions, in the case there
is an overlap of both types of descriptions. The parameter AEx specifies the set of

Table 1. Parameters for the synthetic application workload generation

228 M. Thompson and A.D. Pimentel

possible EX events that can be generated. For example, AEx = {DCT,VLE} specifies
that EX(DCT) and EX(VLE) events can be generated. PExi describe the probabilities
of the events in AEx. The ratio’s rcomp:rcomm and rread:rwrite specify the computation to
communication ratio and read to write ratio, respectively. So, for example, by increas-
ing the rcomp:rcomm ratio, the application behavior can be made more computationally or
communication intensive. The parameter M specifies the set of possible message sizes
that can be used in communications. In multimedia applications, application data is of-
ten communicated in fixed data chunks (e.g. pixel blocks) from one application phase
to the other. PMi specify the probabilities of the different message sizes. NP denotes
the number of communication ports for which read and write transactions can be gen-
erated. Pporti are the probabilities of the different port usages. Again, all of the above
parameters can be specified globally (valid for all event traces) or on a per-trace basis.

The VPS parameters SyncRead and SyncWrite specify the mean synchronization la-
tency for read and write transactions, respectively. σRead and σW rite contain the stan-
dard deviations of the two aforementioned means. By default, a VPS uses an Erlang
distribution to determine synchronization latencies. These VPS parameters can again be
specified globally (valid for all communication ports of a VPS) or on a per-port basis.

3.2 Realistic Multi-application Workload Modeling

In our second multi-application workload modeling technique, we realistically model
the concurrent execution of multiple applications. That is, multiple Kahn application
models are actually executed concurrently, as shown in Figure 4, and produce realistic
event traces that are again scheduled on the underlying architectural resources using
the global schedulers. In contrast to synthetic workload modeling, the secondary KPNs
use normal virtual processors in the mapping layer. Hence, synchronization behavior
in the parallel applications is modeled explicitly for all participating KPN applications
(i.e., there is no difference between primary and secondary applications). This implies

G−Sched.G−Sched.

L−Sched.

m
od

el
 la

ye
r

L−Sched.

Primary application

A
rc

hi
te

ct
ur

e
m

od
el

 la
ye

r

Secondary application(s)

P0

M
ap

pi
ng

 la
ye

r
A

pp
lic

at
io

n

P1

VP VP VP

application
Real Kahn

L−Sched.

B

C
A

VP VPVPVP

Fig. 4. Multi-application modeling using realistic application workloads

Towards Multi-application Workload Modeling in Sesame 229

that, when considering Figure 3, the T(sync) now refers to the actual synchronization
times between application processes. Moreover, the secondary KPNs also require L-
schedulers to ’merge’ (i.e. schedule) event traces when multiple application tasks are
mapped onto a single architecture resource. Naturally, the policies of the L-schedulers
can vary between the different KPN applications taking part in the system simulation.
When considering Figure 3, we now have T(sched) = T(L-sched) + T(G-sched) for all
participating KPNs.

3.3 Modeling Reactive Behavior

Because of its deterministic behavior, the KPN model of computation is relatively un-
suited for modeling reactive application behavior, such as the occurrence of interrupts
(e.g., a user presses a button on the TV’s remote control after which teletext is started
as a picture-in-picture application on the screen). Several researchers have proposed
extensions to the KPN model of computation to resolve this [7,8,9]. Our two multi-
application workload modeling techniques support the modeling of reactive behavior
between applications, which could each be specified as a regular KPN. This can be
achieved in a transparent manner by adding a ‘SLEEP(N)’ application event, which ba-
sically indicates that an application process is not active during a period of N time units.
More specifically, a SLEEP event causes a virtual processor to sleep (i.e. block in vir-
tual time) for the specified period. This event would not be simulated by the underlying
architecture model. Evidently, the SLEEP events provide the opportunity to freeze the
issuing of application events for a while, which basically mimics sporadic or periodic
execution behavior of applications. To give an example in the case of synthetic multi-
application modeling, the (stochastic) application event generator could model periods
of inactivity (i.e., generating SLEEP events for all application processes) alternated with
periods of application activity (i.e., generating EX, READ , and WRITE events). Clearly,
this approach would allow us to assess a variety of different scenarios or use cases [10].
However, further research is needed to gain more insight about the qualitative and quan-
titative aspects of this modeling mechanism.

4 A Preliminary Case Study

For illustrative purposes, we performed a small experiment using the multi-application
workload modeling support that has already been realized in Sesame. More specif-
ically, we modeled two Kahn applications that execute concurrently. The first (and
primary) application is a Motion-JPEG (M-JPEG) encoder, and the other one is a syn-
thetic ‘producer-consumer’ application transferring data from producer to consumer.
The M-JPEG application encodes 8 consecutive 128x128 resolution frames, while the
producer-consumer application is parameterizable in both computational and commu-
nication load. That is, the producer iteratively models a parameterizable computing
latency after which it sends a parameterizable chunk of data to the consumer. In our
system-level model, both applications are mapped onto a multi-processor SoC, contain-
ing 4 processors with distributed memory and connected through a crossbar switch. We
applied a simple round-robin policy for scheduling tasks from both applications at the
G-schedulers (see Section 3.2).

230 M. Thompson and A.D. Pimentel

 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800

 512k
 256k

 128k
 64k

 32k
 16k

 8k
 4k

 2k
 1k

 512k
 256k

 128k
 64k

 32k
 16k

 8k
 4k

 2k
 1k

 500
 1000
 1500

Cycles (millions)

Computation grain (cycles) Communication grain (bytes)

Cycles (millions)

Fig. 5. Estimated execution times of concurrent execution of M-JPEG and producer-consumer
applications. The latter is parameterized in both computation and communication grainsize.

Figure 5 shows the estimated system-level execution times (combined for both appli-
cations) when varying the computation and communication grainsizes of the producer-
consumer application. As can be seen from Figure 5, the results show a quite
predictable behavior, which helps to gain trust in our multi-application modeling
method. That is, the system performance is only marginally affected for small com-
putation and communication grains of the producer-consumer application. But after a
certain threshold, the producer-consumer application starts to dominate the system per-
formance (computation-wise, communication-wise, or both). As a next step, we plan
to actually validate these results using the ESPAM system-level synthesis framework
[11], which would allow us to compare our simulation results against an actual system
implementation.

5 Related Work

The modeling of (parallel) workloads for the purpose of performance analysis is a well-
established research domain, both in terms of realistic and synthetic workload mod-
eling (see e.g. [12,13,14]). A recent focus area is, for example, statistical simulation
for micro-architectural evaluation [15]. In this technique, a stochastic program descrip-
tion, which is a collection of distributions of important program characteristics derived
from execution profiles, is used to generate synthetic instruction traces. These synthetic
traces are subsequently used in trace-driven processor and/or memory-hierarchy simu-
lations. Another area in which synthetic workload modeling has recently received a lot
of attention is network workload modeling for network-on-chip simulations [16,17,18].

In [19,20], multimedia application workloads are described and characterized analyt-
ically using so-called variability characterization curves (VCCs) for system-level per-
formance analysis of multi-processor systems-on-chip. These VCCs allow for

Towards Multi-application Workload Modeling in Sesame 231

capturing the high degree of variability in execution requirements that is often present
in multimedia applications.

A fair number of research efforts addressed the high-level modeling of a RTOS to be
used in system-level models for early design space exploration [21,22,23]. Rather than
focusing on how to model multi-application workloads, these efforts mainly address
abstract modeling of RTOS functionality, efficient simulation of this functionality, and
refinement of these abstract RTOS models towards the implementation level.

6 Conclusions

In this paper, we addressed the extension of our Sesame modeling and simulation frame-
work to support the modeling of multi-tasking between applications for the purpose of
system-level performance analysis. To this end, we proposed two mechanisms for mod-
eling multi-application workload behavior: one based on synthetic workload modeling
and the other using only real application workloads. In addition, we indicated how re-
active behavior at application granularity could be modeled. All presented methods are
currently being implemented in Sesame. Using a small preliminary case study, however,
we were already able to show an example of multi-application workload modeling using
two applications. Future work needs to study the scope of application scenarios or use
cases that can be modeled with these techniques. For example, it should be investigated
to what extent the synthetic workload modeling technique allows for capturing the vari-
ability in execution requirements that is typically present in multimedia applications.
Possibly, this technique could be extended with variability characterization curves such
as proposed in [19,20].

References

1. Keutzer, K., et al.: System level design: Orthogonalization of concerns and platform-based
design. IEEE Trans. on CAD of Integrated Circuits and Systems 19 (2000)

2. Balarin, F., et al.: Metropolis: An integrated electronic system design environment. IEEE
Computer 36 (2003)

3. Kogel, T., et al.: Virtual architecture mapping: A SystemC based methodology for archi-
tectural exploration of system-on-chip designs. In: SAMOS. Proc. of the Int. workshop on
Systems, Architectures, Modeling and Simulation, pp. 138–148 (2003)

4. Kangas, T., et al.: UML-based multi-processor SoC design framework. ACM Trans. on Em-
bedded Computing Systems 5, 281–320 (2006)

5. Pimentel, A.D., Erbas, C., Polstra, S.: A systematic approach to exploring embedded system
architectures at multiple abstraction levels. IEEE Trans. on Computers 55, 99–112 (2006)

6. Kahn, G.: The semantics of a simple language for parallel programming. In: Proc. of the IFIP
Congress 74 (1974)

7. de Kock, E.A., et al.: Yapi: Application modeling for signal processing systems. In: DAC.
Proc. of the Design Automation Conference, pp. 402–405 (2000)

8. Geilen, M., Basten, T.: Reactive process networks. In: EMSOFT. Proc. of the 4th ACM In-
ternational Conference on Embedded Software, pp. 137–146. ACM Press, New York (2004)

9. Dijk, H.W.v., Sips, H.J., Deprettere, E.F.: Context-aware process networks. In: ASAP. Proc.
of the Int. Conf. on Application-specific Systems, Architectures, and Processors, pp. 6–16
(2003)

232 M. Thompson and A.D. Pimentel

10. Gheorghita, S.V., Basten, T., Corporaal, H.: Application scenarios in streaming-oriented em-
bedded system design. In: Proc. of the Int. Symposium in System-on-Chip (2006)

11. Nikolov, H., Stefanov, T., Deprettere, E.: Multi-processor system design with ESPAM. In:
CODES-ISSS’06. Proc. of the Int. Conf. on HW/SW Codesign and System Synthesis, pp.
211–216 (2006)

12. Kotsis, G.: A systematic approach for workload modeling for parallel processing systems.
Parallel Computing 22, 1771–1787 (1997)

13. Feitelson, D.: Workload modeling for performance evaluation. In: Calzarossa, M.C., Tucci,
S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer, Heidelberg (2002)

14. Skadron, K., Martonosi, M., August, D.I., Hill, M.D., Lilja, D.J., Pai, V.S.: Challenges in
computer architecture evaluation. Computer 36, 30–36 (2003)

15. Eeckhout, L., Nussbaum, S., Smith, J., De Bosschere, K.: Statistical simulation: Adding
efficiency to the computer designer’s toolbox. IEEE Micro 23, 26–38 (2003)

16. Varatkar, G., Marculescu, R.: On-chip traffic modeling and synthesis for MPEG-2 video
applications. IEEE Trans. on Very Large Scale Integration Systems 12, 108–119 (2004)

17. Thid, R., Sander, I., Jantsch, A.: Flexible bus and NoC performance analysis with config-
urable synthetic workloads. In: Proc. of the Conference on Digital System Design, pp. 681–
688 (2006)

18. Mahadevan, S., Angiolini, F., Storgaard, M., Olsen, R.G., Sparso, J., Madsen, J.: A network
traffic generator model for fast network-on-chip simulation. In: DATE. Proc. of the Confer-
ence on Design, Automation and Test in Europe, pp. 780–785 (2005)

19. Liu, Y., Chakraborty, S., Ooi, W.T.: Approximate VCCs: a new characterization of multime-
dia workloads for system-level MpSoC design. In: DAC. Proc. of the conference on Design
Automation, pp. 248–253 (2005)

20. Maxiaguine, A., Zhu, Y., Chakraborty, S., Wong, W-F.: Tuning SoC platforms for multimedia
processing: identifying limits and tradeoffs. In: CODES-ISSS. Proc. of the Int. conference
on Hardware/software codesign and system synthesis, pp. 128–133 (2004)

21. Gerstlauer, A., Yu, H., Gajski, D.D.: RTOS modeling for system level design. In: DATE.
Proc. of the Conference on Design, Automation and Test in Europe, 10130 (2003)

22. Hessel, F., da Rosa, V.M., Reis, I.M., Planner, R., Marcon, C.A.M., Susin, A.A.: Abstract
RTOS modeling for embedded systems. In: RSP’04. Proc. of the 15th IEEE International
Workshop on Rapid System Prototyping, pp. 210–216. IEEE Computer Society Press, Los
Alamitos (2004)

23. Lavagno, L., et al.: A time slice based scheduler model for system level design. In: DATE.
Proc. of the Conference on Design, Automation and Test in Europe, pp. 378–383 (2005)

Resource Conflict Detection in
Simulation of Function Unit Pipelines

Pekka Jääskeläinen, Vladimı́r Guzma, and Jarmo Takala

Department of Information Technology
Tampere University of Technology

P.O. Box 553
FIN-33101 Tampere

Finland
{pekka.jaaskelainen,vladimir.guzma,jarmo.takala}@tut.fi

Abstract. Processor simulators are important parts of processor design toolsets
in which they are used to verify and evaluate the properties of the designed pro-
cessors. While simulating architectures with independent function unit
pipelines using simulation techniques that avoid the overhead of instruction bit-
string interpretation, such as compiled simulation, the simulation of function unit
pipelines can become one of the new bottlenecks for simulation speed.

This paper evaluates commonly used models for function unit pipeline re-
source conflict detection in processor simulation: a resource vector based-model,
and an finite state automata (FSA) based model. In addition, an improvement to
the simulation initialization time by means of lazy initialization of states in the
FSA-based approach is proposed. The resulting model is faster to initialize and
provides equal simulation speed when compared to the actively initialized FSA.
Our benchmarks show at best 23 percent improvement to the initialization time.

1 Introduction

Processor simulators possess different level of accuracy depending on their purpose.
Instruction set simulation is mainly used for program verification and development in
cases which do not require detailed modeling of timing. More accurate cycle-based sim-
ulators can produce cycle counts and utilization statistics for directing processor design
space exploration – a process of finding the most suitable processor architecture for
the applications at hand. In automated design space exploration of application-specific
processors, the number of examined candidate architectures can reach thousands, thus
the time it takes to produce the utilization data and cycle counts for each explored ar-
chitecture can affect the total exploration time dramatically.

Structural hazards are situations in which multiple operations or instructions try to
use the same processor resource simultaneously. Commonly, structural hazards result
in processor stall cycles in which the processor waits mostly idle for the hazard to
resolve. Cycle-accurate simulators detect these stall cycles and model them accurately.
At minimum, the stall cycles should be counted and added to the total cycle count.
On the other hand, some architectures, such as the Transport Triggered Architectures
(TTA) [1] do not provide hardware locking support in case of structural hazards. In this

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 233–240, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

234 P. Jääskeläinen, V. Guzma, and J. Takala

case, the detection of structural hazards during simulation is a fundamental part of the
program verification process.

Simulation of statically scheduled architectures with relatively simple control logic,
such as VLIWs and TTAs, concentrates on simulating the data transports between func-
tion units and register files, the functionality of operations in function units, and the
function unit latencies. In this type of simulators, especially if the simulation over-
head of instruction decoding phase is avoided, simulating the function units and their
pipelines can become the new bottleneck for simulation speed.

This paper evaluates models to detect function unit pipeline resource conflicts in
cycle-accurate simulation: a resource vector based-model and an finite state automata
(FSA) based model. Finally, an improvement to the simulation initialization time by
means of lazy initialization of states in the FSA-based approach is proposed and evalu-
ated. Using this model, our benchmarks show that up to 23 percent improvement to the
simulation initialization time can be achieved.

The rest of paper is organised as follows. Section 2 analyses existing solutions for
improving processor simulation speed. Section 3 gives brief overview of common book
keeping methods for structural hazard detection during instruction scheduling and sim-
ulation. Section 4 describes our test setup, followed by Section 5 with results from
the performed experiments. Section 6 concludes the work and outlines future research
directions.

2 Related Work

Several research papers discuss the techniques to avoid the instruction bit string in-
terpretation overhead during simulation. These techniques are commonly referred to
as “compiled simulation”. For example, Shade is a simulator which includes a tech-
nique for translating the simulated instructions dynamically to host instructions during
simulation and caching the translated instructions for later execution [2]. However, the
presented work is a simulator with functional accuracy, as detecting structural hazards
and other microarchitectural details required for cycle-accuracy are not discussed.

JIT-CCS technique applies just-in-time (JIT) compilation, common in Java virtual
machines, to instruction set simulation. This technique removes the limitation of trans-
lating simulator not capable of simulating self-modifying code [3]. Use of JIT tech-
niques for simulation is explored also in DynamoSim, which improves the simulator
flexibility by combining interpretive and compiled techniques by compiling only parts
of the simulation that benefit the most [4]. The paper also extends the scope of the sim-
ulation compilation from basic blocks to traces to exploit better the instruction-level
parallelism capabilities of the host processor.

FastSim uses the idea of compiled simulation in detailed out-of-order microarchitec-
tural simulation [5]. The main contribution of the paper is a technique to “memoize”
microarchitectural configurations and “fast-forward” the actions to the processor state
when the simulation enters a previously executed microarchitectural configuration. The
idea is extended in [6] with a language for easy implementation of this type of “fast-
forwarding” simulators.

Resource Conflict Detection in Simulation of Function Unit Pipelines 235

Pees, Hoffman, and Meyr present an architecture description language LISA, which
allows generating compiled processor simulators for several architectures automatically
[7,8]. The resulting simulators are cycle-accurate thanks to the capabilities of the lan-
guage to allow detailed modeling of pipeline resources used by the instructions. Similar
work is presented in [9] in which ANSI C is used to model the instructions to avoid a
new modeling language.

An interesting simulation speedup technique worth noting is “token-level simula-
tion” [10] and “evaluation reuse” [11]. The principle of these techniques is to simulate
the program first in functional level for obtaining the basic block traces. Using the basic
block traces, the accurate cycle count is produced by evaluating the effects of each ba-
sic block to the processor pipeline state but without simulating the actual functionality
again since it has already been performed in the previous faster pass. This technique
seems very promising for speeding up the collection of the total cycle counts but does
not produce cycle-accurate simulation for exact timing or debugging features such as
cycle-stepping, due to the separation of the functional and timing simulation.

Literature covering techniques for speeding up processor simulation, in general, is
widely available. However, avoiding the bottlenecks in simulation of architectures with
independent function unit pipelines is rarely discussed. This paper considers in partic-
ular the bottlenecks in simulating such architectures.

3 Structural Hazard Detection in Simulation

This section gives a brief overview of the most common methods for keeping book of
structural hazards during simulation or instruction scheduling.

3.1 Resource Vectors

Reservation table is a two-dimensional (2D) table with one dimension representing the
machine resources and the other one representing the latency cycles [12,13]. A resource
usage is marked by placing ‘X’ in the table cell at the position of the cycle and the
resource. The same information can be represented in a 1D structure called resource
vector. A column in this vector lists all resources that are reserved at a cycle [14].

When using this table for resource modeling, the simulator keeps book of the occu-
pied resources at each cycle of the simulation in a composite resource vector. Before
an operation or instruction is to be executed in the simulator, conflicts are detected by
comparing the composite resource vector to the resource usage of the candidate oper-
ation. In case there are overlapping resource usages between the candidate operation’s
resource vector and the composite vector, a structural hazard is detected. Otherwise, the
composite vector is updated to reflect the resources occupied by the started operation.

3.2 Finite State Automata

The resource vector based structural hazard detection scheme can be refined to a more
advanced version by exploiting a Finite State Automaton (FSA) [15] for representing
all the legal state transitions in the processor.

236 P. Jääskeläinen, V. Guzma, and J. Takala

start
0 0 0 0 0 0
0 0 0 0 0 0

ADD
1 1 1 0 0 0
1 1 1 0 0 0MUL

1 1 0 0 0 0
1 1 0 0 0 0

NOP

1 0 0 0 0 0
1 0 0 0 0 0

NOP

NOP

Fig. 1. Resources modeled with a finite state automaton

In the FSA-based approach, each state is represented by a collision matrix, a 2D table
S, which contains rows for each operation and as many cycle columns as the longest
latency operation or instruction requires. The element S[o,t] is 0 only if operation o does
not “collide” when issued t cycles later after entering the state. That is, if S[o,1] = 0, the
operation o can be issued at the next cycle after entering state S, resulting in a transition
to state S′. The collision matrix of the target state is computed by shifting the collision
matrix of the starting state to the left (which simulates a cycle advance) and ORing it
with the issued operation’s collision matrix. [12]

Figure 1 illustrates an example automaton for a function unit with two operations:
ADD and MUL. The FSA can be used to quickly detect the legal operation sequences
that can be executed by the function unit. For example, in the automaton, it is easy
to notice that after executing ADD, it is possible to execute both ADD and MUL but,
after executing MUL, three cycles are needed (issue NOPs or stall the processor) before
issuing new operations.

The FSA-based conflict detection models are known to be very fast, but their initial-
ization time can be long due to large number of states in the automaton that need to
be built based on the operation resource usage patterns. This leads to an optimization
to the FSA-based approach which is also evaluated in this paper. One of the evaluated
models is an FSA-based model in which the states are built “lazily” the first time they
are entered, hoping to reduce the initialization time to a minimum. The optimization
is derived from the observation that in many cases only the minority of the states are
visited by the simulated program, thus, the construction time for the unused states is
wasted.

4 Test Setup

We evaluated different models for function unit resource conflict detection during sim-
ulation by implementing them in our TTA simulator [16] and executing synthetic sim-
ulations of function units using these models.

The initialization times were evaluated by initializing each model 100 000 times in
a row and the total time was measured.

The simulation speed of each model was measured by simulating sequences of oper-
ations and by measuring the total real time it took to simulate the operation sequence.
Each operation in each function unit was executed in round-robin fashion in successive
cycles with total of 10 000 000 operation executions. All resource conflicts reported by
the models were caught and ignored.

The measurements were made in a Pentium 4 CPU with 3.4 GHz clock and 1 GB of
RAM. The operating system was Ubuntu Linux 6.10, with GNU GCC compiler version

Resource Conflict Detection in Simulation of Function Unit Pipelines 237

0 1 2
MUL R A A+W

Fig. 2. Resource vector for multiplication with three resources R, A and W

4.1.1-13ubuntu5. The compiler optimization switch used to compile the models was
’-O3’. All the tests were executed under equal overall system load after a fresh boot.
Each test was run three times in a row and the best result was picked. Picking the best
result instead of, for example, the average, allowed us to evaluate the peak speed each
model can reach. However, the differences between the results were negligible.

The following conflict detection models were evaluated:

none. A model without conflict detection. This model simulates only the operation
latency, but does not detect if there are conflicting pipeline resource usages between
started operations. This model could be used in quick design space exploration.

vectors. The traditional resource vector-based approach for conflict detection. It main-
tains the composite vector and checks resource conflicts against the composite vec-
tor each time an operation is started.

active FSA. Uses an FSA for conflict detection. FSA is fully constructed before start-
ing the simulation. The used construction algorithm is similar to the one presented
in [17].

In this model, the automaton is fully constructed before starting the simulation.
Therefore, in case of function units with complicated pipeline resource usage pat-
terns, an “state explosion” can happen, which lengthens the simulation initializa-
tion. The simulation itself should be very fast as conflicts are detected with a single
table lookup.

lazy FSA. Like “active FSA”, but the FSA is not fully constructed before starting the
simulation. Instead, only the start state is created and other states are created when
they are visited for the first time during simulation.

Our hypothesis is that this model should improve startup time when compared to
the active FSA model, but the simulation itself might be slower due to the need of
checking whether a required state exists and building one if the transition is valid.

Models were evaluated with the following function unit resource usage patterns try-
ing to cover the wide range of function units used in processors.

ALU. Arithmetic-logic unit with 18 integer operations. Latency of each operation is
one cycle.

MUL. A single-operation function unit that implements integer multiplication with
latency of 3. The operation uses three pipeline resources (symbols R, A, and W)
as illustrated in Fig. 2.

FPU. Function unit that models a floating-point unit. Its pipeline matches the one of
MIPS R4000 floating-point unit, as described in [18]. The unit includes floating-
point operations that share eight different pipeline stages. The double precision
floating-point operations range from a simple “absolute value” operation (latency
of two) to a long latency operation “square root” (latency of 112).

238 P. Jääskeläinen, V. Guzma, and J. Takala

Table 1. Count of created states in the active FSA model

FU states
MUL 3
ALU 2
FPU 258

The count of states in FSA affects the initialization time for the actively initialized
FSA-based simulation model. State counts for each function unit pipeline model are
listed in Table 1.

5 Results

Table 2 lists the startup times for each of the models and Table 3 shows the simulation
times. The simulation times do not include the model initialization time, but they do
include the time to simulate the actual functionality of the operation.

The startup and simulation times are compared to the model “none” to indicate the
slowdown compared to no conflict detection at all. This “baseline” represents an ideal
model without any conflict detection overhead.

The results show that the simplest conflict detection model using resource vectors
is relatively fast to initialize (still measured a slowdown of 32 to 45 percent), but its
simulation speed is at worst about 7.6 times slower than the FSA-based approaches.
The FSA-based conflict detection slowed the simulation down about 32 to 59 percent,
compared to the model with no conflict detection, while with resource vectors, the slow-
down was more drastic, from 736 to 1065 percent. The simulation results for lazy FSA
were identical to those of active FSA.

The lazy initialization of the FSA seemed to be a profitable optimization as it reduced
the overhead of building the states during initialization from 9 to 23 percent when com-
pared to the active FSA, while still providing equal simulation speed to the active FSA.

Table 2. Simulation startup times

none vectors active FSA lazy FSA
MUL 1.00 (5.7 s) 1.32 (7.5 s) 1.72 (9.8 s) 1.56 (8.9 s)
ALU 1.00 (38.3 s) 1.45 (55.5 s) 3.24 (124.4 s) 2.66 (101.8 s)
FPU 1.00 (116.0 s) 1.35 (157.0 s) 3.27 (379.4 s) 2.51 (290.6 s)

Table 3. Simulation times

none vectors active FSA lazy FSA
MUL 1.00 (2.0 s) 10.65 (21.3 s) 1.40 (2.8 s) 1.40 (2.8 s)
ALU 1.00 (2.2 s) 7.36 (16.2 s) 1.32 (2.9 s) 1.32 (2.9 s)
FPU 1.00 (5.8 s) 9.66 (56.2 s) 1.59 (9.2 s) 1.59 (9.2 s)

Resource Conflict Detection in Simulation of Function Unit Pipelines 239

Low initialization time is important especially during a processor design space explo-
ration with smaller test programs during which frequent short simulations of evaluated
architecture variations is usual.

6 Conclusion

In this paper, simulation models for detecting function unit pipeline resource conflicts
in simulation of architectures with independent function unit pipelines were evaluated.
The evaluated models included the traditional resource vector based approach, and an
approach that uses an finite state automaton (FSA) to detect resource conflicts quickly.

Additionally, an improvement to the FSA-based approach was proposed. In this “lazy
FSA” model, the states are not constructed at simulation initialization time, but at the
time they are used the first time, thus reducing the simulation initialization time in case
of complex resource usage patterns in the simulated function unit.

The different models were implemented and benchmarked using three different test
function units with resource usage patterns of varying complexity and with operations
with both short and long latencies. The conclusion from the benchmarks is that the
proposed “lazy FSA” approach, due to its reasonable initialization time combined with
good simulation speed, is a suitable default model for function unit simulation in a
processor simulator.

In the future, we plan to evaluate more techniques for speeding up the simulation of
statically scheduled architectures with simplified control logic, like VLIWs and TTAs.
Producing a very fast simulator especially for TTAs is quite challenging as it is not a
traditional instruction set architecture, thus cannot be easily mapped to the host instruc-
tion set by means of compiled simulation. In addition, its architecture is very close to its
microarchitecture, thus, even a functional simulation is forced to model quite low level
details. However, techniques like combining speed of functional simulation with accu-
racy of cycle-level simulation or the use of techniques such as “memoization” could be
interesting to adapt for our case [10,5].

Acknowledgement

This work has been supported in part by the Academy of Finland under project 205743
and the Finnish Funding Agency for Technology and Innovation under research funding
decision 40441/05.

References

1. Corporaal, H.: Microprocessor Architectures: from VLIW to TTA. John Wiley & Sons,
Chichester (1997)

2. Cmelik, B., Keppel, D.: Shade: a fast instruction-set simulator for execution profiling. In:
Proc. SIGMETRICS ’94, Nashville, Tennessee, May 1994, pp. 128–137. ACM Press, New
York (1994)

3. Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., Hoffmann, A.: A universal
technique for fast and flexible instruction-set architecture simulation. In: Proc. DAC ’02,
New Orleans, Louisiana, June 2002, pp. 22–27. ACM Press, New York (2002)

240 P. Jääskeläinen, V. Guzma, and J. Takala

4. Poncino, M., Zhu, J.: Dynamosim: a trace-based dynamically compiled instruction set simu-
lator. In: Proc. ICCAD ’04, San Jose, CA, November 2004, pp. 131–136. IEEE/ACM Press,
New York (2004)

5. Schnarr, E., Larus, J.R.: Fast out-of-order processor simulation using memoization. In: Proc.
ASPLOS-VIII, San Jose, California, October 1998, pp. 283–294. ACM Press, New York
(1998), doi:10.1145/291069.291063

6. Schnarr, E.C., Hill, M.D., Larus, J.R.: Facile: a language and compiler for high-performance
processor simulators. In: Proc. PLDI ’01, Snowbird, Utah, June 2001, pp. 321–331. ACM
Press, New York (2001)

7. Pees, S., Hoffmann, A., Meyr, H.: Retargeting of compiled simulators for digital signal pro-
cessors using a machine description language. In: Proc. DATE ’00, Paris, France, March
2000, pp. 669–673. ACM Press, New York (2000)

8. Pees, S., Hoffmann, A., Meyr, H.: Retargetable compiled simulation of embedded processors
using a machine description language. ACM T. Des. Autom. Electron. Syst. 5(4), 815–834
(2000)

9. Engel, F., Nührenberg, J., Fettweis, G.P.: A generic tool set for application specific processor
architectures. In: Proc. CODES ’00, San Diego, CA, pp. 126–130. ACM Press, New York
(2000)

10. Kim, J.K., Kim, T.G.: Trace-driven rapid pipeline architecture evaluation scheme for asip
design. In: Proc. ASPDAC ’03, Kitakyushu, Japan, pp. 129–134. ACM Press, New York
(2003)

11. Kim, H.Y., Kim, T.G.: Performance simulation modeling for fast evaluation of pipelined
scalar processor by evaluation reuse. In: Proc. DAC ’05, San Diego, CA, June 2005, pp.
341–344. ACM Press, New York (2005)

12. Davidson, E.S., Shar, L.E., Thomas, A.T., Fatel, J.H.: Effective control for pipelined com-
puters. In: COMPCON75 Digest of Papers, February 1975, pp. 181–184. IEEE Computer
Society Press, Los Alamitos (1975)

13. Faraboschi, P., Fisher, J.A., Young, C.: Instruction scheduling for instruction level parallel
processors. In: Proc. IEEE, Washington, DC, vol. 89, pp. 1638–1659. IEEE Computer Soci-
ety Press, Los Alamitos (2001)

14. Bradlee, D.G., Henry, R.R., Eggers, S.J.: The marion system for retargetable instruction
scheduling. In: Proc. PLDI ’91, Toronto, Ontario, Canada, June 1991, pp. 229–240. ACM
Press, New York (1991)

15. Cormen, T.H., Leiserson, C.E., R.L.R.: Introduction to Algorithms. The MIT Press, Cam-
bridge, Massachusetts (1999)

16. Jääskeläinen, P.: Instruction Set Simulator for Transport Triggered Architectures. Mas-
ter’s thesis, Department of Information Technology, Tampere University of Technology,
Tampere, Finland, P.O.Box 553, FIN-33101 Tampere, Finland (Sepember 2005), See
http://tce.cs.tut.fi/

17. Bala, V., Rubin, N.: Efficient instruction scheduling using finite state automata. Int. Journal
of Parallel Programming 25(2), 53–82 (1997)

18. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd edn.
Morgan Kaufmann Publishers, San Francisco (2003)

http://tce.cs.tut.fi/

A Modular Coprocessor Architecture for
Embedded Real-Time Image
and Video Signal Processing

Holger Flatt, Sebastian Hesselbarth, Sebastian Flügel, and Peter Pirsch

Institut für Mikroelektronische Systeme,
Gottfried Wilhelm Leibniz Universität Hannover,

Appelstr. 4, 30167 Hannover, Germany
{flatt,hesselbarth,fluegel,pirsch}@ims.uni-hannover.de

Abstract. This paper presents a modular coprocessor architecture for
embedded real-time image and video signal processing. Applications are
separated into high-level and low-level algorithms and mapped onto a
RISC and a coprocessor, respectively. The coprocessor comprises an op-
timized system bus, different application specific processing elements and
I/O interfaces. For low volume production or prototyping, the architec-
ture can be mapped onto FPGAs, which allows flexible extension or
adaption of the architecture. Depending on the complexity of the copro-
cessor data paths, frequencies up to 150 MHz have been achieved on a
Virtex II-Pro FPGA. Compared to a RISC processor, the performance
gain for an SSD algorithm is more than factor 70.

1 Introduction

In recent years, integration of smart image and video processing algorithms in
sensor devices increased. Applications like object detection, tracking, and classi-
fication demand high computing performance. It is desirable to have embedded
signal processing integrated in the sensor, e.g. video cameras, to perform image
or video compression, filtering, and data reduction techniques. Moreover, flex-
ibility is mandatory where new applications have to be supported or existing
code needs to be modified.

General purpose processors can be used as a first approach for embedded real-
time image and video signal processing. They comprise instruction set extensions
like SSE, which allow SIMD operations [1], but efficiency of execution units
remains low [2]. Moreover, due to their high power consumption, they are not
suitable for embedded systems.

As an alternative to general purpose processors, digital signal processors
(DSP) provide high performance at low power consumption. While exploiting
the inherent parallelism of algorithms, they are inferior to application specific
arithmetic cores [3].

Dedicated arithmetic cores provide highest optimization potential for a spe-
cific application, but lack flexibility if support to different applications is required.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 241–251, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

242 H. Flatt et al.

Design and modification of dedicated units are time-consuming, while their
reusability is low.

The analysis of the algorithmic hierarchy of image and video processing ap-
plications yields three layers of hardware abstraction [4]. It is advantageous if
the hardware architecture combines processing cores that are optimized for the
execution of algorithms associated to one of the layers. High-level algorithms
(HLA) consist of data depended decisions and control operations. They require
high flexibility. A RISC processor supports mapping of complex HLAs with low
development effort if a compiler is available. Low-level algorithms (LLA) com-
prise simple computing operations that need high processing power. They are
regular and have high potential for parallel execution. A coprocessor that is opti-
mized for processing of low-level algorithms is superior to a RISC. Medium-level
algorithms (MLA) are situated between HLAs and LLAs. Depending on their
complexity, they can be executed either on a RISC or on a coprocessor.

In [5] a special programmable coprocessor was combined with a RISC. This
coprocessor is optimized for processing of low-level algorithms. Due to its com-
plexity, adaptations and extensions of the architecture are time-consuming.

In this paper, a modular coprocessor architecture for a generic embedded
system is proposed, which can be easily modified or extended for different ap-
plications. This embedded system shown in figure 1 comprises a RISC core, a
reconfigurable coprocessor, data I/O, debug, and memory interfaces.

Memory

Host PC
(optional)

Embedded System

CoprocessorRISC

I/OSensor
Actuator

Peripheral

Fig. 1. Embedded architecture and peripheral units

The architecture is designed for accelerating different image and video signal
processing algorithms. The combination of RISC and coprocessor considers al-
gorithmic complexity of embedded applications [6]. While dedicated processing
elements inside the coprocessor compute time-consuming low-level operations,
irregular high-level parts of the application are executed on a RISC core.

Commonly used and feature-rich, commercial system-on-chip bus systems like
AMBA AHB [7] require complex finite state machines for master units. To reduce
modularization efforts for peripheral and coprocessor units, a simplified multi-
layer communication bus is introduced.

Due to their reconfigurability, the focus is on FPGA implementations, al-
though the architecture is also suitable for ASIC implementation. Actual FPGAs
allow real-time signal processing of sophisticated algorithms. They provide high

A Modular Coprocessor Architecture 243

speed communication interfaces, internal memories and arithmetic cores [8] [9].
Moreover, some FPGAs contain embedded RISC processors [10]. These embed-
ded cores allow the integration of a RISC with a coprocessor in one device [11].

This paper is organized as follows. Chapter 2 gives a brief description of the
proposed coprocessor architecture and the communication approach. Chapter
3 shows an application example and the design flow for dedicated processing
elements. Subsequently, chapter 4 presents verification and results. Conclusions
and an outlook to future work are given in chapter 5.

2 Embedded Coprocessor Architecture

2.1 Communication Approach

In order to utilize dedicated hardware acceleration units, a sufficient communi-
cation structure between RISC and coprocessor is needed. If the processes on the
RISC and the coprocessor are frequently synchronized, communication latencies
result in a high performance reduction. Aiming at a lower synchronization rate,
an hierarchical control approach reduces the communication overhead [12]. In-
stead of calling and synchronizing single coprocessor micro instructions, e. g.
multiply-accumulate, the RISC calls and synchronizes low-level algorithms that
consist of a set of micro instructions.

Figure 2 shows the structure of the proposed communication scheme, which
includes a Dynamic Resource Scheduler for converting medium-level function
calls (MLA) into a set of low-level function calls (LLA).

Control Unit
(Data transfers)

Application

(HLAs)

Dynamic
Resource
Scheduler

Processing
Element 1

Processing
Element n

MLA calls

LLA calls

interrupt requests

RISC Coprocessor

. . .

Fig. 2. RISC/coprocessor communication approach with Dynamic Resource Scheduler

The RISC transfers MLA function calls to the Dynamic Resource Scheduler.
The Scheduler creates a list of LLA function calls and forwards them to the asso-
ciated Processing Elements. Different Processing Elements can work in parallel
if no data and resource conflicts occur. The Processing Elements send interrupt
requests to the Scheduler after finishing their computation. After a MLA function

244 H. Flatt et al.

call has been processed, the Scheduler signals the application through interrupt
request.

The Dynamic Resource Scheduler can be implemented in software if saving
of hardware resources is intended, or in hardware if reduction of communication
cost between RISC and coprocessor is highly important. In this work, a software
approach is used.

2.2 Architecture Overview

The coprocessor carries out LLAs computations. The proposed modular ap-
proach currently supports several dedicated Processing Elements executing dif-
ferent LLAs [11]. These autonomous working units are compact and have high
potential for optimization. Replacement and extension of PEs demand low de-
velopment effort. Function calls and data transfers are performed via a central
system bus. Synchronization of PEs is managed by a Dynamic Resource Sched-
uler instead of using semaphores [13].

A Control Interface connects the RISC to the system bus of the coprocessor to
allow access to all resources. For the current design exploration phase, the RISC
has been supplemented by a Host PC, which is attached to an FPGA-based
emulation system. This allows HW/SW co-emulation during initial phases of
application development to evaluate HLAs, LLAs, and bus communication in
detail.

On-chip memories can be used to reduce data transfer latencies. Memory
modules have been implemented for the proposed system bus with configurable
data and address widths prior to logic synthesis. Additionally, external memories
like DDR-SDRAM can be accessed through external memory interface modules.

A DMA Unit can be integrated if an application requires large amounts of data
transferred between different coprocessor memories. The DMA Unit is controlled
by the Dynamic Resource Scheduler. The resulting coprocessor architecture is
shown in Figure 3.

MIB

Coprocessor

PE 1 . . . PE m

External
Memory

Internal
Memory

External
MEM IF

Control
Interface

DMA
Unit

Host PC /
RISC

Fig. 3. Modular coprocessor architecture

A Modular Coprocessor Architecture 245

2.3 Module Interconnect Bus (MIB)

A key component in any System-on-Chip (SoC) design is the interconnection
structure, which is used for inter-module communication . The bus architecture is
the most popular integration choice for SoC designs today. The main advantages
of buses are flexibility and extensibility [14].

Commercial bus systems allow high speed communication between different
units. Common SoC busses like AMBA AHB Bus [7] and Processor Local Bus
(PLB) [15] are powerful. But both have multi-state protocols, which result in
complex development and integration of new bus modules.

Moreover, the majority of applications only requires a small subset of the
specified bus features [16]. If full compatibility to the bus protocol is needed,
hardware overhead is unavoidable. For the modular coprocessor architecture
approach, these commercial bus systems are not suitable.

Therefore, a small, flexible, and powerful bus system called Module Intercon-
nect Bus (MIB) was developed. It allows rapid development of new bus com-
ponents. Timing conditions of the bus protocol are simple. The communication
protocol of the MIB is based upon synchronous transmission with double hand-
shake mechanism. Valid bus transfers occur at every rising clock edge if the
sending module asserts a valid signal and the receiving module is responding
with an accept signal.

Two temporally independent sub-busses are used for data transmission. Read
requests and write operations are transmitted through a Request/Write Bus.
Data read operations are sent over a Read Bus. All transfers are initiated by
master modules while slave modules receive transfer requests. Both sub-busses
allow multiple layers to provide independent parallel transfers. Control and data
flow is managed by two bus arbiters.

A slave may induce any arbitrary delay to a read operation as long as correct
sequential order of responses is sustained. This decoupling allows integration
of pipeline stages in both sub-busses, which is very suitable for complex SoCs
running at high clock frequencies. A Reorder Scheduler on the Read Bus is used
to keep in-order data delivery from slaves with different latencies. Figure 4 shows
the structure of the Module Interconnect Bus.

3 Processing Element Design

3.1 PE Example Application

An exemplary processing element for implementation of an image classification
algorithm based on a support vector machine (SVM) [17] is described in order to
demonstrate the modular coprocessor architecture. The purpose of this algorithm
is to classify a test image to a given set of classes.

A main processing task of the algorithm is to compare the test image x with
all reference images yj . Input images of 64x64 pixels with 16 bit fix-point values
per pixel are used and a total of 2520 reference images are available.

246 H. Flatt et al.

Master 1

Master n
.
..

Slave 1

Slave m
.
..

Reorder
Scheduler

BUF

BUF BUF

BUF

BUF

BUF

BUF

BUF

Read Bus Request / Write BusDevices

Req/Write
Arbiter

Fig. 4. Module Interconnect Bus architecture

The analysis of the algorithm has shown that most of computation time is
needed for calculating the sum of square differences function ssdj .

ssdj =
∑

i

(xi − yj,i)
2

Figure 5 shows pseudo assembler code of the SSD function for an unoptimized
RISC core. After initializing the loop counters, the core operations are executed
in lines 5-8. Assuming one cycle per operation, this pseudo code yields four
cycles per loop. Considering loop unrolling, only every fourth branch operation
is counted. For the given example of 2520 reference images with 64x64 pixels,
the code would take roughly 47M cycles to finish.

1: MOV Rj, #2520
2: ssdj_loop:
3: MOV Ri, #4096
4: ssdi_loop:
5: LD Rx, (Ax+)
6: LD Ry, (Ay+)
7: SUB Rx, Rx, Ry
8: MAC Ra, Rx, Rx

x4

...
21: SUB Ri, Ri, #4
22: BNZ ssdi_loop
23: ST (Ar+), Ra
24: DEC Rj
25: BNZ ssdj_loop

Fig. 5. Pseudo RISC code of SSD

A Modular Coprocessor Architecture 247

3.2 SSD Data Path Architecture

Processing Elements carry out the LLA computations in the coprocessor. Figure
6 shows a generic architecture of an autonomous PE. It comprises an MIB Slave
Interface, a Control Unit, an MIB Master Interface for accessing external data,
and a Data Path for performing computations. An Internal Memory can be
integrated into the PE when needed.

Internal
Memory Data Path

Slave +
Control Master

MIB

PE

Fig. 6. Generic Architecture of a Processing Element

Performing a computation task requires that the Dynamic Resource Scheduler
transfers function calls to the processing element via the MIB Slave Interface
first. A function call comprises data memory addresses and defines function
specific parameters. Afterwards the PE starts processing. Source data is taken
from external memories via the MIB bus or directly from internal memories if
available. After finishing computations, the PE sends an interrupt request to the
Dynamic Resource Scheduler.

For the exemplary algorithm, dedicated hardware can reduce number of clock
cycles as follows. The test image x is compared with each reference picture yj .
Loading from external memory is necessary only once if the image fits in internal
memory. Reference image data is loaded via the MIB Master Interface and is
processed by the PE as soon as available.

Data parallelism is exploited in order to increase the computation perfor-
mance. The level of maximal concurrency is limited by the data bus width of
both external memory and system bus.

Figure 7 shows the architecture approach. For this 64 bit example, four 16 bit
pixels from a reference image are loaded in parallel. These pixels are subtracted
from the corresponding pixels of the test image and squared afterwards. The
results are added by a tree of adders and accumulated in the last step. After
computing the whole sum of square differences, it is stored into internal memory.
To further increase hardware performance, a pipeline stage is inserted after each
operation.

248 H. Flatt et al.

- x

- x

- x

- x

+

+

+
+

Regxi
16

16

16

16

16

16

16

16

64

64

16

Reg Reg Reg Reg

yj,i

ssdj

Fig. 7. Sum of Square Differences architecture, example 64 bit

4 Verification and Results

For demonstrating the efficiency of the modular coprocessor architecture, the
ASIC verification system CHIPit Gold Edition Pro from ProDesign [18] was
used. CHIPit is used for emulation only. Real embedded processing demands a
more area and energy efficient platform. Figure 8 shows the system architecture.

Host
PC

CHIPit Gold Edition PRO

FPGA
1

FPGA
2

DDR RAM DDR RAM

Fig. 8. CHIPit Gold Edition Pro architecture

The CHIPit system comprises two Virtex II Pro XC2VP100-6 FPGAs. Each
of them is connected to 256 MB DDR RAM. User software running on an Host
PC can be used for executing high level algorithms and controlling the hardware
mapped on the FPGAs. A 528 Mbps connection is provided for communication
between Host PC and FPGAs.

In order to use both DDR RAMs, the coprocessor architecture was partioned
and mapped onto both FPGAs. The data width of the MIB was adjusted to 128
bit. Using two independent DDR RAMs allows simultaneous data transfers for
two Processing Elements.

Table 1 shows the synthesis results for coprocessors with different complexity.
Frequency decreases with increasing number of processing elements due to the
more complex place-and-route process for the 128 bit multilayer bus system.

A Modular Coprocessor Architecture 249

Table 1. Synthesis Results after Place and Route using one XC2VP100-6 FPGA

#SSD PEs Frequency Slices Block RAMs Multipliers
0 156 MHz 5581 23 0
1 151 MHz 8173 35 8
2 147 MHz 9930 47 16
3 133 MHz 12936 59 24
4 125 MHz 14785 71 32
5 119 MHz 16449 83 40

Computing the SSD application example involves loading of all reference data
from external memory. Therefore, maximum processing performance is limited
by the available external memory bandwidth [19]. The memory hierarchy of the
demonstration system supports memory transfers of 256 bit per cycle, which is
equal to SSD processing of sixteen 16 bit pixel per clock cycle. Table 2 shows the
processing performance running the SSD algorithm on a RISC and a coprocessor
containing two PEs, respectively. Compared to the RISC, the coprocessor needs
1/72 of the RISC clock frequency to achieve the same performance.

According to Amdahl’s law, speedup for the whole application is approxi-
mately 5 if 20% of the high level computations are remaining on the RISC.

Table 2. Performance for 2520 SSD computations with 4096 pixels (16 bit) per image

Platform Cycles Pixels / cycle
RISC 47M 0.222
2x 128 bit SSD PEs 645k 16

5 Conclusion

In this paper, a modular coprocessor platform is presented, which is easy to ex-
tend or modify to support a large range of applications. It allows adding support
for new applications without re-implementing all modules from scratch and can
be used as a framework for dedicated hardware architectures. The architecture
reaches feasible speed even on FPGAs with frequencies up to 150 MHz on a
Xilinx Virtex II-Pro.

The architecture approach is optimized for integration of dedicated appli-
cation specific processing elements. If several irregular low-level algorithms like
image warping must be processed by different PEs, a full programmable solution
might require less area.

Currently, the coprocessor is only accessible by a Host PC. Future work will
be focused on interfacing an external RISC with the coprocessor architecture.
To show the capabilities of the embedded architecture, more complex algorithms
and processing engines will be implemented.

250 H. Flatt et al.

References

1. Lee, R.: Multimedia extensions for general-purpose processors. In: IEEE Workshop
on Signal Processing Systems SiPS97 Design and Implementation, pp. 9–23. IEEE
Computer Society Press, Los Alamitos (1997)

2. Talla, D., John, L., Burger, D.: Bottlenecks in multimedia processing with SIMD
style extensions and architectural enhancements. IEEE Transactions on Comput-
ers 52, 1015–1031 (2003)

3. Vejanovski, R., Singh, J., Faulkner, M.: ASIC and DSP implementation of channel
filter for 3G wireless TDD system. In: 14th Annual IEEE International ASIC/SOC
Conference, Proceedings, pp. 47–51. IEEE Computer Society Press, Los Alamitos
(2001)

4. Pirsch, P., Stolberg, H.J.: VLSI implementations of image and video multimedia
processing systems. IEEE Transactions on Circuits and Systems for Video Tech-
nology 8, 878–891 (1998)

5. Jachalsky, J., Wahle, M., Pirsch, P., Capperon, S., Gehrke, W., Kruijtzer, W.,
Nuñez, A.: A core for ambient and mobile intelligent imaging applications. In:
IEEE International Conference on Multimedia & Expo (ICME), Proceedings, IEEE
Computer Society Press, Los Alamitos, CDROM (2003)

6. Paulin, P., Liem, C., Cornero, M., Nacabal, F., Goossens, G.: Embedded software in
real-time signal processing systems: application and architecture trends. In: Pro-
ceedings of the IEEE, vol. 85, pp. 419–435. IEEE Computer Society Press, Los
Alamitos (1997)

7. ARM: AMBA specification (rev. 2.0) (1999)
8. Xilinx: Xilinx website, http://www.xilinx.com
9. Altera: Altera website, http://www.altera.com

10. Xilinx: Virtex-II Pro and Virtex-II Pro X platform FPGAs: Complete data sheet
(2005)

11. Stechele, W., Herrmann, S.: Reconfigurable hardware acceleration for video-based
driver assistance. In: Workshop on Hardware for Visual Computing, Tübingen
(2005)

12. Jachalsky, J., Wahle, M., Pirsch, P., Gehrke, W., Hinz, T.: A coprocessor for in-
telligent image and video processing in the automotive and mobile communication
domain. In: IEEE International Symposium on Consumer Electronics, Proceedings,
pp. 142–145. IEEE Computer Society Press, Los Alamitos (2004)

13. Dejnožková, E., Dokládal, P.: Embedded real-time architecture for level-set-based
active contours. EURASIP Journal on Applied Signal Processing 2005, 2788–2803
(2005)

14. Lee, A., Bergmann, N.: On-chip communication architectures for reconfigurable
system-on-chip. In: IEEE InternationalConference on Field-Programmable Technol-
ogy, Proceedings, pp. 332–335. IEEE Computer Society Press, Los Alamitos (2003)

15. IBM: 64-bit processor local bus architecture specifications, version 3.5 (2001)
16. Cyr, G., Bois, G., Aboulhamid, M.: Generation of processor interface for SoC

using standard communication protocol. IEE Proceedings - Computers and Digital
Techniques 151, 367–376 (2004)

17. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
18. ProDesign: CHIPit Gold Edition Pro, http://www.uchipit.com
19. Ding, C., Kennedy, K.: The memory bandwidth bottleneck and its amelioration by

a compiler. In: 14th International Symposium on Parallel and Distributed Process-
ing (IPDPS), Proceedings, Washington, DC, USA, p. 181. IEEE Computer Society,
Los Alamitos (2000)

http://www.xilinx.com
http://www.altera.com
http://www.uchipit.com

High-Bandwidth Address Generation Unit

Humberto Calderón, Carlo Galuzzi,
Georgi Gaydadjiev, and Stamatis Vassiliadis

Computer Engineering Laboratory,
Electrical Engineering Dept., EEMCS, TU Delft, The Netherlands

{H.Calderon,C.Galuzzi,G.N.Gaydadjiev,S.Vassiliadis}@ewi.tudelft.nl
http://ce.et.tudelft.nl

Abstract. In this paper we describe an efficient data fetch circuitry
for retrieving several operands from a n-bank interleaved memory sys-
tem in a single machine cycle. The proposed address generation (AGEN)
unit operates with a modified version of the low-order-interleaved mem-
ory access approach. Our design supports data structures with arbitrary
lengths and different (odd) strides. A detailed discussion of the 32-bit
AGEN design aimed at multiple-operand functional units is presented.
The experimental results indicate that our AGEN is capable of pro-
ducing 8 x 32-bit addresses every 6 ns for different stride cases when
implemented on VIRTEX-II PRO xc2vp30-7ff1696 FPGA device using
trivial hardware resources.

1 Introduction

Nowadays, performance gains in computing systems are achieved by using tech-
niques such us pipelining, optimized memory hierarchies [1], customized func-
tional units [2], instruction level parallelism support (e.g. VLIW, Superscalar)
and thread level parallelism [3] to name a few. These time and space parallel
techniques require the design of optimized address generation units [4,5,6,7] ca-
pable to deal with higher issue and execution rates, larger number of memory
references, and demanding memory-bandwidth requirements [8]. Traditionally,
high-bandwidth main memory hierarchies are based on parallel or interleaved
memories. Interleaved memories are constructed using several modules or banks.
Such structures allow distinct banks access in a pipelined manner [9]. In this pa-
per we propose an AGEN for efficient utilization of n-way-interleaved main mem-
ory containing vector data, e.g. supporting kernels like SAD (sum of absolute
differences) and MVM (matrix-vector multiply) operations. More specifically,
the main contributions of this paper are:

– An AGEN design capable of generating 8 x 32-bit address in a single cy-
cle. In addition, arbitrary memory sequences are supported using only one
instruction.

– An organization that uses optimized Boolean equations to generate the 8
offsets instead of an additional adders stage.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 251–262, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

252 H. Calderón et al.

– An FPGA implementation of the proposed design able to fetch 1.33 Giga
operands per second from an 8-way-interleaved memory system using only
3% of the targeted device.

The remainder of this paper is organized as follows. Section 2 outlines the nec-
essary background on interleaved-memory systems. Section 3, presents the con-
sidered vector architecture, the memory interleaving mechanism and the design
of the AGEN Unit. In Section 4, we discuss the experimental results in terms
of used area and latency. Finally, in Section 5 conclusions and future work are
presented.

2 Background

The use of multiple memory banks for providing sufficient memory bandwidth
is the key element when memory system performance is evaluated [10]. The
accessing of consecutive data elements separated by a fixed addressing distance
is called a stride. The stride describes the relationship between the operands and
their addressing structure. A memory organized with several banks which store
elements in a stride manner is called an interleaved memory [11,12].

Given that an n-bit address memory field can be divided into 1) memory-unit-
number and 2) address in memory unit (memory-address), two main addressing
techniques arise from this basic address division as depicted on Figure 1.

(a) High interleaved addressing mapping utilizes the low address bits v as
memory-address in the unit, while the higher bits u represent the memory-
unit-number. This technique is used by the traditional scalar processors with
multiple memory pages.

(b) Low interleaved memory mapping use the low address bits u to point out
the memory-unit-number, while the higher memory bits v are the memory-
address.

Memory Unit Number Address in a memory unit

u v

(a) High Interleaved address mapping (b) Low Interleaved address mapping

Address in a memory unit Memory Unit Number

uv

Fig. 1. Interleave memory formats

The data in low-interleaved-address mapping is distributed in a round-robin
like fashion among the memory banks. For example, in the memory system with
8 banks and data structure with stride =1, as presented in Figure 2, word 0 is
stored in bank 0, word 1 is stored in bank 1. In general, word x is located in
bank x MOD 8. In this figure, one Major Cycle (memory latency) is subdivided
in 8 Minor Cycles. The retrieving of 8 consecutive elements will take one Major
Cycle and 7 additional Minor Cycles. This is due to the fact that the eight
consecutive elements from the memory banks are retrieved in parallel. Those

High-Bandwidth Address Generation Unit 253

read values are stored in intermediate data registers from which are issued to
the functional units in a pipelined manner (using 7 additional Minor Cycles).
With this memory architecture the retrieving of x single-word elements will take
Major Cycle + (x − 1) Minor Cycles.

Read of
Word 24

Word 0 Word 8 Word 16 Word 24 Word 32 Word 39 Word 47 Bank 0

Word 1 Word 9 Word 17 Word 25 Word 33 Word 40 Word 48 Bank 1

Word 2 Word 10 Word 18 Word 26 Word 34 Word 41 Word 49 Bank 2

Word 3 Word 11 Word 19 Word 27 Word 34 Word 42 Word 50 Bank 3

Word 4 Word 12 Word 20 Word 28 Word 35 Word 43 Word 51 Bank 4

Word 5 Word 13 Word 21 Word 29 Word 36 Word 44 Word 52 Bank 5

Word 6 Word 14 Word 22 Word 30 Word 37 Word 45 Word 53 Bank 6

Word 7 Word 15 Word 23 Word 31 Word 38 Word 46 Word 54 Bank 7

R1

R2

R3

R5

R6

R4

R8

R7

R9

R10

R11

R12

R13

R16 R24

R14

R15

R17

R18

R0

Minor Cycle

Major Cycle

• • •

Fig. 2. Interleaved memory pipelined access to memory

3 AGEN Unit Design

We consider a vector co-processor consisting of a group of reconfigurable func-
tional units [13,14] coupled to a core processor. Figure 3 presents this orga-
nization. An arbiter is used to distribute the instructions between the vector
unit and the scalar processor following the paradigm proposed in [15]. Please
note that many current platforms implement similar approaches, e.g. the Fast
Simplex Link interface and the Auxiliary Processor Unit (APU) controller for
MicroBlaze and PowerPC IP cores [16]. The memory banks presented in Fig-
ure 3 are built using dual ported memories, e.g. BRAMs [17] in case of FPGA
implementation, shared by both processors, the scalar and the vector. One port
of the BRAM is used by the scalar processor as a linear array memory organi-
zation with high interleaved address mapping. The second port is used by the
vector unit. The memory access from the vector processor side requires ded-
icated AGEN unit (different from the one embedded into the core processor)
that generates the addresses for the 8-way interleaved memory organization in
the correct sequence order. The vector data is distributed in an interleaved-way,
scattered by the stride values, that requires 8 different addresses for each mem-
ory access. The AGEN unit is configured to work with single or multiple groups
(with the same stride) of streamed data using a single instruction. The AGEN
special instruction configures the base addresses, the stride and the length of
the particular streaming data format. The memory accesses can be performed

254 H. Calderón et al.

in parallel with the execution phase of a previous iteration using the decoupled
approach as presented in [2].

CORE

PROCESSOR

Vector
Register

Files

Vector
Register

Files

Vector
Register

Files

Register
Files

Memory
Banks

Memory
Banks

Memory
Banks

Memory
Banks

Memory
Banks

Memory
Banks

Memory
Banks

Swith

Vector
Register

Files

Vector
Register

Files

Vector
Register

Files

Hardware
Accelerators

N-way
Bus

N-way
Bus

N - way
Bus

Data
bus

Control
bus

8-way
interleaved

Instruction
bus

Arbiter Control

Address
Generation Unit

addresses

Fig. 3. Block diagram of the reconfigurable Custom Computing Unit

3.1 Memory-Interleaving Mechanism

In this paragraph the mechanism to retrieve n data elements in parallel is pre-
sented. Figure 4, shows eight different stride cases, with odd strides ≤ 15 for
eight memory banks. For example, the stride shown in case (b), is three. One
can see, that in all of the cases the data is uniformly distributed in the mem-
ory banks. This fact suggests the feasibility of an AGU capable to generate the
effective addresses of n data elements every major cycle. This can be formally
stated as follows:

n data elements stored in n memory banks can be retrieved in a single
major cycle if the stride is an odd integer and n is a power of two.

Otherwise stated this can be extended as follows:

n data elements stored in n memory banks can be retrieved in a single
major cycle if gcd(n,Stride)=1.

The notation gcd(a, b) is used for the greatest common divisor. Two integers
a, b are relatively prime if they share no common positive factors (divisors) ex-
cept of 1, e.g gcd(a, b) = 1.

Extension to the general case: Let’s consider n banks of memory each holding
m memory cells. The m×n memory array can be represented as a matrix [m×n]
where each column corresponds to a memory bank. In addition, the cell i of the
memory bank j corresponds to the matrix element with indexes (i, j). We denote

High-Bandwidth Address Generation Unit 255

Fig. 4. Example of 8-way interleaved memory banks with odd strides ≤ 15

this matrix as A and consider n = 2h and m for its dimensions, with h, m ∈ N.
In addition, the stride of the data structures stored on the memory is an integer
Str = 2q + 1, q ∈ N.

From now on, the data stored in the memory banks will be considered as ma-
trix A elements. Let the n consecutive data elements placed in different memory
banks be denoted by:

a0, ..., an−1. (1)

Remark 1. Every element aα, with α = 0, ..., n − 1, is identified in the matrix
by its row-index i, with i = 0, 1, ..., m − 1, and its column-index j, with j =
0, 1, ..., n−1. This means that there exists a one-to-one relation among aα and the
indexes couple (iα, jα). Additionally, the couple (iα, jα) can be used to represent
aα as a number in base n, obtainable as juxtaposition of iα as most significant
digit and jα as least significant digit. The two indexes can also be used in a
base 10 representation. Therefore, we have the following chain of equivalent
representations for aα:

aα ↔ (iα, jα) ↔ (iαjα)|n ↔ (niα + jα)|10. (2)

As an example, Table 1 shows the chain of representations as defined in (2) for
a case where n = 8 and Str = 3.

Remark 2. Without loss of generality, we can assume that the first element a0

stored in the matrix remains at position (i0, j0) = (0, 0).

Lemma 1. The number of rows necessary to hold n elements with stride Str =
2q + 1, q ∈ N is Str.

Proof. The number of cells (�cell) necessary to store n elements with stride Str
is �cell = n + (Str − 1) n = n(2q + 1). Therefore, the number of rows is

�cell mod n = n(Str) mod n = Str. (3)

�

256 H. Calderón et al.

Table 1. Correspondence aα ↔ (iα, jα) ↔ aα|n ↔ aα|10 for n = 8 and Str = 3

Element aα Row-Index iα Column-Index jα aα|8 aα|10

a0 0 0 00 0

a1 0 3 03 3

a2 0 6 06 6

a3 1 1 11 9

a4 1 4 14 12

a5 1 7 17 15

a6 2 2 22 18

a7 2 5 25 21

Remark 2 and Lemma 1 imply that the necessary rows to store the n elements
with stride Str are:

{0, 1, ..., Str − 1} (4)

The n data aα can be defined recursively. If a0 = (i0, j0) the elements a2, ...,
an−1 can be recursively defined as follows:

aα = aα−1 + Str. (5)

Theorem 1. Let n be the number of elements aα, with α = 0..n − 1, stored in

a matrix A, m×n, with n = 2h. Let the stride be the integer Str ∈ N. If (iα, jα)
and (iβ , jβ) are the couples of indexes identifying aα and aβ in the matrix and
gcd(n, Str) = 1, we have:

jα �= jβ ∀α, β ∈ [0, ..., n − 1]. (6)

Proof. Without loss of generality, by Remark 2, we can assume (i0, j0) = (0, 0).
By contradiction let jα = jβ . We have two possible cases: (1) iα = iβ and (2)
iα �= iβ .

The first case is not possible: more precisely, if iα = iβ will lead to aα = aβ

since jα = jβ (see Remark 1).
In the second case: iα �= iβ . Firstly, by (4), it follows:

iβ − iα ∈ [0, Str − 1]. (7)

Without loss of generality we can assume β > α. By (5) we have:

aβ = aβ−1 + Str = aβ−2 + 2Str = ... = aα + xStr, (8)

with x ∈ N and x < n; it is straightforward to show that x = β − α. By using
the representations in base 10 of aα and aβ (see (2)), the equation (8) becomes:

niβ + jβ = niα + jα + xStr, (9)

taking into account the assumption jα = jβ we can rewrite (9) as

n(iβ − iα) = x Str. (10)

High-Bandwidth Address Generation Unit 257

Since gcd(n, Str) = 1 and n divides the product x Str, it follows that n is a
divisor of x. This implies that: x = r n, with r ∈ N. Therefore x > n which
contradicts the original hypothesis. As a consequence, it must be that jα �= jβ ,
for all α, β ∈ [0, ..., n − 1]. �
Remark 3. The previous theorem can be reformulated saying that if n data ele-
ments are stored in n memory banks with a fixed stride Str and the gcd(n,Str) =
1, each data element is stored in a different memory bank.

Corollary 1. By Theorem 1 it follows that the data are stored in different
memory banks if n = 2h and Str is an odd integer and viceversa if n is an odd
integer and Str = 2h.

Example: Let’s consider the case (b) presented in Figure 4. In this example,
n = 8, the Str= 3. This is also the case considered in Table 1. Column 3 of Table
1, shows that each element of this data structure belongs to a different column
and therefore to a different memory bank. This follows by Theorem 1. If there
exist two elements aα, aβ with the same column index then there exists x < 8
such that: n(iβ − iα) = x(2q + 1) (q = 1 in this case). Considering that n = 8 in
our example, n(iβ − iα) can be either 8 or 16. The difference cannot be 0 since
in that case iα = iβ and therefore aα = aβ . As a consequence, we have two cases
8 = 3x or 16 = 3x and both equations don’t have an integer solution for x.

3.2 The AGEN Design

As stated in [18] effective address computation is performance-critical. The
AGEN unit described in this section generates eight addresses for fetching
data elements simultaneously from an 8-way interleaved memory system at high
speed. The AGEN is designed to work with multi-operand units [13,14] and uses
a special-purpose-instruction such as the ones presented in [19]. In Figure 5 an
example of such instruction is presented. The multiple base addresses in this
instruction are necessary for cases with multiple indices such as SAD and MVM
operations.

0 8 12 16 20 24 3128

Fig. 5. Compound Instruction

The 4-bit instruction fields depicted in Figure 5, define the registers containing
the addresses and/or the length and the stride parameters of the data structure
to be accessed. More precisely they are:

– Basei(i = 1, 2, 3). These registers contain the memory addresses that point
to the first elements of an data arrays to read or write in the interleaved
memory organization. For example, the minuend and subtrahend in the sum
of absolute differences (SAD) instruction or multiplicand, multiplier and
addendum in multiply-accumulate (MAC) operations.

258 H. Calderón et al.

– Length. This register holds the number of n-tuples (cycles) needed to gather
y-elements from the memory. For example, when length value is 10 and
n = 8, 80 elements will be retrieved in 10 memory accesses.

– Stride. This register holds the distance between two consecutive data ele-
ments in an n-way interleaved memory. In our case the possible strides are
odd numbers in the range between 1 and 15. Thus, strides are expressed as
2q + 1, with 0 ≤ q ≤ 7. In our design, these eight possible stride values are
encoded using three bits.

– Index. The address stored in this register has two uses:
• The register contains the vertical distance between two consecutive

groups of n elements. For example, Figure 4 (a) presents the index (also
referred as vertical stride) that is equal to 9.

• Sometimes the AGEN can be used to retrieve a single data word. In this
case the register value is used as an offset address.

Equation (11) describes the effective address (EA) computation. EA is obtained
by the addition of a pre-computed base-stride (BS) value, the index (IX) value
and the memory-bank offsets represented by Ai(0...3). Figure 6(e) depicts the 8
x EA generators for the targeted 8-way interleaved memory system.

EAi = BS + Ai(0...3) + IX ∀ 0 ≤ i ≤ 7 ∧ RES ≥ 0 (11)

Subtractor

Register

Hardwired Encoder
“Digitwise Strider”

Adder

Register

3/2 counter

array

2/1 adder

3/2 counter

array

2/1 adder

3/2 counter

array

2/1 adder

3/2 counter

array

2/1 adder

3/2 counter

array

2/1 adder

3/2 counter

array

2/1 adder

3/2 counter

array

2/1 adder

3/2 counter

array

2/1 adder

Adder

Register

Fig. 6. Address Generation Unit: (a) Accumulator for BS computing, (b) Accumulator
for loop control, (c) Hardwired encoder, (d) Index Accumulator, (e) Final addition
Effective Address computing

The first addendum term (BS) of equation(11) is computed using the follow-
ing relation: BS = Base + k.Stride. During the first cycle, BS is equal to the
base address, therefore a 0 value is used for the second term. Thereafter, the
stride offset is added for each k iteration. Note that the stride value is equal
to the offset between two consecutive data elements in the same column (see
also Figure 4). In Figure 6(b) the subtractor used for counting the number of
memory accesses is presented. In each clock cycle, e.g. equivalent to 8 iterations
of an unrolled loop, the subtractor value is decremented by one until it reaches

High-Bandwidth Address Generation Unit 259

zero. A negative value of the subtractor result (underflow) asserts the “Int”
flag, indicating the end of address generation process. Figure 6(c) represents the
hardwired logic for computing the offset-value Ai(0...3) which will be discussed
in address transformation subsection in more details. Finally, Figure 6(d) shows
the IX computation.

The accumulator structure presented in Figure 6 (a) is composed by two
stages partially (4-bits only) shown in Figure 7. The first stage consists of an
4/2 counter which receives the SUM and the Carry signals of the previously com-
puted value. The other two inputs (shown left on the figure) receive the mux-es
outcomes used to select the appropriate operands (base and stride values) as
explained above. The second stage consist of a 2/1 adder that produces the BS
values.

Fig. 7. Main accumulator circuitry

Table 2. Hardwired Encoder - Set up Table of Equations

Bank A0 A1 A2 A3

0 0 0 0 0

1 S2 · S1 · S0 + S2 · S1 · S0+ S2 · S1 S2 · S0 + S1 · S2 S2 · S1

S2 · S1 · S0 + S2 · S1 · S0

2 S1 S2 · S1 · S0 + S2 · S0+ S2 · S1 · S0 S2 · S0

S2 · S1

3 S2 S2 · S0 S2 · S1 S2 · S1

4 S0 S1 S2 0

5 S2 S2 · S0 S2 · S1 · S0 + S2 · S1 · S0 S2 · S1 · S0

6 S1 S2 · S1 + S2 · S0+ S2 · S1 · S0 S2S1S0

S2 · S1 · S0

7 S2 · S1 · S0 + S2 · S1 · S0+ S2 · S1 S2 · S1 + S2 · S0 0

S2 · S1 · S0

e.g. the address bit A2 for bank 1 will be: A2 = S2 · S0 + S1 · S2.
This value (offset) is added to the current Base address value for obtain EA.

260 H. Calderón et al.

Address transformation: The stride values supported by our implementation
are encoded using 3 bits represented by S2S1S0. The pattern range 0002..1112

encodes the 2q + 1 stride values with 0 ≤ q ≤ 7. A hardwired logic is used to
transform the encoded stride values into the corresponding A0(0...3),.., A7(0...3)

address offsets using a memory-bank-wise operation. A “memory-bank-wise” ad-
dress is created based on the stride value. For example, consider Figure 4 (c)
that presents the case for stride = 5. In this case, concerning banks 1 and 4 offset
values of 3 and 2 are required. These correct memory-bank-wise values are gener-
ated by our hardwired logic. Please note that our approach supports all possible
odd stride values in the range between 1 and 15. The exact transformations are
presented as a set of equations in Table 2.

4 Experimental Results Analysis

The proposed address generation unit was described using VHDL, synthesized
and functionally validated using ISE 7.1i Xilinx environment [20]. The target
device used was VIRTEX-II PRO xc2vp30-7ff1696 FPGA. Table 3 summarizes
the performance results in terms of delay time and hardware utilization of the
complete AGEN unit as well as the major sub-units used in our proposal.

Table 3. The Address Generation unit and embedded arithmetic units

Time delay (ns) Hardware used

Unit Logic Delay Wire Delay Total Delay Slices LUTs

Address Generation Unit 4.5 1.4 6.0 673 1072

Hardwired encoder (Digitwise) ‡ 0.3 - 0.3 9 16

4:2 counter ‡ 0.5 0.5 1.0 72 126

3:2 counter ‡ 0.3 - 0.3 37 64

32-bit CPA (2/1) adder ‡ 2.2 0.7 2.9 54 99

‡: Embedded circuitry into AGEN unit. Those are presented without I/O buffers
delays.

From Table 3 it can be seen that the 32-bit CPA adder used is the most expen-
sive component in terms of delay. The latency of this adder can be additionally
improved using a deeper pipeline of the CPA as shown in [21]. This will improve
the overall performance of the proposed unit but will require a deeper pipelined
organization. The last is important for technologies with lower memory latency
like the Virtex 4 and Virtex 5 devices [22]. The AGEN unit proposed here uses
3 stage pipeline. The first two pipeline stages correspond to the accumulator for
BS computation (Figure 6(a)) and the third one to the 3/2 counter array and
the final 2/1 adder. The latter forms the critical path for our implementation.

The proposed AGEN reaches an operation frequency of 166 MHz. Otherwise
stated, our proposal is capable to generate 1.33 Giga addresses of 32-bits (total-
ing 43.5 Gbps) from an 8-way interleaved memory. Concerning the silicon area
used by the proposed AGEN, the total unit uses only 3 % and 4 % of the targeted
device in terms of slices and LUTs respectively.

High-Bandwidth Address Generation Unit 261

5 Conclusions

A detailed description of an efficient vector address generation circuitry for re-
trieving several operands from an n-bank interleaved memory system in a single
machine cycle was presented. The proposal is based on a modified version of the
low-order-interleaved memory approach. The theoretical foundation of the pro-
posed approach that guarantees the trivial indexing structure was also presented.
Moreover, a new AGEN unit capable to work with dedicated multi-operand in-
struction that describes inner loops was introduced. An analysis of the latency
of the proposed unit indicates that it is capable to generate 8 x 32 bit addresses
every 6 ns. In addition, our design uses only 3 % of the hardware resources of
the targeted FPGA device.

Our future work will focus on defining the complete ISA for the embedded
functional units as well as the design of a more efficient reconfigurable inter-
connect switch with the aim of diminishing the latency and area cost of our
implementation. We are also considering the design and analysis of the complete
vector facility.

References

1. Corbal, J., Espasa, R., Valero, M.: Three-Dimensional Memory Vectorization for
High Bandwidth Media Memory Systems. In: Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture, 2002 (MICRO-35),
pp. 149–160. IEEE/ACM Press, New York (November 2002)

2. Espasa, R., Valero, M.: Exploiting instruction- and data-level parallelism. IEEE
Micro, 20–27 (September 1997)

3. Mamidi, S., Blem, E.R., Schulte, M., Glossner, C.J., Iancu, D., Iancu, A., Moudg-
ill, M., JinturkarRoesler, S., Nelson, B.: Instruction Set Extensions for Software
Defined Radio on a Multithreaded Processor. In: Proceedings of the 2005 interna-
tional conference on Compilers, architectures and synthesis for embedded systems,
pp. 266–273 (September 2005)

4. Wijeratne, S.B., Siddaiah, N., Mathew, S.K., Anders, M.A., Krishnamurthy, R.K.,
Anderson, J., Ernest, M., Nardin, M.: A 9-GHz 65-nm Intel� Pentium 4 Processor
Integer Execution Unit. IEEE Journal of Solid-State Circuits, 26–37 (January 2007)

5. Mathew, S., Anders, M., Krishnamurthy, R., Borkar, S.: A 4-GHz 130-nm address
generation unit with 32-bit sparse-tree adder core. IEEE Journal of Solid-State
Circuits, 689–695 (May 2003)

6. Kim, J., Sunwoo, M.: Design of address generation unit for audio DSP. In: Pro-
ceedings of 2004 International Symposium on Intelligent Signal Processing and
Communication Systems, 2004. ISPACS 2004, pp. 616–619 (November 2004)

7. Cho, J., Chang, H., Sung, W.: An FPGA based SIMD processor with a vector mem-
ory unit. In: Proceedings of the 2006 IEEE International Symposium on Circuits
and Systems, 2006. ISCAS 2006, pp. 525–528 (May 2006)

8. Hirano, K., Ono, T., Kurino, H., Koyanagi, M.: A New Multiport Memory for High
Performance Parallel Processor System with Shared Memory. In: Proceedings of
the Design Automation Conference ASP-DAC ’98, pp. 333–334 (February 1998)

9. Postula, A., Chen, S., Jozwiak, L., Abramson, D.: Automated Synthesis of Inter-
leaved Memory Systems for Custom Computing Machines. In: Proceedings of the
24th Euromicro Conference, pp. 115–122 (August 1998)

262 H. Calderón et al.

10. Sohi, G.: High-bandwidth Interleaved Memories for Vector Processors- a Simulation
Study. IEEE Transactions on Computers, 34–44 (January 1993)

11. Hwang, K., Briggs, F.: Computer Architecture and Parallel Processing. McGraw-
Hill, New York (1984)

12. Seznec, A., Lenfant, J.: Interleaved parallel schemes. IEEE Transactions on Parallel
and Distributed Systems, 1329–1334 (December 1994)

13. Calderón, H., Vassiliadis, S.: Reconfigurable Multiple Operation Array. In:
Hämäläinen, T.D., Pimentel, A.D., Takala, J., Vassiliadis, S. (eds.) SAMOS 2005.
LNCS, vol. 3553, pp. 22–31. Springer, Heidelberg (2005)

14. Calderón, H., Vassiliadis, S.: Reconfigurable Fixed Point Dense and Sparse Matrix-
Vector Multiply/Add Unit. In: Proceedings of the IEEE International Conference
on Application-Specific Systems, Architectures, and Processors (ASAP 06), pp.
311–316. IEEE Computer Society Press, Los Alamitos (2006)

15. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte, E.:
The MOLEN Polymorphic Processor. IEEE Transactions on Computers 53(11),
1363–1375 (2004)

16. Inc. XILINX: (2007), http://www.xilinx.com/ipcenter/
17. XILINX-LogiCore: Dual-Port Block Memory v7.0 - Product Specification. DS235

Xilinx (December 2003)
18. Sanu, M., Mark, A., Ram, K., Shekhar, B.: A 4GHz 130nm Address Generation

Unit with 32-bit sparse-tree adder core. In: The 11th IEEE International Parallel
Processing Symposium (IPPS 97), pp. 310–314. IEEE Computer Society Press,
Los Alamitos (April 1997)

19. Juurlink, B., Cheresiz, D., Vassiliadis, S., Wijshoff, H.A.G.: Implementation and
Evaluation of the Complex Streamed Instruction Set. In: Malyshkin, V. (ed.) PaCT
2001. LNCS, vol. 2127, pp. 73–82. Springer, Heidelberg (2001)

20. Inc. XILINX: The XILINX Software Manuals, XILINX 7.1i (2005),
http://www.xilinx.com/support/sw manuals/xilinx7/

21. XILINX-LogiCore: Adder/Subtracter v7.0 - Product Specification. DS214 Xilinx
(December 2003)

22. Inc. XILINX: Memory Solutions (2007),
http://www.xilinx.com/products/ design resources/mem corner/

http://www.xilinx.com/ipcenter/
http://www.xilinx.com/support/sw_manuals/xilinx7/
http://www.xilinx.com/products/design_resources/mem_corner/
http://www.xilinx.com/products/design_resources/mem_corner/

An IP Core for Embedded Java Systems

Sascha Uhrig, Jörg Mische, and Theo Ungerer

Institute of Computer Science
University of Augsburg

86159 Augsburg
Germany

Tel.: +498215982353
Fax: +498215982359

{uhrig, mische, ungerer}@informatik.uni-augsburg.de

Abstract. This paper proposes a multithreaded Java processor as an IP core for
Altera’s System-on-Programmable-Chip environment. The processor core is an
enhancement of the earlier developed multithreaded Java processor named Ko-
modo. It features a real-time capable garbage collection and integrated real-time
scheduling schemes. Hence, it is suitable for embedded hard, soft, and non real-
time systems. The facts that the processor is designed as an IP core and that it is
a special Java processor makes both easier: hardware design and software devel-
opment.

Keywords: Implantable Systems, Embedded System-on-a-Chip Implementations,
Multithreaded Processors, Embedded Operating Systems, Real-time Embedded
Systems, Java Processor.

1 Introduction

Software for embedded systems is getting more and more complex. As a result, not only
the effort for software development and maintenance is increasing but also software
becomes error-prone. To counteract these problems, developers of embedded systems
switched from pure assembler programming to C/C++ several years ago. This step was
quite necessary as well as sufficient at that time. But in the past years, Java entered the
market of embedded systems, too.

One problem of Java in embedded systems is the need of a suitable run-time system,
a Java Virtual Machine (JVM). In most cases, the JVM is a software solution which
requires significant resources in terms of memory and computing power (see sec. 2).
An additional operation system is responsible for resource management and hardware
support. Overall, it is hard to use Java in an embedded system.

A further problem of several embedded systems is the need for real-time capabilities.
In fact, a real-time JVM is defined by the Real-Time Specifications for Java (RTSJ)
but it only takes care of rudimental real-time requirements, e.g. only a fixed priority
scheduling is supported. Additionally, objects must be statically located in an immortal
memory area or they must be self-managed in a so-called scoped memory [1].

We present a Java framework which deals with both topics: an easy hardware de-
sign and a familiar software environment. Additionally, our solution is fully capable

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 263–272, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

264 S. Uhrig, J. Mische, and T. Ungerer

for real-time requirements and small embedded systems. The developed processor is a
multithreaded core which executes most Java bytecodes directly in hardware (see [2]).
Hence, we eliminate the operation system layer and thus its overhead. Additionally, we
save the need of a (JIT) compiler or interpreter. Both circumstances lead to a system
which works with limited hardware resources.

The performance of the proposed Java system is mainly influenced by the through-
put of the memory interface of the IP core. Because of the restricted capacity of this
interface, we integrated a built-in scratch RAM for frequently used JVM code and an
instruction cache for general application code. A proper WCET analysis of real-time
threads can be reached by switching off the cache for these threads. In this case, the
cache is only available for the non real-time threads. A vice versa scenario is also pos-
sible: the cache is only available for the real-time thread. We evaluated the performance
of the processor with different configurations at the memory interface. Furthermore, we
analyze the impact of the garbage collection to the main application thread. The garbage
collection runs as helper thread in parallel to the application.

The paper is organized as follows: In section 2 we describe several related Java en-
vironments. Section 3 presents the two tool chains for hardware resp. software devel-
opment. Our Komodo processor IP core and the corresponding JVM are described in
sections 4 and 5. The evaluations are shown in section 6 before section 7 concludes the
paper.

2 State-of-the-Art Embedded Java System Design

Currently, Java is established in embedded systems. Nevertheless, using Java in em-
bedded systems requires enhanced resources compared to conventional embedded sys-
tems using only a small microcontroller. The JamaicaVM from Aicas for example sup-
ports processors like ARM, Blackfin, PowerPC, XScale and x86 (among others [3]).
As operating system, several real-time and non real-time systems are supported: Linux,
Linux/RT, MacOS, WinCE, VxWorks and others.

Furthermore Sun offers an implementation of the RTSJ, the Java SE Real-Time [4].
The main drawback of this JVM is that it targets especially at dual core processors. It
also runs on a single core but with a noticeable performance loss.

The mentioned solutions require at least a general purpose processor, a large amount
of memory and an operating system with drivers for several peripheral components, i.e.
they require a dedicated hardware and software development phase.

Another approach, especially for embedded systems, is the Java Optimized Processor
(JOP). It is designed as an IP core for Altera and Xilinx FPGAs with very low hardware
requirements [5]. JOP runs at 100MHz and provides a predictable timing behavior.
Currently, it supports only the integer instruction set of Java. Besides a real-time capable
scheduling [6], JOP also offers a real-time garbage collection [7].

An interpreter-based Java solution for very small systems is called JControl [8]. It
requires only an 8- or 16-bit microcontroller and about 50kBytes of memory. As Java
API, JControl supports a small subset of the Java standard classes based on the integer
data type.

An IP Core for Embedded Java Systems 265

3 Hardware Design and Software Tool Chain

The development of a new embedded system involves two design steps: hardware de-
sign and software development. The presented IP core takes both parts into account.

3.1 Hardware Design

The Komodo processor core exits as an IP core (a component) for Altera’s SoPC Builder
with two standard Avalon bus master interfaces. Hence, it can easily be combined with
other Altera, third party, or customer-made components to a System-on-Programmable-
Chip. Figure 1 illustrates an example system architecture.

Komodo

IP core

Pipeline

Scratch

RAM
ICache

Avalon

Bus

Avalon

Bus

UART

UART

Timer

LCD

CAN

SDRAM

Controller

SRAM

Controller

Flash

Controller

Altera Cyclone II FPGA

SDRAM

SRAM

FlashROM

Fig. 1. Architecture of an SoPC (Example)

In figure 2 a snapshot of the SoPC builder from Altera is shown. Here, the processor
core as well as the peripheral components can be connected by drag-and-drop. After
that, the SoPC builder automatically generates a module which can be connected via
a schematic to the pins of an FPGA. Besides the selection of the components and the
connections to the desired Avalon bus, the address and interrupt mapping is done within
the SoPC builder.

3.2 Software Tool Chain

For software development any Java tool chain can be used. In addition to an editor
and a Java compiler, which can be found in any IDE, a so called mapper is required.
Starting from the necessary Java class files, the mapper generates a memory image
for the Komodo IP core. Figure 3 shows a snapshot of the mapper, the so-called boot
file generator. The memory image contains the whole code of all required class files
including class and method tables, information for garbage collection, and for dynamic
class loading. In addition, all trap routines are located within the memory image.

The usage of Java as programming language allows the easy reuse of software written
for other platforms. Additionally, it enables third-party IP core developers to distribute
drivers and libraries only as class files without source code.

266 S. Uhrig, J. Mische, and T. Ungerer

Fig. 2. Snapshot of the SoPC builder

4 Architecture of the Processor Core

The processor core (see figure 4) contains a multithreaded five stage pipeline with an
integrated real-time scheduler. Most of the Java integer and several long, float, and dou-
ble bytecodes are executed directly in hardware. Instructions with medium complexity
are realized by microcodes and the complex operations, such as new and most float-
ing point commands, call trap routines. As operand stack, a 2k-entry stack cache is
integrated within the pipeline which is shared between the hardware thread slots. Dur-
ing the initialization phase, different portions of the stack cache can be assigned to the
thread slots so that one thread entirely works on the stack cache while the data of other
threads has to be swapped in and out.

Each thread slot possesses an instruction window in which up to six bytecodes can be
prefetched. The instruction windows decouple fetching and decoding of the bytecodes.
Instructions can be fetched from three different sources which are evaluated in section 6:

External memory: The external memory is connected via a standard Avalon bus mas-
ter interface. Hence it is possible to use different types of memory with varying
timing behavior.

Instruction cache: The instruction cache is a direct mapped cache which is shared by
all thread slots. For better real-time predictability, it is possible to deactivate cache
line replacement for each thread separately.

Internal scratch RAM: The scratch RAM is the fastest of the three available instruc-
tion memory types. During initialization, the most frequently called trap routines
are copied to that memory. Additionally, the garbage collection could be fetched
from the scratch RAM.

As interfaces to components outside the pipeline, two Avalon bus master interfaces
with dedicated tasks are present. The separation into two busses improves processor
throughput and decouples fast instruction fetching from possibly slow peripheral ac-
cesses:

An IP Core for Embedded Java Systems 267

Memory bus: The first interface is responsible for memory accesses. Only one ad-
ditional component should be connected to this bus, e.g. a SRAM or a SDRAM
controller. All kinds of memory accesses are managed by this bus.

Peripheral bus: The second bus master coordinates accesses to the peripheral mod-
ules. Here several miscellaneous components like UARTs, PWM modules, timers,
CAN controllers, and I2C interfaces are possible. Only special extended bytecodes
allow the access to this bus.

Fig. 3. Snapshot of the boot file generator

The integrated real-time scheduler supports two scheduling schemes: a simple fixed
priority preemptive (FPP) scheduling and the so-called guaranteed percentage (GP [9])
scheduling scheme. Each hardware thread slot is assigned to one of these scheduling
schemes. For the FPP scheduling a priority in the range from 0 to #threadslots−1 and
for GP a percentage between 0 to 100 is required. Both parameters can be set by a
special extended bytecode.

The responsibility of the real-time scheduler is to guarantee a predefined ration of
computing power to several hardware threads. For this purpose, it issues one instruction
out of the instruction window of the most urgent thread to the decode unit each cycle.
The urgency of the threads depends on the selected scheduling scheme and the current
state of the threads, i.e. latencies, activity, already executed instruction, and the fill level
of the corresponding instruction window.

268 S. Uhrig, J. Mische, and T. Ungerer

μROM Priority
manager

Stack
register

set 1

Stack
register

set 2

Stack
register

set 3

Stack
register

set 4

Execute

Instruction fetch

PC1 PC2 PC3 PC4

IW1 IW2 IW3 IW4

Instruction decode
Priority
managerμROM

Operand fetch

Memory access

Operand fetch

Stack
register

set 2

Stack
register

set 1

Stack
register

set 3

Stack
register

set 4

A
yro

me
M

retsa
m

nolav
Peripheral

Avalon master

ICache

Scratch
RAM

Fig. 4. Block diagram of the Komodo IP core

During run-time, intervals of 100 clock cycles serve as base timelines. Within these
intervals, the scheduler tries to execute as many instructions as defined by the percent-
age for the GP threads. Additionally, the scheduler restricts the number of executed
instructions of a GP thread to the defined value. Afterwards all FPP threads are exe-
cuted depending on their priority until the next 100 cycle interval begins. If the code
is fetched out of a slow memory it is not possible to guarantee the required throughput
because of long fetch or load latencies.

In order to guarantee the chosen ration of execution cycles, an appropriate program
memory must be connected to the pipeline to keep the instruction window as full as
possible. Fast RAMs like SRAM, ZBT RAM, or NoBL RAMs are well suited. DRAMs
and SDRAMs lead to suboptimal pipeline performance because of the long latencies,
the indeterministic access times due to row and column selection, and the required
refresh cycles. Nevertheless, for non-real-time applications, these memory types are
also a good choice because of their good cost-to-size relationship.

5 JVM Implementation

Currently, the presented embedded Java system implements the CLDC 1.1 (Connected
Limited Device Configuration) standard. The only exceptions are the double data type
and the number of Java threads which is restricted to the amount of hardware thread
slots at present.

Several complex instructions as e.g. invoke, new, and athrow are realized as trap
routines. The most often used trap routines will be located within the pipeline-internal
scratch memory for a fast access. Also the garbage collection will be moved into the
scratch RAM with the objective to speedup the collection of unused objects. Hence
the garbage collection is able to run during the memory and branch latencies of the
main threads. Additionally, the garbage collection thread gets a minimum execution
percentage to guarantee an advancing garbage collection.

Presently, only the so-called HardwareThread as a subclass of the Thread class
is supported. It extends the Thread class by the parameters required by the hard-
ware scheduler. Each instance of HardwareThread represents one hardware thread slot.

An IP Core for Embedded Java Systems 269

Hence, it is possible to create only as much HardwareThreads as thread slots are avail-
able. Further creations result in an VirtualMachineError.

An OutOfMemoryError can be handled with a dedicated event handler. Therefore, a
special memory area can be preallocated which allows a safe shutdown of the system
or a memory defragmentation where applicable.

6 Evaluation

Our evaluations concentrate on the performance of the whole Java system versus re-
source requirements. Additionally, we analyze the impact of the garbage collection
to the application threads. All measurements are made with a pipeline frequency of
33Mhz. The basic SoPC contains a four threaded Komodo pipeline and a UART which
deals as standard output (System.out). The main memory is a state-of-the-art 32-Bit
SDRAM running at the same frequency as the processor core.

In comparison to the basic version, a Komodo pipeline without cache and scratch
RAM, we evaluated three variations of the pipeline with different instruction fetch ca-
pabilities. Insufficient instruction fetch capabilities reduce pipeline utilization and hence
the performance of the processor.

Scratch RAM: An integrated scratch RAM holds the most important trap routines. All
other instructions are fetched out of the memory.

ICache: The pure pipeline (without scratch RAM) is extended by a small 128 byte
direct mapped instruction cache. All instructions including the trap routines are
fetched out of the SDRAM or the cache.

Combined: The SoPC contains both, a scratch RAM for the traps and an ICache (128
byte) for the application. The traps inside the scratch RAM are not cacheable.
Hence, they do not pollute the cache.

Table 1 shows the hardware effort of the four variations of the whole Komodo SoPC.
These values are obtained by a synthesis of the SoPC for Altera’s Cyclone II FPGA, an
EP2C35F484C7. We used the Quartus II 6.0 Web Edition for the synthesis.

Table 1. Hardware effort for different variations of Komodo

Logic Cells memory blocks (M4Ks) DSP Elements max. Frequency
Basic 8329 18 6 39.55

Scratch RAM 8329 34 6 39.55
ICache 10777 18 6 35.70

Combined 10777 34 6 35.70

Because the cache is realized as logic cells, the used internal memory blocks (M4Ks)
depends only on the scratch RAM. The amount of logic cells does not change between
the basic and the scratch RAM version because a small scratch RAM is always re-
quired for the boot routine. As can be seen, the cache is a frequency restricting factor;
integrating a bigger cache would lead to a frequency less than the aimed 33Mhz.

270 S. Uhrig, J. Mische, and T. Ungerer

In the next step, we measured the pipeline utilization using the different instruction
fetch capabilities. Therefore, we evaluated the utilization with a different amount of
active thread slots. As benchmark we used the KFL benchmark of the JOP processor
which can be downloaded at [10]. For the multithreaded benchmark, we executed it
several times in parallel. We run our benchmarks ten times and calculated the average
values. Figure 5 shows the results with one to four active threads which are scheduled
using FPP scheduling.

Utilization

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4
Active Threads

Pi
pe

lin
e

U
til

iz
at

io
n

basic
scratch
icache
combined

Fig. 5. Pipeline utilization with different fetch capabilities and different number of active threads

The reason for the low utilization in single threaded mode is the slow SDRAM. A
32 bit read access to the SDRAM in average takes about 6 cycles including instruc-
tion window management. Due to the mean bytecode length of 1.9 byte, the theoretical
maximum pipeline utilization is about 35%. The circumstance that on the one hand sev-
eral bytecodes are realized as microcode (and therefore need no fetch accesses) and on
the other hand branch and memory latencies occur, the pipeline utilization varies from
the theoretical value. With increasing thread number, the latencies can be bridged by
the execution of instructions out of the instruction windows of other threads and during
microcode execution, instructions of other threads can be fetched into the correspond-
ing instruction window. The instruction windows deal as buffers to decouple fetch and
execution phase and, hence, it is possible to execute instructions although it is currently
not possible to fetch new ones (e.g. because of another memory access). This leads to
a higher utilization of the basic pipeline. The instruction cache and the scratch RAM
increase fetch throughput which results in a higher overall utilization independent of
the number of running threads.

In a final step, we evaluated the impact of the running garbage collection (gc) to
the application thread. In a former study (see [11,12]) we found out that a percentage
of about 5-20% of computing power is enough for a sufficient garbage collection and
an average application. These evaluations were made with a perfect instruction cache
capability (simulation). Hence, a 100% utilization of the pipeline was possible and the

An IP Core for Embedded Java Systems 271

performance of the application thread was harmed by the garbage collection in the cor-
responding amount. In the current implementation, the application thread cannot reach
a pipeline utilization of 100% because of the long fetch latencies. That circumstance
leads to the question, at which percentage the garbage collection influences the appli-
cation and at which quantity.

For the evaluation, we used the KFL benchmark of the JOP processor again which
uses no dynamic objects, i.e. there are no synchronization points between the appli-
cation and the garbage collection. In parallel to the benchmark, we run the garbage
collection with different percentages of computing power. Figure 6 shows the over-
all utilization of the pipeline and the impact of the garbage collection to the results
of the benchmark. The measurements are made with active instruction cache for the
application and the garbage collection running out of the scratch RAM. So, using GP
scheduling is possible because the scheduler can guarantee the assigned percentage of
computing power to the garbage collection.

Utilization

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

2 5 10 15 20 25 30

Percent GC

Pi
pe

lin
e

U
til

iz
at

io
n

Impact

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

2 5 10 15 20 25 30

Percent GC

A
pp

lic
at

io
n

Pe
rf

or
m

an
ce

Fig. 6. Pipeline utilization and impact of GC to the application

As can be seen in the right diagram of figure 6, the impact of the garbage collection
to the application is much less than the computing power assigned to it. Using up to 5%
of the theoretical performance of the Komodo pipeline for gc has no effect to the run-
ning application. A value of about 15% gc which is enough for almost all applications,
reduces the performance of the application only by 3%. The highest value of 30% gc is
only required for applications that frequently allocate new objects and free old ones.

7 Conclusions and Future Work

We presented a highly integrated and user-friendly Java environment for embedded
systems. The environment consists of a multithreaded processor IP core which executes
native Java bytecode, a nearly complete implementation of the CLDC 1.1 JVM, and a
tool for generating a boot file for the processor core. A processor integrated real-time
scheduler and a dedicated design of the JVM allow the useability in real-time systems.
The processor core is realized as an IP core for the Altera SoPC builder toolkit.

The main performance restricting topic is the instruction fetch procedure. We
equipped the processor core with an instruction cache, a scratch RAM, and a combina-
tion of both. Our evaluations showed that the pipeline utilization of the basic version

272 S. Uhrig, J. Mische, and T. Ungerer

in single threaded mode is extremely low (33%) due to the fetch latencies. It could be
raised to 67% running four threads and it could be further increased to the top utilization
of 92% using an instruction cache and a scratch RAM.

Additionally, we evaluated the impact of a garbage collection running as helper
thread in its own thread slot. The maximum impact of the garbage collection running
with 30% of the total computing power to the application is about 8%. A feasible value
of 10% garbage collection harms the application only by 1.5%.

In the future, we will redesign and enlarge the instruction cache because its speedup
was very promising. Therefor we will use the integrated memory blocks as cache mem-
ory which allows a bigger cache without restricting clock frequency in the mentioned
way. But, as a drawback, an additional cycle for the cache access has to be added. This
cycle is not required for the currently implemented cache within the logic cells.

Besides the improvement of the pipeline utilization by the cache enhancement, we
will try to increase the clock frequency. Without a frequency-restricting cache, the
scheduler is the bottleneck which we have to optimize for a better performance.

Furthermore, the entire CDC standard will be realized and all bytecodes (including
double) will be implemented. As a result, we want to offer a complete embedded Java
environment for application in SoPCs with real-time requirements.

References

1. RTSJ: http://www.rtsj.org/
2. Kreuzinger, J., Brinkschulte, U., Pfeffer, M., Uhrig, S., Ungerer, T.: Real-time Event-

handling and Scheduling on a Multithreaded Java Microcontroller. Microprocessors and Mi-
crosystems 27, 19–31 (2003)

3. aicas: http://www.aicas.com/platforms.html
4. Sun: http://java.sun.com/javase/technologies/realtime.jsp#what
5. Schoberl, M.: JOP, http://www.jopdesign.com/
6. Schoeberl, M.: Real-time scheduling on a Java processor. In: Proceedings of the 10th In-

ternational Conference on Real-Time and Embedded Computing Systems and Applications
(RTCSA 2004), Gothenburg, Sweden (2004)

7. Schoeberl, M.: Real-time garbage collection for Java. In: Proceedings of the 9th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC 2006), Gyeongju, Korea, pp. 424–432. IEEE Computer Society Press, Los Alamitos
(2006)

8. Böhme, H.: JControl, http://www.jcontrol.org/
9. Kreuzinger, J., Schulz, A., Pfeffer, M., Ungerer, T., Brinkschulte, U., Krakowski, C.: Real-

time Scheduling on Multithreaded Processors. In: 7th International Conference on Real-Time
Computing Systems and Applications (RTCSA 2000), Cheju Island, South Korea, pp. 155–
159 (2000)

10. Schoberl, M.: JavaBenchEmbedded V1.0, http://www.jopdesign.com/perf.jsp
11. Pfeffer, M.: Ein echtzeitfähiges Java-System für einen mehrfädigen Java-Mikrocontroller.

PhD thesis, Faculty of Applied Informatics, University of Augsburg (2004)
12. Fuhrmann, S., Pfeffer, M., Kreuzinger, J., Ungerer, T., Brinkschulte, U.: Real-time Garbage

Collection for a Multithreaded Java Microcontroller. In: Int. Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2001), Magdeburg, Germany, pp. 69–76 (2001)

http://www.rtsj.org/
http://www.aicas.com/platforms.html
http://java.sun.com/javase/technologies/realtime.jsp#what
http://www.jopdesign.com/
http://www.jcontrol.org/
http://www.jopdesign.com/perf.jsp

Parallel Memory Architecture for TTA Processor

Jarno K. Tanskanen1, Teemu Pitkänen1, Risto Mäkinen2, and Jarmo Takala1

1 Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
jarno.tanskanen@tut.fi, teemu.pitkanen@tut.fi, jarmo.takala@tut.fi

2 Plenware Oy, P.O. Box 13, FIN-33201 Tampere, Finland
risto.makinen@plenware.fi

Abstract. A conflict resolving parallel data memory system for Transport Trig-
gered Architecture (TTA) is described. The architecture is generic and reusable
to support various application specific designs. With parallel memory, more area
and power consuming multi-port memory can be replaced with single-port mem-
ory modules. Number of ports can be increased over what is available on a design
library for multi-port memories. In an FFT TTA example, dual-port data mem-
ory was replaced by the proposed architecture. To avoid memory conflicts, the
original code was rescheduled and the TTA core was regenerated for the new
schedule. The original memory required an area higher by a factor of 3.38 and
energy higher by a factor of 1.70. In this case, the energy consumption of the
processor core increased so that system energy consumption remained about the
same. However, the original system required an area higher by a factor of 1.89.

1 Introduction

TTA [1] belongs to a class of statically scheduled processors exploiting instruction level
parallelism and resembles VLIW architecture. TTA framework can be efficiently used
to generate optimized application specific cores, e.g., to DSP, telecommunication, and
multimedia fields. Several applications from these fields contain well exploitable par-
allelism which can be used by increasing processing resources. As a result, higher per-
formance can be obtained or power consumption could be decreased if the processing
requirements are met with a lower clock frequency. Increasing the processing resources
leads often also to the higher data bandwidth need which can be provided by multi-
ple data memory ports. Multi-port memories have higher power consumption, require
larger area, and longer access time than equally sized single-port memories. To avoid
the cost of actual multi-port memory structure, the following different methods have
been used in multiple-issue processors [2,3,4]. To provide n-port functionality, n single
port memory modules with the same data content could be employed. A write oper-
ation is always sent to all the memory modules to maintain the data coherence. As a
drawback, the memory must be replicated n times and no other accesses can be made
during a write operation. A single port memory can be also accessed with a higher fre-
quency than the processing frequency. However, this solution might not scale to higher
port numbers. Finally, n single port memories having total size of multi-port memory
can be used to emulate the multi-port memory. Additional permutation and address
computation circuitry is needed. Also, memory conflicts may exist. This is referred as
parallel memory architecture. More recent multi-port memories have been presented in

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 273–282, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

274 J.K. Tanskanen et al.

RF1

RF9 RF8 RF7 RF6 RF5 RF4 RF3RF10 RF11

ADDCOGEN CMUL

CADD AG

COMP

RF2

LSU LSUGCU INSTR
MEM

D
A

TA
 M

E
M

O
R

Y

Fig. 1. Architecture of the FFTTA processor. ADD: Real adder. AG: Data address generator.
CADD: Complex adder. CMUL: Complex multiplier. COGEN: Coefficient generator. COMP:
Comparator unit. GCU: Global control unit. LSU: Load-store unit. RFx: Register files, containing
total of 23 general purpose registers.

[5,6,7,8]. The parallel memory approach is the most promising to us since the applica-
tion specific designs may have regular and predictable memory access patterns and the
existing parallel memory theory can be used to construct specific storage schemes to
avoid or significantly reduce the memory conflicts. Furthermore, the permutation and
address computation circuitry might be fitted in the existing pipeline structure of the
processor without lowering the clock frequency or increasing the number of pipeline
stages. Often, the designs which consider conflict resolving multi-port memory archi-
tecture, employ some form of a simple low-order interleaving scheme [2,4,6,8]. On the
other hand, new storage scheme proposals, like the one in [9] employed in this paper,
concentrate to conflict-free, complex memory storage and rarely consider conflict re-
solving support. This paper presents a hardware in detail for dynamic conflict resolving.
The proposed parallel memory architecture supports also alternative storage schemes.

2 TTA Processor Architecture

In the TTA programming model, the program specifies only the data transports to be
performed by the interconnection network and operations occur as “side-effect” of data
transports [1]. Operands to a function unit are input through ports and one of the ports
is dedicated to be a trigger. When data is moved to the trigger port, execution of an
operation is initiated. A TTA processor consists of a set of function units and register
files of general-purpose registers. These structures are connected to an interconnection
network, which connects the input and output ports of the resources. The architecture
can be modified by adding or removing resources. Furthermore, special function units
with user-defined functionality can be easily included. The structural VHDL description
of the TTA core can be obtained using the processor generator of the TCE framework
[10]. As an example, the FFTTA core [11,12] employed in Sec. 6 is illustrated in Fig. 1.

3 Parallel Memory

In a parallel memory system, a module assignment function S(i) is a function of the
incoming address i from the LSU and determines the index of the memory module MM

Parallel Memory Architecture for TTA Processor 275

LSU0

LSUN-1

TTA
core

MM0

MMN-1

… …

LSU0

LSUN-1

TTA
core

MM0

… …

Parallel

memory

logic

…

Multi-

port

a) b)

Fig. 2. Different data memory configurations: a) multi-port memory and b) single-port memories
with parallel memory logic

where the data is located. The address for MMS(i) is determined by the address as-
signment function a(i). If the parallel memory logic has N LSUs, then N module S(ik)
and address a(ik) assignment functions are computed simultaneously, when ik refers to
an address from LSUk, 0 ≤ k < N. Basically, S(i) determines, how well the memory
performs for a given parallel address trace. The most simple and well-known module
assignment functions are low-order and high-order interleaving functions. Low-order
interleaving, S(i) = i mod N, a(i) = i/N, is efficient for parallel access of successive
array elements. High-order interleaving, S(i) = i/(amax + 1), a(i) = i mod (amax + 1),
performs well when several different arrays are accessed in parallel. The term (amax +1)
is simply a constant telling the number of locations in each MM. In many cases, the
operands for parallel processing can be stored so that conflict-free access to certain pat-
terns is possible, e.g., rows, columns, blocks, forward- and backward-diagonals [13,14].
These are called the access formats. In general, the module assignment functions used
for this purpose are linear [13] or so called XOR-schemes [15,16]. Multi-skewing
scheme [17] provides versatile access formats. Storage schemes supporting stride ac-
cesses are presented in [18,19]. A brief overview of storage schemes is provided in [20].
For an FFT we employ a generic FFT parallel memory scheme proposed in [9].

4 Parallel Memory in a System

As shown in Fig. 2, the parallel memory logic is designed to locate between the load-
store units (LSUs) and synchronous single-port memory modules (MMs). Parallel
memory non-optimally emulates multi-port memory. Unlike in multi-port memories,
in parallel memories there can be memory conflicts, i.e., one or more single port MMs
are tried to be accessed more than once during a single cycle parallel memory access.
It is not possible to find a generic storage scheme that is conflict-free for all address
traces. In the case of memory conflict, parallel memory hardware recognizes the con-
flict, locks the processor by sending a lock request to the global control unit (GCU)
of the TTA, performs conflicting accesses sequentially (requiring more cycles), and
releases the lock. No modifications to software are required for correct functionality.
Because of this locking behavior, the software does not know whether multi-port or
parallel memory system is employed. However, possible conflicts increase the cycle
count.

A multi-port memory can be replaced by a parallel memory architecture after the
application code has been written. In this case, the software has been likely developed
assuming an ideal multi-port memory and no attention is paid into the addresses of

276 J.K. Tanskanen et al.

simultaneous memory accesses. It can be possible not to find a conflict-free parallel
memory storage scheme since the address traces can be irregular, not fitting to typical
access formats. A better performance in terms of clock cycles can be obtained when a
conflict-free storage scheme is found for application specific access formats which are
used in the application code. Especially, the code of the innermost loops, where typi-
cally the most of the execution time is spent, should be written so that the addresses of
simultaneous memory accesses would not cause memory module access conflicts. This
may require manual assembler optimization and regeneration of the hardware for the
TTA core. However, as will be seen in Sec. 6, care must be taken since the modifica-
tions can increase the power consumption of the core.

The proposed parallel memory design is generic and re-usable. Application specific
memory functions can be fitted in and generics are employed in the VHDL design so
that several parallel memory components with different parameters (buswidths, number
of ports, and memory functions) could be fitted in the same design. Parallel memory
logic provides the needed address computation, interconnection, and conflict resolving
logic. This is a matched memory system, i.e., the number of load store units (LSUs) and
memory modules (MMs) is the same N. Often power-of-two N is preferred.

5 Conflict Resolving Parallel Memory Architecture

Depending on the address ik and the module assignment function S(ik), the load or
store operation from LSUk may refer to any MM. For this reason, crossbars are needed
to route the MM input signals from the LSUs to the MMs. A crossbar is also needed to
route the read (load) data from the MMs back to the LSUs, which made the correspond-
ing load requests. These crossbars, related to read and write operations, are illustrated
in Fig. 3 for N = 4. The read data from the MM needs to be saved to Rlatch registers at
the correct moment when several accesses are made to the same MM during the conflict
resolving. Rlatches are controlled by simple state machines.

For each LSUk and MMk pair, there is a control unit which correctly enables the
MMk and drives the crossbar mux controls for the address (AddrMuxCtrlk), read data
(RdMuxCtrlk), and write data (WrMuxCtrlk) crossbar muxes related to MMk. This con-
trol unit circuitry is shown in Fig. 5. The module assignment functions S(ik), 0 ≤ k < N
are solved in parallel. They can be used to control read data crossbar so that S(ik) drives
RdMuxCtrlk (connected to RdMuxk in Fig. 3) at the correct moment. For various other
control purposes, S(ik) indices are binary decoded and used to construct a binary con-
trol matrix. This is shown in Fig. 5, where a decoder produces a single control matrix
row, CtrlMatrixRowk. An example matrix is shown in Fig. 4a for N = 4. It can be seen
that LSU0 and LSU3 are accessing MM3, and LSU1 and LSU2 are accessing MM2.

Each control unit needs to know which LSUs will access their memory module. This
is obtained by transposing the control matrix. A transposed control matrix is shown in
Fig. 4b. The kth row of the transposed matrix is delivered for the kth control unit. In
Fig. 5, the control matrix composed from CtrlMatrixRows from all the control units
is transposed and TCtrlMatrixRowk is obtained for each control unit k. If there are
more than one ’1’ bits on any TCtrlMatrixRow of the transposed matrix, then there
are corresponding number of memory conflicts. Parallel control units make always as

Parallel Memory Architecture for TTA Processor 277

Rlatch Rlatch Rlatch Rlatch

i
0

1 0

3 2

Addresses

01

01

a) b)

)(
0

ia)(
1
ia)(

2
ia)(

3
ia)(

0
ia)(

1
ia)(

2
ia)(

3
ia

x x

x x

x x

x x

i
1

i
2

i
3

i
0

i
1

i
2

i
3

LSU
0

LSU
1 LSU

2
LSU

3
LSU

0
LSU

1
LSU

2
LSU

3

LSU
0

LSU
1

LSU
2

LSU
3

LSU
0

LSU
1

LSU
2

LSU
3

MM
0

MM
1

MM
2

MM
3

MM
0

MM
1

MM
2

MM
3

Data

Data

Data

Data

Addresses

AddrMux
0

AddrMux
1

AddrMux
2

AddrMux
3

AddrMux
0

AddrMux
1

AddrMux
2

AddrMux
3

RdMux
0

RdMux
1

RdMux
2

RdMux
3

WrMux
0

WrMux
1

WrMux
2

WrMux
3

Fig. 3. Parallel data memory a) read (load) and b) write (store) operation examples and related
address, read data, and write data crossbars. The fixed control signals for the muxes refer to the
example case from the next page.

b) Transposed

control matrix.

LSUk 0 1 2 3
MM

0 0 0 0 0

MM
1

0 0 0 0

MM
2 0 1 1 0

MM
3 1 0 0 1

a) Control matrix.

MMk 0 1 2 3
LSU

0 0 0 0 1

LSU
1 0 0 1 0

LSU
2 0 0 1 0

LSU
3 0 0 0 1

c) ‘1’ bits served in

the first cycle.

LSUk 0 1 2 3
MM

0 0 0 0 0

MM
1 0 0 0 0

MM
2 0 0 1 0

MM
3 0 0 0 1

d) ‘1’ bits served in

the second cycle.

LSUk 0 1 2 3
MM

0 0 0 0 0

MM
1 0 0 0 0

MM
2 0 1 0 0

MM
3 1 0 0 0

)(
1
iS

)(
0

iS

)(
2

iS

)(
3

iS

Fig. 4. An example control matrix

many parallel accesses as possible. If there is a conflict, a priority encoder (PriEncoder)
of the control unit k selects the rightmost bit (LSU) on the TCtrlMatrixRowk in the first
cycle, the next rightmost bit in the second cycle, and so on, until all the ’1’ bits on
the row are served. ’1’ bits are reduced one by one with the XOR-ports producing
NewTCtrlMatrixRowk in Fig. 5. This loop is enabled by the multiplexer controlled
by LockrqReg signal. All the rows of the transposed control matrix are processed in
parallel by the control units.

Each priority encoder has MoreToCome signal which tells if there are more ’1’ bits
left. As is shown in Fig. 5, these MoreToCome signals are combined from each control
unit to a single bit using an OR-tree. After registering, this bit becomes the lock request
signal (LockrqReg) to be send to the processor. CurrLsu signal of the control unit tells
the index of the LSU which is to be currently served by the memory module. The same
position CurrLsu signal bits have been combined by N OR-trees shown in Fig. 5. The
resulted CurrLsuEnBits are used to control the state machines and RdMuxCtrl signals.

The transposed control matrices for the first and second memory cycles of the ex-
ample are shown in Figs. 4c and 4d, respectively. The rows of these matrices are used

278 J.K. Tanskanen et al.

Transpose

0 1
Lockrq

Reg

Reg

PriEncoder

NewTCtrl

MatrixRowk

DecoderLsuEnXk

(CtrlMatrixRows

from other units)

MoreToComek

MMEnX *k

Decoder

AddrMux
Ctrlk

0 1MMWrXk

0

WrMuxCtrlkCurrLsuk

MMEnX *k

TCtrlMatrix

Rowk

NewTCtrl

MatrixRowk

0 1

1

MMEnX *k

Glock

Lockrq

LsuWrXk

CurrLsuEnBitk

Reg

RdMuxCtrlk

RegEn

n

n

n

n

n

N

N

N

N

n

N

N

N

N

N

n

N

Reg

Lockrq Lockrq
Reg

MoreToCome
(0...N-1)

CurrLsuEnBit
0 CurrLsuEnBit

(N-1)

CurrLsu bits

The same position bits of

all CurrLsus gathered.

0 0 N-1 N-1

. . .

. . .

)(kiS
)(kiS

. . .

.

MMEnXk

CtrlMatrixRowk

ik

)(kiS

Fig. 5. Control unit logic. There is one control unit circuit for each LSUk and MMk pair. OR-trees
producing CurrLsuEnBit and Lockrq signals combine the data from all the control units. N refers
to the number of memory ports and n is the bit width of N. Block input and output signals are
written in bold. LsuEnXk, LsuWrXk, and ik are coming from LSUk. MMEnXk and MMWrXk are
enable and R/W signals for MMk . (With true multi-port memory, we would simply have LsuEnXk
= MMEnXk and LsuWrXk = MMWrXk.) Glock refers to the global lock signal coming from the
processor core.

to control the corresponding muxes of the address (AddrMuxCtrl), write data (WrMux-
Ctrl), (write mask), and write signal crossbars. The crossbar mux control signals for the
control matrix given in Fig. 4 would be the following (x refers to don’t care condition):

When all the accesses are load operations, the mux controls are:
Cycle 1: AddrMuxCtrl0...3 = {x,x,2,3}, RdMuxCtrl0...3 = {x,x,2,3}.
Cycle 2: AddrMuxCtrl0...3 = {x,x,1,0}, RdMuxCtrl0...3 = {3,2,x,x}.

When all the accesses are store operations, the mux controls are:
Cycle 1: AddrMuxCtrl0...3 = WrMuxCtrl0...3 = {x,x,2,3}.
Cycle 2: AddrMuxCtrl0...3 = WrMuxCtrl0...3 = {x,x,1,0}.

The cases for cycle 2 are shown with a simplified architecture in Fig. 3. In practice,
of course, a parallel memory access may consist of both load and store operations. The

Parallel Memory Architecture for TTA Processor 279

main benefit of using the control matrix is that any kind of module assignment function,
S(i), can be included and used to construct the rows of the control matrix. After that, all
the memory module and crossbar controls can be obtained automatically.

The lock request signal (LockrqReg) from the parallel memory logic is registered,
and thus, the previous input values have to be saved to registers (i.e., addresses (ik),
memory enables (LsuEnXk), write enables (LsuWrXk), write data, and possible write
masks), because otherwise they would be overwritten by new values. A simple state
machine controls the saving of this data at the correct moment. The saving is not shown
in the figures. The previous input values caused memory conflict(s) and the lock request
and thus, they are needed to resolve the conflict(s) sequentially.

5.1 Scalable Hardware Modules

The design contains numerous scalable components including crossbars, OR-trees, de-
coders, and priority encoders:

– Three crossbars, one for addresses a(ik), read data, and write data. (When LSUs
with subword support are used, an additional crossbar is needed for the write mask.)
Each crossbar has N input and output busses with corresponding bus widths. In
addition, one smaller crossbar for single-bit memory write signals is needed.

– (N + 1) OR-trees (each OR-tree merges an N-bit input into a single bit).
– N priority encoders (each with an N-bit input).
– 2N decoders (each with a log2N-bit input).

When the number of ports N is increased, crossbars become more and more expensive,
especially in terms of power and area, but also in delay. OR-trees, priority encoders,
and decoders mainly affect the delay of the critical path of the design. The cost of the
crossbars can be reduced by replacing one large parallel memory design with a couple
of smaller designs. In that case, the LSUs would have access only to the MMs connected
to their own parallel memory.

5.2 Pipelining

No new stages are added in the original system. The number of the LSU unit pipeline
stages stays in three with the parallel memory architecture: the LSU signals going to
and coming from the MMs are registered requiring two clock cycles, and the mem-
ory access itself requires one clock cycle. The input signals for the synchronous MMs
(i.e., address, enable, write enable, write data (and write mask)) are read in the rising
clock edge. Thus, because there is not much logic between the registered LSUs and
input/output ports of the MMs, there is time available in the timing budget. The parallel
memory logic between the LSU input and output registers (not shown) for read and
write operations are illustrated in Fig. 6. The control logic, address crossbar, and write
crossbar are located in the 1st cycle slot between the LSUs and MMs. The read crossbar
is connected between the outputs of the MMs and LSUs. During a read clock cycle, the
data appears to the MM data output bus after a related memory access delay. After that,
the data goes through the read crossbar to the data input registers of the LSUs.

280 J.K. Tanskanen et al.

)(kiS

)(kia
Address

Crossbar

Crossbar &

MM Ctrlk

)(kiS

)(kia
Address

Crossbar

Write

Crossbar

MMk

Read

Crossbar

Delay

1st cycle 2nd cycle 1st cycle 2nd cycle

MMk

Crossbar &

MM Ctrlk

Fig. 6. Parallel memory pipelines: read on the left and write on the right

6 Experiments

In [11,12], a TTA processor for radix-4 1024-point FFT using a dual-port data memory
is presented. To test the proposed parallel memory, the multi-port 2048 × 32 bits data
memory was replaced with the parallel memory logic and two 1024×32-bit single-port
MMs. A general form of the used storage scheme for FFT processors was presented
in [9]. In our case N = 2 and the scheme reduces to a parity bit computation of an ad-
dress ik from the LSUk. The computed bit S(ik) defines which one of the MMs should
be accessed. An address for the module S(ik) is simply defined by a(ik) = ik/N. Due
to memory access conflicts, the execution time was much longer with the FFT parallel
memory scheme (7775 vs. 5234 cycles). (The low- and high-order schemes required
7775 and 9293 cycles, respectively.) The FFT memory scheme would be conflict-free
if the parallel accesses would always consist of two subsequent input operand loads
or alternatively, two subsequent result stores. However, in the original, manually writ-
ten code, the first access of the parallel memory access always loads an input operand
and the second access stores a result. Because of the in-place implementation, the re-
sult address trace starts to follow the input operand address trace after 10 clock cycles
(excluding the first stage). This disturbs the regularity of the parallel address trace.

For conflict-free data accesses, the original code was now manually rescheduled and
the hardware was reconfigured. The FFTTA was synthesized to a 130nm, 1.5V CMOS
standard cell ASIC technology with Synopsys Design Compiler. This was followed by
a gate level simulation at 250 MHz. Synopsys Power Compiler was used for the power
analysis.

Table 1 provides various data for the considered implementations. The proposed dou-
ble load/double store approach (C,D in Table 1) does not fit to the system so well as the
original code (A,B), because now there is parallel operand access but not parallel func-
tion units to directly consume the operands (or produce the results). As a result, the core
for the new schedule (C,D) required additional resources in terms of busses, registers,
and register ports. The power consumption of the core increased significantly and the
total energy consumption of the system remained about the same (A vs. D). However,
the original system (A) required an area higher by a factor of 1.89 than the system with
parallel memory (D). As expected, the data memory results were improved and the orig-
inal data memory (A) required an area higher by a factor of 3.38 and an energy higher
by a factor of 1.70 than the parallel memory (D).

The synthesis results for the parallel memory architecture only, with N = 2,4,8 ports
(or MMs) are shown in Table 2. The size of a single-port MM was kept constant in
1024 × 32 bits. The related S(i) and a(i) were derived from the FFT storage scheme in

Parallel Memory Architecture for TTA Processor 281

Table 1. Radix-4 1024-point FFT implementation on TTA

Area/kgates Energy/µJ Power/mW Clock cycles
Original DP Data Mem 102.4 0.56 27.0

A Schedule Core + others 37.6 0.98 46.6
Total 140.0 1.54 73.6 5234

Original Par Data Mem 30.2 0.36 11.7
B Schedule Core + others 37.7 1.01 32.5

Total 67.9 1.37 44.2 7775

Modified DP Data Mem 102.4 0.57 27.2
C Schedule Core + others 43.2 1.20 57.7

Total 145.6 1.77 84.9 5208

Modified Par Data Mem 30.3 0.33 16.1
D Schedule Core + others 43.7 1.21 58.2

Total 74.0 1.55 74.3 5208

Table 2. Demonstration of the scalability of the parallel memory implementation

N = 2 N = 4 N = 8
Total memory size/32-bit words 2048 4096 8192

Control logic 0.2 0.8 2.9
Area/kgates Crossbars 1.9 6.1 16.7

Memory 27.8 55.7 111.4
Total 29.9 62.6 131.0

Clock period/ns 4.0 5.1 6.3

[9]. Note that the dual-port memory of size 2048×32 in Table 1 requires an area higher
by a factor of 1.64 than the parallel memory of size 4096 × 32 with four ports.

7 Conclusion

A conflict resolving parallel data memory for TTA was proposed. With a parallel mem-
ory, more area and power consuming multi-port memory module can be replaced with
single-port memory modules. For an application specific processor the address trace
can be highly regular and predictable, and there can be a good change to find well per-
forming storage scheme. The existing parallel memory theory can be used to construct
application specific storage schemes. In an FFT TTA example, a dual-port data mem-
ory was replaced by the proposed architecture. To avoid memory conflicts, the original
code was rescheduled and the TTA core was regenerated for the new schedule. Care
must be taken in this approach since, e.g., in this specific case, the power consumption
of the core increased enough to consume the power savings from the data memory. As
a benefit, the area was divided by 1.89 compared to the original system.

282 J.K. Tanskanen et al.

References

1. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. John Wiley & Sons,
Chichester, UK (1997)

2. Sohi, G.S., Franklin, M.: High-bandwidth data memory systems for superscalar processors.
In: Proc. 4th Int. Conf. Architectural Support for Programming Languages and Operating
Systems, Santa Clara, CA, U.S.A., pp. 53–62 (April 8-11, 1991)

3. Juan, T., Navarro, J.J., Temam, O.: Data caches for superscalar processors. In: Proc. 11th Int.
Conf. Supercomputing, Vienna, Austria, pp. 60–67 (July 7-11, 1997)

4. Rivers, J.A., Tyson, G.S., Davidson, E.S., Austin, T.M.: On high-bandwidth data cache de-
sign for multi-issue processors. In: Proc. 30th Ann. ACM/IEEE Int. Symp. Microarchitec-
ture, pp. 46–56. Research Triangle Park, NC, U.S.A (December 1-3, 1997)

5. Sawyer, N., Defossez, M.: Quad-port memories in Virtex devices. Xilinx application note,
XAPP228 (v1.0) (September 24, 2002)

6. Zhu, Z., Johguchi, K., Mattausch, H.J., Koide, T., Hirakawa, T., Hironaka, T.: A novel hierar-
chical multi-port cache. In: Proc. 29th European Solid-State Circuits Conf., Estoril, Portugal,
pp. 405–408 (September 16-18, 2003)

7. Patel, K., Macii, E., Poncino, M.: Energy-performance tradeoffs for the shared memory in
multi-processor systems-on-chip. In: Proc. IEEE Int. Symp. Circuits and Systems, Vancou-
ver, British Columbia, Canada, May 23-26, 2004, vol. 2, pp. 361–364. IEEE Computer So-
ciety Press, Los Alamitos (2004)

8. Ang, S.S., Constantinides, G., Cheung, P., Luk, W.: A flexible multi-port caching scheme for
reconfigurable platforms. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006.
LNCS, vol. 3985, pp. 205–216. Springer, Heidelberg (2006)

9. Takala, J.H., Järvinen, T.S., Sorokin, H.T.: Conflict-free parallel memory access scheme for
FFT processors. In: Proc. IEEE Int. Symp. Circuits and Systems, Bangkok, Thailand, May
25-28, 2003, vol. 4, pp. 524–527. IEEE Computer Society Press, Los Alamitos (2003)

10. Jääskeläinen, P., Guzma, V., Cilio, A., Takala, J.: Codesign toolset for application-specific
instruction-set processors. In: Proc. SPIE - Multimedia on Mobile Devices (2007)

11. Mäkinen, R.: Fast Fourier transform on transport triggered architectures. M.Sc. Thesis, Tam-
pere University of Technology, Tampere, Finland (October 2005)

12. Pitkänen, T., Mäkinen, R., Heikkinen, J., Partanen, T., Takala, J.: Low-power, high-
performance TTA processor for 1024-point Fast Fourier transform. In: Vassiliadis, S., Wong,
S., Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 227–236. Springer, Heidel-
berg (2006)

13. Budnik, P., Kuck, D.J.: The organization and use of parallel memories. IEEE Trans. Com-
put. C-20(12), 1566–1569 (1971)

14. Kim, K., Prasanna, V.K.: Latin squares for parallel array access. IEEE Trans. Parallel and
Distrib. Syst. 4(4), 361–370 (1993)

15. Frailong, J.M., Jalby, W., Lenfant, J.: XOR-schemes: a flexible data organization in parallel
memories. In: Proc. Int. Conf. Parallel Processing, pp. 276–283 (August 20-23, 1985)

16. Liu, Z., Li, X.: XOR storage schemes for frequently used data patterns. Journal of Parallel
and Distributed Computing 25(2), 162–173 (1995)

17. Deb, A.: Multiskewing – a novel technique for optimal parallel memory access. IEEE Trans.
Parallel and Distrib. Syst. 7(6), 595–604 (1996)

18. Rau, B.R.: Pseudo-randomly interleaved memory. In: Proc. 18th Ann. Int. Symp. Computer
Architecture, Toronto, Ontario, Canada, pp. 74–83 (May 27-30, 1991)

19. Seznec, A., Lenfant, J.: Odd memory systems: a new approach. Journal of Parallel and Dis-
tributed Computing 26(2), 248–256 (1995)

20. Tanskanen, J.K., Creutzburg, R., Niittylahti, J.T.: On design of parallel memory access
schemes for video coding. J. VLSI Signal Processing 40(2), 215–237 (2005)

A Linear Complexity Algorithm for the
Generation of Multiple Input Single Output

Instructions of Variable Size�

Carlo Galuzzi, Koen Bertels, and Stamatis Vassiliadis

Computer Engineering, EEMCS
TU Delft

{C.Galuzzi, K.L.M.Bertels, S.Vassiliadis}@ewi.tudelft.nl

Abstract. The Instruction-Set extension problem has been one of the
major topics in the last years and it is the addition of a set of new com-
plex instructions to a given Instruction-Set. This problem in its general
formulation requires an exhaustive search of the design space to identify
the candidate instructions. This search turns into an exponential com-
plexity of the solution. In this paper we propose an algorithm for the
generation of Multiple Input Single Output instructions of variable size
which can be directly selected or combined for Instruction-Set extension.
Additionally, the algorithm is suitable for inclusion in a design flow for
automatic generation of MIMO instructions. The proposed algorithm is
not restricted to basic-block level and has linear complexity with the
number of processed elements.

1 Introduction

The use of electronic devices has became a routine in our everyday life. Just
consider the devices we are using in the daily basis such as mobile phones,
digital cameras, electronic protection systems in the cars, etc. This great vari-
ety of devices can be implemented using different approaches and technologies.
Usually these functionalities are implemented using either General Purpose Pro-
cessors (GPPs), or Application-Specific Integrated Circuits (ASICs), or
Application-Specific Instruction-Set Processors (ASIPs). GPPs can be used in
many different applications in contrast to ASICs which are processors designed
for a specific application such as the processor in a TV set top box.

Last years, processors with a customizable architecture, also known as Appli-
cation-Specific Instruction-Set Processors (ASIPs), have became more and more
popular. ASIPs are situated in between GPPs and ASICs: they have a partially
customizable Instruction Set and perform only a limited number of tasks so giv-
ing a tradeoff between flexibility, performance and cost. Although performance
of an ASIP is usually lower than an ASIC, the design time and non-recurring en-
gineering costs (the one-time charge for photomask development, test, prototype
� This work was supported by the European Union in the context of the MORPHEUS

project Num. 027342.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 283–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

284 C. Galuzzi, K. Bertels, and S. Vassiliadis

tooling, and associated engineering costs) can be amortized with the multiple
addressable applications tuning the processor characteristics toward the require-
ments of the specific application.

Maximizing the performance of the ASIP is crucial. One of the key issues
involves the choice of an optimal instruction-set for the specific application given.
Optimality can refer to power consumption, chip area, code size, cycle count
and/or operating frequency. A computable solution is not always feasible due to
many subproblems such as design space exploration or combinatorial problems.
In those cases heuristics are used to find a close-to-optimal solution.

Basically there are two types of Instruction-Set customizations which can be
pursued: the first and most radical one is to generate a complete instruction set
for the specific applications [1,2,3]. The second and less drastic one extends an
existing instruction set with instructions specialized for a given domain [4,5,6,7].
In both cases the goal is to design an instruction set containing the most impor-
tant operations needed by the application to maximize the performance.

The first step in this process is the identification of the operations that should
be implemented in hardware and the ones that will be executed in software. The
operations implemented in hardware are implemented as peripheral devices or
they can be incorporated in the processor as new instructions and/or special
functional units integrated on the processor.

In this paper we present a linear complexity algorithm for the generation of
Multiple Input Single Output (MISO) instructions which can directly undergo
a selection process for hardware-software partitioning or can be clustered with
different policies for the generation of MIMO instructions [7,8]. More specifically,
the main contributions of this paper are:

• an overall linear complexity of the proposed algorithm. The generation of com-
plex instructions is a well known NP problem and its solution requires, in
the worst case, an exhaustive search of the design space which turns into an
exponential complexity of the solution. Our algorithms generate MISO in-
structions of variable size suitable for inclusion in a design flow for automatic
generation of MIMO instructions as the ones proposed in [7,8]. Our approach
springs from the notion of MAXMISO introduced by [9] and, in a similar
way, it requires linear complexity in the number of processed elements as
proven in Section 4.

• the proposed approach is not restricted to basic-block level analysis and can
be applied directly to large kernels.

The paper is structured as follows. In Section 2, background information and
related works are provided. In Section 3 and 4, the basic definitions and the
algorithm for MISO instruction generation are presented. Concluding remarks
and an outline of research conducted are given in Section 5.

2 Background and Related Works

The algorithms for Instruction Set Extensions usually select clusters of op-
erations which can be implemented in hardware as single instructions while

A Linear Complexity Algorithm 285

providing maximal performance improvement. Basically, there are two types
of clusters that can be selected, based on the number of output values: MISO
or MIMO. Accordingly, there are two types of algorithms for Instruction Set
Extensions that are briefly presented in this section.

Concerning the first category, a representative example is introduced in [9]
which addresses the generation of MISO instructions of maximal size, called
MAXMISO. The proposed algorithm exhaustively enumerates all MAXMISOs.
Its complexity is linear with the number of nodes. The reported performance im-
provement is of few processor cycles per newly added instruction. The approach
presented in [10] targets the generation of general MISO instructions. The expo-
nential number of candidate instructions turns into an exponential complexity
of the solution in the general case. As a consequence, heuristic and additional
area constraints are introduced to allow an efficient generation. The difference
between the complexity of the two approaches is due to the properties of MISOs
and MAXMISOs: while the enumeration of the first is similar to the subgraph
enumeration problem (which is exponential) the intersection of MAXMISOs is
empty and then once a MAXMISO is identified, its nodes are removed from the
set of nodes that have to be successively analyzed. In this way the MAXMISOs
are enumerated with linear complexity in the number of nodes.

The algorithms included in the second category are more general and pro-
vide more significant performance improvement. However, they have exponen-
tial complexity. For example, in [5] the identification algorithm detects optimal
convex MIMO subgraphs but the computational complexity is exponential. A
similar approach described in [11] proposes the enumeration of all the instruc-
tions based on the number of inputs, outputs, area and convexity. The selection
problem is not addressed. In [6] the authors target the identification of convex
clusters of operations under given input and output constraints. The clusters are
identified with a ILP based methodology similar to the one proposed in [7]. The
main difference is that in [6] the authors iteratively solve ILP problems for each
basic block, while in [7] the authors have one global ILP problem for the entire
procedure. Additionally, the convexity is addressed differently: in [6], the con-
vexity is verified at each iteration, while in [7] it is guaranteed by construction.
Other approaches cluster operations by considering the frequency of execution
or the occurrence of specific nodes [4,12] or regularity [13]. Still others impose
limitation on the number of operands [14,15,16,17] and use heuristics to generate
sets of custom instructions which therefore can not be globally optimal.

In this paper we propose a linear complexity algorithm based on the notion
of MAXMISO introduced by [9]. Although the algorithm for the generation of
MAXMISOs instructions requires linear complexity in the number of processed
elements, it is not always possible to implement MAXMISOs directly in hardware
due to a relatively high number of inputs. A way to address this problem is
the use of the MAXMISO algorithm for the generation of MISO instructions
of reduced size as described in Section 4. Moreover the generated instructions
can be directly selected for hardware implementation as well as clustered with
different policies for the generation of MIMO instructions [7,8].

286 C. Galuzzi, K. Bertels, and S. Vassiliadis

3 Theoretical Background

3.1 MISO and MIMO Graphs

In order to formally present the approach previously presented, we first intro-
duce the necessary definitions and the theoretical foundation of our solution. We
assume that the input dataflow graph is a DAG G = (V, E), where V is the set
of nodes and E is the set of edges. The nodes represent primitive operations,
more specifically assembler-like operations, and the edges represent the data de-
pendencies. The nodes can have two inputs at most and their single output can
be input to multiple nodes.

Basically, there are two types of subgraphs that can be identified inside a
graph: Multiple Input Single Output (MISO) and Multiple Input Multiple Out-
put (MIMO).

Definition 1. Let G∗ ⊆ G be a subgraph of G with V ∗ ⊆ V set of nodes and
E∗ ⊆ E set of edges. G∗ is a MISO of root r ∈ V ∗ provided that ∀ vi ∈ V ∗ there
exists a path1 [vi → r], and every path [vi → r] is entirely contained in G∗.

By Definition 1, A MISO is a connected graph. A MIMO, defined as the union of
m ≥ 1 MISOs can be either connected or disconnected. Let GMISO and GMIMO

be the sets of subgraphs of G containing all MISOs and MIMOs respectively.
An exhaustive enumeration of the MISOs contained in G gives all the necessary
building blocks to generate all possible MIMOs. This faces with the exponential
order of GMISO, and since GMISO ⊂ GMIMO

2, of GMIMO . A reduction of the
number of the building blocks reduces the total number of MIMOs which it is
possible to generate. Anyhow, it can drastically reduces the overall complexity
of the generation process as well. A trade-off between complexity and quality of
the solution can be achieved considering MISO graphs with specific properties.

3.2 MAXMISO and SUBMAXMISO

Definition 2. A MISO G∗(V ∗, E∗) ⊂ G(V, E) is a MAXMISO (MM) if ∀vi ∈
V \V ∗, G+(V ∗ ∪ {vi}, E+) is not a MISO.

It is known from the set-theory that each MISO is either maximal (a MAX-
MISO) or there exists a maximal element containing it [8,9]. [9] observed that if
A, B are two MAXMISOs, then A ∩ B = ∅. This implies that the MAXMISOs
contained in a graph can be enumerated with linear complexity in the number
of its nodes (see. [9,7,8]).

Let v ∈ V be a node of G and let Lev : V → N be the integer function which
associates a level to each node, defined as follows:

– Lev(v) = 0, if v is an input node of G;

1 A path is a sequence of nodes and edges, where the vertices are all distinct.
2 GMISO = {G∗ ⊂ G, s.t. NOut = 1} ⊂ {G∗ ⊂ G, s.t. NOut ≥ 1} = GMIMO .

A Linear Complexity Algorithm 287

N_2

N_1

N_4

N_6N_5

N_3

N_7

MM
N_1 N_4

N_6

N_5

N_3

N_7

A) B)

SMM_1 SMM_2

SMM_3 SMM_4

N_4

N_6

N_3 N_5

C)

SMM_1 SMM_2

SMM_4

N_7

SMM_3

N_2

Fig. 1. SMMs of a MAXMISO with different nodes removed: a) a MAXMISO MM, b)
SMMs of MM \ {N2}, c) SMMs of MM \ {N1}

– Lev(v) = α > 0, if there are α nodes on the longest path from v and the
level 0 of the input nodes.

Clearly Lev(·) ∈ [0, +∞) and the maximum level d ∈ N of its nodes is called
the depth of the graph.

Definition 3. The level of a MAXMISO MMi ∈ G is defined as follows:

Lev(MMi) = Lev(f(MMi)). (1)

where f : G → Ĝ is the collapsing function, the function which collapses the
MAXMISOs of G in nodes of the graph Ĝ (see [8]).

Let’s consider a MAXMISO MMi. Each node vj ∈ MMi belongs to level
Lev(vj). Let v ∈ MMi, with 0 �= Lev(v) ≤ d. If we apply the MAXMISO
algorithm to MMi \ {v}, each MAXMISO identified in the graph is called a
SUBMAXMISO (SMM) of MMi \ {v} (or, shortly, of MMi). Clearly the set of
the SMMs tightly depends on the choice of v (see Figure 1). For example v can
be either an exit node (Figure 1c), or an inner node randomly chosen (Figure
1b) or a node with specific properties like area or power consumption below or
above a certain threshold previously defined.

The definition of level of a SMM is the obvious extension to SMM of the
definition of level of a MAXMISO.

4 The Algorithm for MISO Instruction Generation

In Figure 2 and 3 we present the FIX SMM algorithm and the VARIABLE
SMM algorithm respectively. The main difference between the two algorithms
is represented by the choice of the node selected for the generation of the SUB-
MAXMISOs, as outlined in Section 3.2.

288 C. Galuzzi, K. Bertels, and S. Vassiliadis

Input:= MM1, ..., MMn

Output:= SMM1, ...SMMk

—
SET1, SET2, SET3 = ∅
for i = 1..n do

{
Choose vi ∈ MMi

Generate MAXMISO of MMi \ {vi}
SET1 := SET1 ∪ {MAXMISOs of MMi \ {vi}}
SET2 := SET2 ∪ {vi}
SET3 := SET1 ∪ SET2

}

Fig. 2. FIX SMM Algorithm

a) FIX SMM Algorithm

The main steps of this algorithm are described in Figure 2 and depicted in
Figure 4:

a) Given the DAG G of an application, the graph is partitioned in MAXMISOs;
b) For each MAXMISO MMi we select a node vi ∈ MMi;
c) MMi \ vi is partitioned in MAXMISOs;
d) Generate the set SET1 of the SMMs, the set SET2 of the nodes selected and

the set SET3 union of SET1 and SET2.

We have the following property:

Property 1. The complexity of the algorithm is linear in the number of node
analyzed.

Proof. This follows from the empty intersection of two MAXMISOs. Let A and
B two MAXMISOs, and v1 ∈ A and v2 ∈ B. Therefore A ∩ B = ∅. This means
that:

∀ MMi ∈ A \ v1 and ∀ MMj ∈ B \ v2, MMi ∩ MMj = ∅. (2)

�

b) VARIABLE SMM Algorithm

The main steps of this algorithm are described in Figure 2 and depicted in
Figure 4:

a) Given the DAG G of an application, the graph is partitioned in MAXMISOs;
b) For each MAXMISO MMi a node vi ∈ MMi is selected;
c) MMi \ vi is partitioned in MAXMISOs. If the set of SMMs does not satisfy a

specific property Pi a different node is selected and the SMMs are regenerated
till the property is satisfied.

A Linear Complexity Algorithm 289

Input:= MM1, ..., MMn

Input:= Properties P1, ..., Pn

Output:= SMM1, ...SMMk

—
SET1, SET2, SET3 = ∅
for i = 1..n do
{
repeat
{

Choose vi ∈ MMi

Generate MAXMISO of MMi \ {vi}
}
until Pi is satisfied
SET1 := SET1 ∪ {MAXMISOs of MMi \ {vi}}
SET2 := SET2 ∪ {vi}
SET3 := SET1 ∪ SET2

}

Fig. 3. VARIABLE SMM Algorithm

d) The set SET1 of the SMMs, the set SET2 of the nodes selected and the set
SET3 union of SET1 and SET2 are generated.

We have the following properties:

Property 2. The complexity of the algorithm is linear in the number of nodes an-
alyzed (as well as for the FIX SMM algorithm as a consequence of the properties
of the MAXMISOs).

Property 3. The maximum number of iterations of the algorithm is less than or
equal to the order of G3.

Proof. This follows by the fact that the MAXMISOs are a partition of the graph.
For each MAXMISO MMi is therefore possible to select ni different nodes.
Independently by the value of ni we have that Σini = n. �
Remark 1. The algorithm presented in this paper in its two versions, namely
FIX SMM, and VARIABLE SMM, is suitable for an iterative process for the
generation of MISO instructions of relatively smaller size, when severe input
constraints are applied. This can be obtained using as input of the algorithm(s),
instead of the set of MAXMISOs MM1, ..., MMn, the final set SET1 as described
in Section 4.

4.1 Application

In [7,8] we presented two methods for the automatic generation of convex MIMO
instructions based on the following result:
3 The order of a graph G(V, E) with V set of nodes and E set of edges is the order of

V .

290 C. Galuzzi, K. Bertels, and S. Vassiliadis

MM_n

V_n1

SMMs of MM_n \ {V_n1}

V_n2 SMMs of MM_n \ {V_n2}

V_nk

SMMs of MM_n \ {V_nk}

MM_1

V_11

SMMs of MM_1 \ {V_11}

V_12 SMMs of MM_1 \ {V_12}

V_1n

SMMs of MM_1 \ {V_1n}

MM_1

MM_n

V_1

V_n

SMMs of MM_1 \ {V_1}

SMMs of MM_n \ {V_n}

1) FIX SMM ALGORITHM

2) VARIABLE SMM ALGORITHM

A) B) C)

A) B) C)

SET 1SET 2

Fig. 4. Description of the main steps required by the algorithms for the generation
of the SMMs: 1) FIX SMM algorithm and 2) VARIABLE SMM algorithm. The main
steps are A) MM generation, B) selection of the node to remove, and C) SMM gen-
eration. (NB In the figure, each MAXMISO is partitioned in 4 SMMs of random size
for explanatory reasons. As we have seen in Figure 1 the SMMs depend on the node
chosen.)

A Linear Complexity Algorithm 291

Theorem 1. Let G be a DAG and A, B ⊂ G two MAXMISOs. Let Lev(A) ≥
Lev(B) be the levels of A and B respectively. Let C = A ∪ B. If

Lev(A) − Lev(B) ∈ {0, 1} (3)

then C is a convex MIMO. Moreover

– C is disconnected if the difference is 0.
– Any combination of MAXMISOs at the same level or at two consecutive

levels is a convex MIMO.

We note that a subgraph G� ⊂ G is convex if there exists no path between two
nodes of G� which involves a node of G\G�. Convexity guarantees a proper and
feasible scheduling of the new instructions which respects the dependencies.

This theorem can be extended to SMMs.

Corollary 1. Any combination of SMMs at the same level or at two consecutive
levels is a convex MIMO.

Proof. This follows by the definition of SMM: given a graph G, a MAXMISO
MM ⊂ G and a node v ∈ MM the SMMs of MM are the MAXMISOs of
G \ v. This means that if A and B are SMMs, then A ∩ B = ∅. Therefore all the
hypothesis of Theorem 1 are satisfied. �

Basically the two approaches cluster optimally MAXMISOs at the same level [7],
or heuristically at different levels [8], in convex MIMOs to implement in hardware
reducing the execution time. Both approaches target the Molen organization [18]
which allows for a virtually unlimited number of new instructions to be executed
on the reconfigurable hardware, without limiting the number of input/output
values.

Although the speed-up achieved by the two approaches is similar to the speed-
up achieved for state-of-the-art algorithms for automatic instruction-set exten-
sion, the main limitation is represented by the MAXMISOs. The MAXMISOs
are used as building block to generate convex MIMO instructions since they can
be enumerated linearly with the number of nodes and they represent a trade off
between quality of the solution and complexity of the approach. Nevertheless
the speed-up is limited by a high number of inputs and outputs, on average, of
the clusters selected for hardware implementation.

Every time a cluster undergoes a check to verify if a specific property is
verified, the complexity of the approach increases. A limitation on the number
of inputs and outputs of the clusters keeping a linear complexity, can then be
obtained using SMMs instead of MMs. By Property 1 and 2 we know that SMMs
can be enumerated with linear complexity in the number of nodes. This means
that the complexity of the two approaches does not increase if we use SMMs
instead of MMs as building blocks to generate convex MIMO instructions.

We can observe the following:

Remark 2. The partitioning of a graph in MAXMISOs generate a MMs-cover
of the graph. Since every SUBMAXMISO is contained in a MAXMISO the

292 C. Galuzzi, K. Bertels, and S. Vassiliadis

SMMs-cover is a refinement of the MMs-cover4 [19]. This implies that the num-
ber of convex MIMO instructions which is possible to generate increases. More
detailed, if there are n1 MAXMISOs and n2 SUBMAXMISOs with n2 = n1 + α
and α > 0, the additional MIMOs that is possible to generate are:

2n1(2α − 1). (4)

5 Conclusions

In this paper, we have introduced an algorithm which enumerates with linear
complexity in the number of processed elements, MISO instructions of variable
size, and more specifically SUBMAXMISOs. These instructions can directly un-
dergo a selection process for hardware-software partitioning or can be clustered
with different policies for the generation of MIMO instructions. The algorithms
can be included in an automatic design flow for the automatic generation of
MIMO instructions as the ones proposed in [7,8]. In our future work we in-
tend to verify with experimental results the benefit of the insertion of the SUB-
MAXMISOs generation algorithm in such a design flow. Moreover we aim to
design and test additional algorithms for the generation of (convex) MIMO in-
structions.

References

1. Holmer, B.: Automatic Design of Computer Instruction Sets. PhD thesis, Univer-
sity of California, Berkeley (1993)

2. Huang, I., Despain, A.: Generating instruction sets and microarchitectures from
applications. In: Proceedings of ICCAD ’94 (1994)

3. Van Praet, J., Goossens, G., Lanneer, D., Man, H.D.: Instruction set definition and
instruction selection for asips. In: Proceedings of ISSS ’94 (1994)

4. Kastner, R., Kaplan, A., Memik, S.O., Bozorgzadeh, E.: Instruction generation
for hybrid reconfigurable systems. ACM Trans. Des. Autom. Electron. Syst. 7(4),
605–627 (2002)

5. Atasu, K., Pozzi, L., Ienne, P.: Automatic application-specific instruction-set ex-
tensions under microarchitectural constraints. In: Proceedings of DAC ’03 (2003)

6. Atasu, K., Dündar, G., Özturan, C.: An integer linear programming approach for
identifying instruction-set extensions. In: Proceedings of CODES+ISSS ’05 (2005)

7. Galuzzi, C., Panainte, E.M., Yankova, Y., Bertels, K., Vassiliadis, S.: Auto-
matic selection of application-specific instruction-set extensions. In: Proceedings
of CODES+ISSS ’06 (2006)

8. Galuzzi, C., Bertels, K., Vassiliadis, S.: A linear complexity algorithm for the au-
tomatic generation of convex multiple input multiple output instructions. In: Pro-
ceedings of ARC 2007 (March 27-29, 2007)

9. Alippi, C., Fornaciari, W., Pozzi, L., Sami, M.: A dag-based design approach for
reconfigurable vliw processors. In: Proceedings of DATE ’99 (1999)

4 A refinement of a cover C of X is a new cover D of X such that every set in D is
contained in some set in C.

A Linear Complexity Algorithm 293

10. Cong, J., Fan, Y., Han, G., Zhang, Z.: Application-specific instruction generation
for configurable processor architectures. In: Proceedings of FPGA ’04 (2004)

11. Yu, P., Mitra, T.: Scalable custom instructions identification for instruction-set
extensible processors. In: Proceedings of CASES ’04 (2004)

12. Sun, F., Ravi, S., Raghunathan, A., Jha, N.K.: Synthesis of custom processors
based on extensible platforms. In: Proceedings of ICCAD ’02 (2002)

13. Brisk, P., Kaplan, A., Kastner, R., Sarrafzadeh, M.: Instruction generation and
regularity extraction for reconfigurable processors. In: Proceedings of CASES ’02
(2002)

14. Goodwin, D., Petkov, D.: Automatic generation of application specific processors.
In: Proceedings of CASES ’03 (2003)

15. Choi, H., Hwang, S.H., Kyung, C.M., Park, I.C.: Synthesis of application specific
instructions for embedded dsp software. In: Proceedings of ICCAD ’98 (1998)

16. Baleani, M., Gennari, F., Jiang, Y., Patel, Y., Brayton, R.K., Sangiovanni-
Vincentelli, A.: Hw/sw partitioning and code generation of embedded control ap-
plications on a reconfigurable architecture platform. In: Proceedings of CODES ’02
(2002)

17. Clark, N., Zhong, H., Mahlke, S.: Processor acceleration through automated in-
struction set customization. In: Proceedings of MICRO 36

18. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The molen polymorphic processor. IEEE Trans. Comput. 53(11), 1363–1375
(2004)

19. Kosniowski, C.: A First Course in Algebraic Topology. Cambridge University Press,
Cambridge (1980)

Automated Power Gating of Registers Using
CoDeL and FSM Branch Prediction

Nainesh Agarwal and Nikitas J. Dimopoulos

Department of Electrical and Computer Engineering
University of Victoria
Victoria, B.C., Canada

{nagarwal,nikitas}@ece.uvic.ca

Abstract. In this paper, we use the CoDeL hardware design platform
to analyze the potential and performance impact of power gating indi-
vidual registers. For each register, we examine the percentage of clock
cycles for which they can be powered off, and the loss of performance
incurred as a result of waiting for the power to be restored. We propose
a static gating method, with very low area overhead, which uses the in-
formation available to the CoDeL compiler to predict, at compile time,
when the registers can be powered off and when they can be powered on.
Static branch prediction is used in the compiler to more intelligently tra-
verse the finite state machine description of the circuit to discover gating
opportunities. We compare this static CoDeL based gating method to a
dynamic, time-based technique. Using the DSPstone benchmark circuits
for evaluation, we find that CoDeL with backward branch prediction
gives the best overall combination of gating potential and performance,
resulting in 22% bit cycles saved at a performance loss of 1.3%. Com-
pared to the dynamic time-based technique, this method gives 52% more
power gated bit cycles, without any additional performance loss.

1 Introduction

To keep up with the requirements of miniaturization and long battery life for
portable devices, it is essential to reduce power consumption in the VLSI circuit
components of such devices. To reach this objective, the most effective method
is to lower the supply voltage. As the voltage is reduced, by scaling the CMOS
technology past sub 100nm, an exponential growth in subthreshold leakage cur-
rent is seen [1]. As this trend continues, the leakage current will become the
dominant source of total power dissipation in CMOS circuits.

To reduce leakage, power gating has been shown to be an effective technique
[2]. Power gating relies on the detection of idle periods in the circuit. During these
idle periods, the supply voltage can be switched off to the appropriate circuit
component to conserve leakage power. At the end of the idle period, the supply
voltage is restored to resume normal operation. Power gating approaches rely
on trying to predict idle periods for either storage structures (SRAMs, registers)
[3, 4] or functional units [5, 6].

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 294–303, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automated Power Gating of Registers 295

Here we examine how power gating techniques can also be used effectively for
the reduction of leakage power in low level design. To allow us to efficiently detect
and utilize idle periods we use the CoDeL design platform. CoDeL (Controller
Description Language) [7, 8] is a rapid hardware design platform that allows
circuit description at the algorithmic level. Since CoDeL implements a design
as a state machine it has sufficient information on the usage of registers and
functional units to predict idle times and allow efficient power gating.

In [9] we examine the potential of power gating registers using a time-based
technique and show that a CoDeL assisted technique can significantly increase
gating efficiency. However, a CoDeL assisted time-based technique can be ex-
pensive in terms of logic area. In the work reported here, we explore a set of
purely static gating techniques, which require very little area overhead. These
techniques use static branch prediction to increase gating efficiency by reduc-
ing mispredictions of future register usage. In addition, here we use CoDeL to
predict when a “wakeup” is needed, reducing the performance penalty incurred
while waiting for the supply voltage to be restored to a register.

2 Power Gating

Power gating of a circuit block is performed by using an appropriate header or
footer transistor [6]. To begin power gating, a “sleep” signal is applied to the
gate of this transistor to turn off the supply voltage to the circuit block. To
revive the block for use, the “sleep” signal is de-asserted and power is restored.

In the case of memory elements, such as registers, multi-threshold CMOS
(MTCMOS) [10] retention registers can be used (see figure 1). During normal
operation, there is no loss in performance and during power-down mode the
register state is saved to a “balloon” latch, which has a high voltage threshold
resulting in minimal leakage. Using a MTCMOS register, all reads can be per-
formed from the balloon latch. It is only when a write is necessary that we need
to power up the high-performance low-threshold flip-flop.

In figure 2 we present the supply voltage and the various phases of a circuit
component as it is power gated1. From time T0 to T1 the circuit component is
busy and thus can not be gated. This period is Tbusy. At time T1, the component
becomes idle. It takes the control logic from T1 to T2 (Tidledetect) to make the
decision to engage gating. From T2 the supply voltage begins to drop. At T3

the aggregate leakage power savings equals the overhead of switching the header
transistor on and off. The period, Tbreakeven, from T2 to T3, is the minimum
power gating duration to achieve net leakage power savings. During the period
Tsleep, from T3 to T4 the device is asleep and we accumulate net power savings. At
T4 the control logic needs to reactivate the component. From T4 to T5 the voltage
rises. During this period, Twakeup, a performance penalty may be incurred if the
pending operation needs to wait for the power to be restored. Finally, at T5 the
power is fully restored and the circuit can resume normal operation.

1 Our model here follows the description presented in [6].

296 N. Agarwal and N.J. Dimopoulos

Regular
Flip-flop
(Low Vth)

CLK SLEEP

State
saving

‘balloon’
latch

(High Vth)

D Q

VSLEEPVDD

Fig. 1. MTCMOS register

TIDLEDETECT TBREAKEVEN TSLEEP TWAKEUP TBUSY

Power gating in effect

TBUSY

T0 T1 T5T4T3T2

Fig. 2. Voltage during power gating phases

3 Gating Methods

3.1 Time-Based Power Gating

A simple technique to power gate circuit components is to dynamically observe
their state and initiate power gating when a sufficient number of idle cycles are
detected. Techniques such as this have been used for cache memories [3] and
show significant leakage savings with minimal performance impact.

To implement this technique, each circuit component needs to have state
machine logic similar to the one shown in figure 3. Normally the component
is in the IDLE DETECT or BUSY state. As long as the component is being
used, the state remains BUSY. Once the component becomes idle we enter the
IDLE DETECT state. When the consecutive idle cycle count increases beyond
Tidledetect, the component enters the POWER DOWN state. Here it waits for
period Tbreakeven to allow for the voltage supply to reduce. If at any time the
component is needed, a signal is generated causing the component to enter the
WAKEUP state. Otherwise, after Tbreakeven cycles, the SLEEP state is entered.
When the circuit component is next needed, the WAKEUP state is entered where
a waiting period of Twakeup cycles is required to restore the supply voltage. Once
the component is powered up, the BUSY state is entered. When the circuit
prematurely goes from the POWER DOWN state to the WAKEUP state, the
component may not be fully powered down. Thus, for restoring the power it will
not take the full Twakeup cycles. However, we conservatively penalize the full
Twakeup cycles in this case. Further, we only consider the savings while in the
SLEEP state. There may be some additional power savings in the WAKEUP
state, which we conservatively do not include.

According to this framework, we see that our results are dependent on three
parameters: Tidledetect, Tbreakeven, and Twakeup. Tbreakeven is the time it takes
to overcome the energy overhead of gating a unit. Twakeup is the overhead of
restoring the power to a unit. The parameters Tbreakeven and Twakeup are a
function of the VLSI technology and thus can not be controlled by circuit design.

Automated Power Gating of Registers 297

IDLE
DETECT

Cycle_Count < T_idledetect

POWER
DOWN

Cycle_Count ==
T_idledetect

Cycle_Count <
T_breakeven

SLEEPCycle_Count == T_breakeven

No Write Detect

WAKEUP

Write Detect

Cycle_Count <
T_wakeup

Cycle_Count == T_wakeup

Write Detect

BUSY

Unit busy
Unit idle

CoDeL initiated
SLEEP mode

CoDeL initiated
WAKEUP

CoDeL initiated
WAKEUP

Fig. 3. Gating logic. The short dashed line is used for time-based gating. The long
dashed transition line is used for CoDeL initiated power gating. Both dashed lines are
used for CoDeL assisted time-based gating.

The Tidledetect parameter, however, can be controlled to effect the aggressiveness
of the power gating mechanism.

To implement this scheme each register would require a controller to count
the idle cycles, and logic to detect a new value being written to the register.
This logic is expensive in terms of area and power, and therefore motivates an
alternative method of initiating power gating.

3.2 CoDeL Initiated Power Gating

The CoDeL platform [8] uses a sequential machine to determine the sequence of
operations and data transfers in and out of registers. Because of this sequential
machine, we know the exact time of the events, and we can anticipate them.
For each register, at compile time, CoDeL iterates through each state of the
state machine implementation of the circuit and looks ahead Tidledetect states to
determine if there are any potential writes to the register. If there is no write to
the register in the next possible Tidledetect states, a power off (SLEEP) suggestion
is noted for the gating control logic. If during the next Tidledetect possible states
the register is written, a power off suggestion is not made. As with the time-
based technique, the Tidledetect parameter is chosen a priori, and is the same for
all registers of the circuit under design.

298 N. Agarwal and N.J. Dimopoulos

To more efficiently wake up the registers, CoDeL performs a look ahead and
prematurely powers up the register in anticipation of a write. This reduces the
performance penalty normally incurred in waiting for a power up. For each
register, at compile time, CoDeL examines each state of the state machine
implementation of the circuit and looks ahead Twakeup states to determine if
there are any potential writes to the register. If there is a write to the reg-
ister in the next possible Twakeup states, a power on (WAKE) suggestion is
noted. Otherwise, a power on suggestion is not made. For example, referring
to figure 4(a), for Tidledetect = 3 and Twakeup = 1, a sleep suggestion will be
generated at state S2, while a WAKE suggestion will be generated at state
S10.

CoDeL initiated gating corresponds to a static environment where only sug-
gestions made by CoDeL can initiate power gating (long dashed line in figure 3).
The wakeup mechanism is triggered by a CoDeL suggestion or a detected write.

To implement this static gating scheme only combinational logic is needed.
The current state is used to generate the desired SLEEP and WAKE signals to
power down and power up the register. Some sequential logic may be needed to
generate the AWAKE signal, which indicates that the register is powered up and
ready for use. This allows CoDeL to stall the register write until the AWAKE
signal is asserted.

3.3 CoDeL Assisted Time-Based Power Gating

In CoDeL assisted time-based gating, the decision to initiate gating is still de-
pendent on a streak of idle cycles as in the time-based technique (short dashed
line in figure 3). In many cases, however, based on CoDeL’s suggestion (long
dashed line in figure 3), gating can be initiated prematurely without waiting
for the full Tidledetect cycles2. Also, based on CoDeL’s suggestion, wakeups are
initiated in anticipation of a register write to reduce the performance penalty.

The implementation of this gating scheme is the most complex as it requires
the circuit features of the static and dynamic gating methods.

4 FSM Branch Prediction

CoDeL’s gating and wakeup suggestions are dependent on a look-ahead search
of the FSM description of the circuit to determine whether a register write is
performed in the next Tidledetect or Twakeup possible states. In performing this
search, branches in the state machine are handled in three different ways. The
first method uses no branch prediction (figure 4(a)), and therefore searches all
possible state paths. The second method uses static forward branch prediction
and assumes that a branch to the furthest state forward is taken (figure 4(b)).
The third method uses static backward branch prediction and assumes that a
branch to the furthest state backward is taken (figure 4(c)).

2 The value of Tidledetect used for the CoDeL and time-based parts is the same.

Automated Power Gating of Registers 299

S2

S3

S4 S10

S5 S2 S11

Level 0

Level 1

Level 2

Level 3

Write in State 11

(a) No branch prediction

S2

S3

S10

S11

Level 0

Level 1

Level 2

Level 3

(b) Forward

S2

S3

S4

S2

Level 0

Level 1

Level 2

Level 3

(c) Backward

Fig. 4. States look-ahead to determine possible writes. Tidledetect = 3.

5 Evaluation Framework

To evaluate the power gating methods we use the the DSP kernel benchmarks
from the DSPstone suite [11]. All kernels from the suite are implemented using
CoDeL and compiled to generate synthesizable VHDL. To perform the required
arithmetic operations, we have used a single cycle 16 bit fixed point unit (FXU)
written in VHDL using the fixed point package obtained from [12]. It is inter-
faced by the CoDeL implemented kernels to perform the required arithmetic
operations. For data storage, a single port memory is implemented in VHDL for
simulation. Any registers in the FXU or the memory are not gated. All clock
cycle results presented are based on trace data obtained from VHDL simulation
of the kernel circuits.

6 Results

We examine the effects of Tidledetect, Tbreakeven and Twakeup on the power gating
ability and performance of the circuit. The power gating effectiveness is deter-
mined by the percentage of bit cycles in the SLEEP state. It is computed as

∑N
i=0 len(Ri) · (cycles in SLEEP state)i

total cycles executed ·
∑N

i=0 len(Ri)
· 100%, (1)

where N is the number of registers, Ri is the ith register and len(Ri) is the bit
width of the ith register. The performance impact of gating is computed as the
number of additional clock cycles needed when power gating is introduced. This
is computed as

total cycles executed without gating
total cycles executed with gating

· 100%. (2)

The results presented here are an arithmetic average of the results obtained
for the 14 DSPstone kernels.

300 N. Agarwal and N.J. Dimopoulos

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Tidledetect

%
 b

it
cy

cl
es

 in
 S

LE
EP

Time
CoDeL
Time+CoDeL

(a) No branch prediction.

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Tidledetect

%
 b

it
cy

cl
es

 in
 S

LE
EP

Time
CoDeL
Time+CoDeL

(b) Forward prediction.

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Tidledetect

%
 b

it
cy

cl
es

 in
 S

LE
EP

Time
CoDeL
Time+CoDeL

(c) Backward prediction.

Fig. 5. Gating effectiveness with Twakeup = 2. Results averaged over Tbreakeven =
5, 10, 15, 20.

Figure 5 presents the gating effectiveness using the three methods presented
and the different branch prediction schemes. From figure 5(a) we see that when
no branch prediction is used, the CoDeL based gating schemes perform poorly for
larger values of Tidledetect. This is because since all possible branches are searched
to find a write, many more writes are predicted than actually occurring resulting
in missed gating opportunities. This is exacerbated in the case of only CoDeL
initiated gating, since there is no help from time-based gating to reclaim some
of the lost gating opportunities.

Examining the branch prediction schemes (figures 5(b) and 5(c)) we see that
the CoDeL based and the CoDeL assisted time-based schemes significantly out-
perform the time-based technique. For Tidledetect = 30, the CoDeL schemes pro-
vide 59% more gated bit cycles than the time-based technique. It is interesting
to note that for Tidledetect ≥ 5, both CoDeL based schemes exhibit the same
savings. This means that the dynamic decision criteria in the CoDeL assisted
time-based technique presents no new gating opportunities in comparison to the
purely static CoDeL scheme.

Comparing the forward and backward branch prediction schemes we find that
the backward prediction results in more gating opportunities resulting in 8%
more gated bit cycles. This means that more backward branches are taken in
our designs than the forward branches.

Figure 6 shows the performance impact for different values of Twakeup. Back-
ward branch prediction is used here for the CoDeL schemes since it provides

Automated Power Gating of Registers 301

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30
Tidledetect

Pe
rf

or
m

an
ce

 Im
pa

ct
 (%

)

Time
CoDeL
Time+CoDeL

(a) Twakeup = 2

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30
Tidledetect

Pe
rf

or
m

an
ce

 Im
pa

ct
 (%

)

Time
CoDeL
Time+CoDeL

(b) Twakeup = 8

Fig. 6. Performance impact (see equation 2). Backward branch prediction used for
CoDeL schemes. Results averaged over Tbreakeven = 5, 10, 15, 20.

the best gating potential as compared to forward and no branch prediction.
In all cases, we see that the CoDeL schemes outperform the time-based tech-
nique for lower values of Tidledetect (less than 15), while for larger Tidledetect, the
time-based technique dominates. This is because the time-based technique gates
registers less frequently for larger Tidledetect, and thus results in fewer wakeup
procedures resulting in lower performance loss. Even for these larger Tidledetect

values, however, the difference in performance for the time-based and CoDeL
schemes is very small (less than 3%). But the number of sleep cycles gained
with the CoDeL method far exceeds those of the time-based method by more
than 60%. Comparing the two CoDeL schemes we see they provide roughly the
same performance. Expectedly, as the value of Twakeup increases, performance
decreases as more cycles are spent in waiting for the power to be restored.

In figure 7 we are able to more clearly see the entire design space consisting
of the various techniques. We have also included the CoDeL based scheme used
in [9] for comparison. The solid curves indicate results using a static gating
method where the area overhead is extremely low. The dashed curves are for
methods which employ a dynamic scheme resulting in significant overhead.

Common in all performance results, we see that lower values of Tidledetect

cause significant performance loss. This means that although there are a large
number of short idle periods which can benefit from gating, the performance
degrades since this causes a large increase in the number of cases where the
circuit needs to wait for a power up to occur.

We see that the time-based technique provides very poor overall gating ef-
fectiveness and performance. Comparing the branch prediction schemes, we see
that the performance loss of the CoDeL scheme with no branch prediction is
the lowest, but it also results in the poor gating potential. The backward branch
prediction provides better performance than the forward branch prediction since
it is more accurately able to predict wakeups.

We find that CoDeL, with backward branch prediction, is able to provide an
excellent compromise of high gating effectiveness and low performance loss. For
Tidledetect = 15 we find that the CoDeL scheme with backward branch prediction
provides 52% more bit cycles in SLEEP mode than the time-based technique for

302 N. Agarwal and N.J. Dimopoulos

0

5

10

15

20

25

30

0 5 10 15
Performance Loss (%)

%
 b

it
cy

cl
es

 in
 S

LE
EP

Time
CoDeL: No
CoDeL: Forward
CoDeL: Backward
CoDeL: [9]
CoDeL: [9] (Static)

Fig. 7. Gating effectiveness vs performance loss for Tbreakeven = 10 and Twakeup = 2.
Tidledetect varies from 30 to 0 from left to right.

the same approximate performance loss of 1.3%. CoDeL with forward branch
prediction provides a relatively poor combination of gating effectiveness and
performance. This is due to the high rate of misprediction with this method.
CoDeL with no branch prediction provides lower gating effectiveness but provides
excellent performance for larger values of Tidledetect, and thus may be useful in
cases where high performance is critical.

In figure 7 we provide two results based on the CoDeL scheme presented in [9].
The dynamic scheme (“CoDeL: [9]”) is a CoDeL assisted time-based technique
with no branch prediction and no “wakeup” prediction. Since we have not fac-
tored in overhead, we see that it performs quite well. Due to the dynamic nature
of this method, however, it entails significant overhead. Assuming a three bit
counter to count the elapsed idle cycles, our preliminary results suggest that the
overhead reduces the SLEEP mode bit cycles by 18% (below what is indicated
in figure 7). This overhead considerably reduces the apparent effectiveness of all
dynamic techniques presented (dashed curves). The static version of this scheme
(“CoDeL: [9] (Static)”) is a modified version of the method presented in [9]. This
method is the same as the “CoDeL: No” method without “wakeup” prediction.
We see that the lack of “wakeup” prediction causes increased performance loss.

7 Conclusion

Test circuits, implemented using the CoDeL platform, were examined to deter-
mine the expected savings that can be achieved from power gating individual
registers, and the associated performance impact. It was found that a CoDeL
initiated power gating scheme with static backward branch prediction provides
an overall superior combination of high gating effectiveness and low performance
loss. For high performance applications, CoDeL with no branch prediction (full
state space exploration) is the best choice. In both these methods, since the

Automated Power Gating of Registers 303

gating decisions are made at compile time, there is very little circuit area over-
head. We are currently investigating other branch prediction schemes (including
dynamic prediction) which may help in further reducing mispredictions, and thus
improve performance without degrading gating effectiveness.

Here, we have introduced a methodology for implementing efficient power
gating using the CoDeL platform. Using the ideas presented we hope to enhance
the CoDeL design environment and fully automate the process of power gating in
VLSI circuits. We are also working on more accurately defining the power gating
overhead needed. This will allow more accurate break even analysis, and thus
allow us to determine the minimum register size that should be power gated.

References

1. Kim, N.S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J.,
Kandemir, M., Narayanan, V.: Leakage current: Moore’s law meets static power.
Computer 36(12), 68–75 (2003)

2. Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-vdd: a circuit
technique to reduce leakage in deep-submicron cache memories. In: ISLPED 2000,
pp. 90–95. ACM Press, New York (2000)

3. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple
techniques for reducing leakage power. In: ISCA 2002, pp. 148–157. IEEE Com-
puter Society Press, Los Alamitos (2002)

4. Liao, W., Basile, J.M., He, L.: Microarchitecture-level leakage reduction with data
retention. IEEE Transactions on VLSI Systems 13(11), 1324–1328 (2005)

5. Rele, S., Pande, S., Onder, S., Gupta, R.: Optimizing static power dissipation by
functional units in superscalar processors. In: Horspool, R.N. (ed.) CC 2002 and
ETAPS 2002. LNCS, vol. 2304, pp. 261–275. Springer, Heidelberg (2002)

6. Hu, Z., Buyuktosunoglu, A., Srinivasan, V., Zyuban, V., Jacobson, H., Bose, P.:
Microarchitectural techniques for power gating of execution units. In: ISLPED ’04,
pp. 32–37. ACM Press, New York (2004)

7. Sivakumar, R., Dimakopoulos, V., Dimopoulos, N.: CoDeL: A rapid prototyping
environment for the specification and automatic synthesis of controllers for multi-
processor interconnection networks. In: SAMOS III, pp. 58–63 (July 2003)

8. Agarwal, N., Dimopoulos, N.: Power efficient rapid hardware development using
CoDeL and automated clock gating. In: ISCAS 2006 (May 2006)

9. Agarwal, N., Dimopoulos, N.: Towards automated power gating of registers using
CoDeL. In: ISCAS 2007 (May 2007)

10. Mutoh, S., Douseki, T., Matsuya, Y., Aoki, T., Shigematsu, S., Yamada, J.: 1-
v power supply high-speed digital circuit technology with multithreshold-voltage
cmos. IEEE Journal of Solid-State Circuits 30(8), 847–854 (1995)

11. Zivojnovic, V., Martinez, J., Schläger, C., Meyr, H.: DSPstone: A DSP-oriented
benchmarking methodology. In: ICSPAT 1994 (October 1994)

12. Bromley, J.: Synthesizable vhdl fixed point arithmetic package (2006),
http://www.doulos.com/knowhow/vhdl designers guide/models/fp arith/

http://www.doulos.com/knowhow/vhdl_designers_guide/models/fp_arith/

A Study of Energy Saving in Customizable Processors

Paolo Bonzini1, Dilek Harmanci2, and Laura Pozzi1

1 University of Lugano
Faculty of Informatics

Switzerland
paolo.bonzini@lu.unisi.ch, laura.pozzi@unisi.ch

2 University of Lugano
Advanced Learning and Research Institute

Switzerland
dilek.tekbas@alari.ch

Abstract. Embedded systems are special purpose systems which perform pre-
defined tasks with very specific requirements like high performance, low volume
or low power. Most of the time, using a general purpose processor for such sys-
tems results in a design which is poor to meet the application specific require-
ment. On the other hand, ASIC design cycle is too costly and too slow for the
embedded application market. Recent development in configurable processors
significantly improved the performance metrics of a general purpose processor by
coupling it with an application specific hardware. Although there has been a large
amount of work in the literature to improve the performance and automation of
such designs, little has been done to examine the power consumption of a system
coupled with an application specific functional unit. Monitoring this power be-
havior may provide new directions in the ASIP design. We augmented wattch (a
power simulator based on SimpleScalar) with a model of the power consumption
of functional units (using a combination of RTL- and gate-level power modeling).
Our results show that a well-designed custom instruction set may reduce register
and memory accesses, and hence the overall power consumption of an embedded
system.

1 Introduction

Embedded systems are special purpose systems which perform pre-defined tasks with
very specific requirements in terms of high performance, low noise or low power con-
sumption. Most of the time, using a general purpose processor for such systems results
in a design which is poor to meet the application specific requirement. On the other
hand, ASIC design cycle is too costly and too slow for the embedded application mar-
ket. Recent development in configurable processors significantly improved the perfor-
mance metrics of a general purpose processor by coupling it with an application specific
hardware.

Several companies (Tensilica [1], ARC [2], ST [3], MIPS [4]) provide configurable
cores and effective design tools to implement application specific hardware in the mar-
ket. As a result, in the last few years, research focused on automated HW/SW parti-
tioning and accelerator design. However, studies of the power consumption of a system
coupled with an application specific functional unit, are still rare.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 304–312, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Study of Energy Saving in Customizable Processors 305

Likewise, existing tools provide a way to easily describe custom instructions, and
include simulators to evaluate performance improvements, but they lack support for
power analysis of the application-specific functional units (AFUs) and the rest of the
processor.

Power analysis of AFUs, however, is very important as it can suggest new directions
in ASIP design. For example, performing fewer accesses to the register file or to the
memory is an important source for power reduction. Evaluation of this behavior will
show whether instruction-set extension can be a means to reduce power demands.

In this paper we aim at analyzing power consumption during design space explo-
ration. Therefore, empirical methods for power measurement are not applicable. Like-
wise, hardware power estimation after place & route [5][6] is not practical since the
RTL level description of the base processor may not be available to the designer. There-
fore, our approach is to build an RTL-level model of the functional unit, and to com-
pute switching power using gate-level models of 1-bit cells. The result is a fast and
automated architectural level power estimation tool for ASIPs based on wattch [7].

The remainder of the paper is organized as follows. Section 2 presents related work
on power modeling for customized processors. Section 3 details how we construct func-
tional and power models of the custom instructions. Section 4 presents our toolchain,
which integrates the techniques described in this paper, and the evaluation environment
we used; experimental results are shown in section 5. Finally, section 6 concludes the
paper and describe possible future work in this area.

2 Related Work

In [6], Biswas at al. study the performance and power benefits of instruction set exten-
sions, using a Xilinx Multimedia Board (which includes a Virtex II FPGA) equipped
with a Microblaze soft-core. Since there is no direct way to measure power of a run-
ning system on the FPGA fabric, they obtain a structural model, as well as timing and
routing information, from the results of place-and-route. Using a cycle-accurate hard-
ware simulator, they generate a Value Change Dump (VCD) of all the signals in the
structural netlist. Finally, the routing information and VCD information are used by a
power simulator to compute the dynamic power consumed. In this work, the availability
of a soft core is exploited to directly use an RTL or gate level power simulator; unfor-
tunately, this is often not possible in practice. Also, the process applied is a manual
work which has to be performed again for every different ISE defined. Our method uses
an automated toolchain that automatically provides the power consumption of a given
configuration and ISE set.

In [8], Fei at al. propose a hybrid energy estimation technique for extensible proces-
sors. They define a macro-modeling procedure to obtain energy coefficients of a pro-
cessor configuration and custom instruction. This macro model is then used to estimate
the energy consumption of the system with different selections of custom instructions.
Their methodology characterizes instruction level parameters (dynamic execution trace
of a program and the base processor micro-architecture) and structural level parame-
ters (energy effect of instructions on the custom hardware) and uses linear regression
on a set of test programs to model the energy consumption of both the base processor

306 P. Bonzini, D. Harmanci, and L. Pozzi

and the custom instructions. This statistical modeling phase also relies on a synthesized
hardware description of the processor; a power simulator is used to run a set of test
programs, and statistical analyses are performed to derive the coefficients of the model.
Energy estimates for extension instructions are based on these coefficients and on the
result of bitwidth analysis on the extensions’ operands. The relationship to the bit width
is linear for components like adders (+, -), comparators (<, > etc.), bitwise logic (ˆ, &, |
etc.), shifters (�, �) and latches, while it is quadratic for multiplications.

Fei et al’̇s work does have a few similarities to the approach we present in this paper.
For example, the library of components is similar to the one we use. We also base our
models on the results of a power simulator; however, instead of doing this for full test
programs, we only run power simulations on the basic cells in our library, for which we
used a gate-level model. Another important difference between this work and ours is
that we use a synthesizable RTL model of the functional units, while Fei starts from a
C description. For this reason, our technique does not need a statistical modeling phase.

In [5], Cheung at al. go one step further and propose a methodology to generate
battery-aware instruction set extensions. When the selected extension is long enough,
they observed that the current supplied to run the extension can be lowered by separat-
ing the extension into smaller instructions and applying clock gating to each of them.
Furthermore, the slack time of each extension can then be used to synthesize slower
but less power consuming hardware. Again, to estimate the power consumption of the
extension, they produce Verilog implementations of the extension instructions and then
apply Synopsys Design Compiler. In our work, we propose to extend an architecture-
level power simulator, so that power consumption of extensible processors can be mon-
itored. Our power simulator could also provide a platform to experiment with optimiza-
tion algorithms such as the one evaluated by Cheung.

As the model of the underlying processor we chose wattch [7], an architectural sim-
ulator that collects resource usage counts in a cycle-accurate simulator, and uses them
to estimate overall CPU power consumption. In general, this approach is more flexible,
and more suitable to design space exploration, than instruction-level power models such
as [9], [10], [11].

3 Methodology

An instruction set extension consists of a group of instructions that will be executed
in a special hardware coupled with the processor. Our aim is to estimate the power
consumed both by the special hardware and the processor in a fully automated fashion,
and without going through the place-and-route process.

In order to fulfill these requirements, the compiler (which is responsible for select-
ing profitable custom instructions in the user program) must be enhanced to construct
power models too. To do this, the compiler will use a standard library of components,
comprising every operation that can potentially be included in a special instruction.

Power consumption in the basic components varies for different transitions on the
input. For the implementation of the models to be fast, one can prepare look-up ta-
bles of the equivalent capacitance of the circuit, which are indexed on the previous and
next states of the inputs [12]. The equivalent capacitance includes both switching and

A Study of Energy Saving in Customizable Processors 307

leakage capacitance; it is possible to split these two components if, for example, one
wants to use a more precise model for leakage, or to analyze the influence of tempera-
ture on power consumption.

It is of course infeasible to use such a technique for all but the smallest cells: the
transition space for an n-cell input would consist of 22n possible transitions, and this
would be hard to store and very expensive to compute off-line. Therefore, our compo-
nent library is built as a hierarchy of models (see figure 1). Together, these models cover
all the operations that the compiler can extract into an extended instruction. The models
for the custom instructions will use these components and logically sit at the top of the
hierarchy.

Leaf components use gate-level models, where the switching capacitance is obtained
using Synopsis Power Compiler. Power models of basic operations (see figure 2) have
been obtained by using Synopsys Power Compiler based on the switching activity of the
circuits at the RTL level. These operations have 4 or fewer bits of input, so the number
of possible input transitions is at most 256. We compiled VHDL descriptions of each
basic operation to estimate the power consumption of every possible case based on the
Artisan 180u technology library. The power consumption is then kept in a look-up table.

Higher-level models, instead, are RTL-level models that express the circuit in terms
of the lower level cells—possibly also modeled as RTL.

The total dissipated power is then computed by adding up the power consumed in
each basic operation. The ROM cell is an exception, as we used a probabilistic model
assuming that the possible inputs are uniformly distributed.

For the components listed in figure 2, the inputs to the operations can be either both
variable, or one variable and one constant. Some operations can be implemented simply
as wires in the latter case (e.g. bitwise AND, rotates or shifts); if this is not the case,
the power consumption will still be different1, so we implemented two different models
for the operation. Furthermore, the models can be parameterized on the width of the
operands.

We provide one implementation for every component: for example, in the case of
the adder, we use a carry-select design which provides a good balance between speed
and area. It is possible however to extend this library with multiple models, in order to
satisfy the latency, area or power requirements for the extended instruction.

4 Experimental Setup

We implemented the power modeling tool as an extension to an ASIP code generation
toolchain, also used in [13]. This toolchain includes the instruction set extension selec-
tion algorithm proposed, and modified GCC and SimpleScalar to respectively compile
and simulate an ARM-like processor with an extensible instruction set. The processor
can be extended with up to seven new instructions, each with at most four input and two
outputs.

The toolchain described in this paper automatically generates instruction set exten-
sions, performance and power simulation results, given an application source code in

1 If one input of an adder is constant, for example, each full adder can be replaced with two
gates. This obviously consumes less power than a full adder.

308 P. Bonzini, D. Harmanci, and L. Pozzi

Synopsis model
2-1 Multiplexer

with Sel select
 Out <= A when ’0’,
 B when others;

a b

+

s,cout

cin

0adder 0adder 0adder

1adder

adder

s,cout

cout

s

s

cout

cout

s,cout

s,cout

s,cout

s,cout

1adder1adder

s
s,cout

a ba ba b

RTL description
32+32-bit Carry-Select Adder

Synopsis model
Full Adder

S <= A xor B xor Cin;
Cout <= (A and B) or (A
 and Cin) or (B and Cin);

Fig. 1. Composing the library components hierarchically

C and the configuration of target processor’s micro-architecture. The new toolchain
(shown in figure 3) uses wattch instead of plain SimpleScalar, in order to gather power
simulation of the system from the timing information. wattch was also modified to in-
clude the power consumption of the custom functional units.

Power models for the basic operations of figure 2 were obtained with Synopsys
Power Compiler, based on VHDL descriptions of each cell. The descriptions were com-
piled using the Artisan 180 nm technology library, and simulations were run for every
possible transition of the input values.

Glue code to access the resulting look-up tables, as well as the implementation of the
RTL models, was written in C. The compiler-generated C code for the power models
augments these basic models and is dynamically linked into the simulator.

5 Experimental Results

We measured the speed up and energy gain obtained by applying AFUs to eight bench-
marks; seven of these are taken from MiBench, while the eighth (aes) is an implemen-
tation of AES that does not use precomputed tables to speed up its software operation
(this style of implementation is closer to the design of cryptographic hardware, and
proves to be extremely apt to instruction set customization).

Results for speedup and energy gain are shown in figure 4. One interesting point is
that the energy gain always exceeds the speedup offered by custom instructions. This
result is worth noting, because it shows that the total energy consumed is not only lower
because of a decrease in execution cycles; instead, the average power consumption de-
creases too.

There are a number of reasons for this behavior. First, the circuitry for the newly
introduced functional units is simpler than that of an ALU. The custom instructions,

A Study of Energy Saving in Customizable Processors 309

Gate-level models RTL-level models
inverter logic operations (AND/OR/XOR/XNOR/NOT)
2- and 4-input AND gate 2-1 multiplexer
2- and 4-input OR gate left/right/arithmetic right shift
2-input NAND gate left/right rotate
2-input NOR gate adder
2-input XOR gate subtractor
2-input XNOR gate multiplier
2-1 multiplexer signed/unsigned comparator
full adder signed/unsigned maximum/minimum
full subtractor ROM

Fig. 2. List of components in the library

Profiling data

ISE compiler

ISE power
model

ISE functional
model

ARM
executable

Power analysis Cycle-accurate
simulation

wattch

Source code

Performance dataPower data

Fig. 3. Structure of the toolchain

in fact, include only the hardware needed to perform the requested operations, instead
of supporting addition/subtraction, logical operations, updating the flags, and so on. In
addition the implementation of custom instructions can use simpler circuits when the
operands have a reduced bitwidth, for example, or are constant.

Power was reduced, that is energy gain is higher than the speedup, whenever the
compiler could place read-only arrays in the AFUs. This happens in aes, des, rawcau-
dio, rawdaudio. In these cases, small constant tables are inserted in the AFUs, and all
cache accesses for these tables are removed. Apart from saving execution cycles for
address generation, the use of small tagless memories in the AFUs reduces power.

A second interesting result can be gathered by observing figure 5. Here it can be seen
that, for many benchmarks, 30% or more of the executed instructions are ISE; yet the
energy consumed by the ISE is only a very small fraction (less than 0.5%) of the total
energy consumed by the Execute phase of the pipeline.

310 P. Bonzini, D. Harmanci, and L. Pozzi

 0

 1

 2

 3

 4

 5

 6

 7

ra
wca

ud
io

ra
wda

ud
io

ae
s-

ta
ble ae

s

bit
co

un
t

blo
wfis

h
de

s
sh

a

speedup
energy gain

Fig. 4. Comparing the improvement offered by customized instruction sets, in terms of speed and
consumed energy

 0

 10

 20

 30

 40

 0

 0.1

 0.2

 0.3

 0.4

 0.5

%
 o

f A
F

U
 in

st
ru

ct
io

ns

%
 e

xe
cu

te
 p

ow
er

 u
se

d
by

 A
F

U
s

ra
wca

ud
io

ra
wda

ud
io

ae
s-

ta
ble ae

s

bit
co

un
t

blo
wfis

h
de

s
sh

a

AFU utilization
AFU power in execute stage

Fig. 5. % of extended instructions out of all instructions, and % of energy consumed by AFUs out
of the total energy consumed in the execute stage. Note that the two series use different scales.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

re
la

tiv
e

po
w

er
 c

on
su

m
pt

io
n

rawcaudio rawdaudio aes-table aes bitcount blowfish des sha
 AFU AFU AFU AFU AFU AFU AFU AFU

Execute
Memory

Decode+WB
Fetch
Clock

Fig. 6. Break up of consumed energy for clock and the different pipeline stages. The first bar refers
to a non-customizable processor, while the second bar adds up to seven customizable instructions.

A Study of Energy Saving in Customizable Processors 311

In figure 6, energy consumption is broken up according to pipeline stages, so that dif-
ferences between stages can be appreciated. The behavior can be very different for the
various benchmarks. For example, the memory cost2 is vastly improved for the afore-
mentioned benchmarks aes and des, as well as for rawcaudio and rawdaudio. Instead, it
remains the same for aes-table or blowfish, where the AFUs mostly generate addresses
to access tables stored in RAM.

Finally, the cost of the fetch phase, which includes branch prediction, is improved
when AFUs include multiple unrolled copies of a loop, and when the compiler can apply
if-conversion to generate AFUs that include a multiplexer [13]. If-conversion happens
rawcaudio and rawdaudio; unrolling happens for all the other benchmarks.

6 Conclusion

In this paper, we proposed a micro-architectural power estimation tool for customizable
processors. We implemented a library to characterize the power consumption of a set of
standard cells, and used this library to build power models of extended instructions in
a structural way. Unlike existing techniques to estimate the energy consumption of an
ASIP, our methodology automates the construction of the extension’s power model and
eliminates the need to perform place-and-route prior to the power simulation.

We used this technique to monitor the performance and power benefits which can be
obtained using an automated instruction selection algorithm. We found that customiz-
able instructions enable energy saving thanks to the usage of simpler circuits within the
application-specific functional units. In addition, putting local memory elements inside
instruction set extensions reduces the access to the memory elements in the system and
hence enables higher power savings.

Our experiments show performance improvements up to 5.6x and energy gains up
to 6.2x. Therefore, customizable processors also provide a way to limit the power con-
sumed by the processor.

References

1. Halfhill, T.R.: Tensilica’s software makes hardware. Microprocessor Report (2003)
2. Halfhill, T.R.: ARC Cores encourages “plug-ins”. Microprocessor Report (2000)
3. Faraboschi, P., Brown, G., Fisher, J.A., Desoli, G., Homewood, F.: Lx: A technology platform

for customizable VLIW embedded processing. In: Proceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture, pp. 203–213 (2000)

4. Halfhill, T.R.: MIPS embraces configurable technology. Microprocessor Report (2003)
5. Cheung, N., Parameswaran, S., Henkel, J.: A quantitative study and estimation models for

extensible instructions in embedded processors. In: Proceedings of the International Confer-
ence on Computer Aided Design, San Jose, Calif, pp. 183–189 (2004)

6. Biswas, P., Banerjee, S., Dutt, N., Ienne, P., Pozzi, L.: Performance and energy benefits of
instruction set extensions in an FPGA soft core. In: Proceedings of the 19th International
Conference on VLSI Design, Hyderabad, India, pp. 651–656 (2006)

2 I-cache cost, which is almost linear in the speedup, is part of the fetch phase rather than the
memory phase. The memory phase only includes data accesses.

312 P. Bonzini, D. Harmanci, and L. Pozzi

7. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level power
analysis and optimizations. In: Proceedings of the 27th Annual International Symposium on
Computer Architecture, pp. 83–94 (2000)

8. Fei, Y., Ravi, S., Raghunathan, A., Jha, N.K.: Energy estimation for extensible processors.
In: Proceedings of the Design, Automation and Test in Europe Conference and Exhibition,
pp. 682–687 (2004)

9. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: A first step towards
software power minimization. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems VLSI-2, 437–445 (1994)

10. Simunic, T., Benini, L., Micheli, G.D.: Cycle-accurate simulation of energy consuption in
embedded systems. In: Proceedings of the 36th Design Automation Conference, New Or-
leans, La, pp. 867–872 (1999)

11. Wan, M., Ichikawa, Y., Lidsky, D., Rabaey, J.: An energy conscious methodology for early
design exploration of heterogeneous DSPs. In: Proceedings of the IEEE Custom Integrated
Circuit Conference—CICC 1998, Santa Clara, Calif., pp. 111–117. IEEE Computer Society
Press, Los Alamitos (1998)

12. Ye, W., Vijaykrishnan, N., Kandemir, M.T., Irwin, M.J.: The design and use of SimplePower:
a cycle-accurate energy estimation tool. In: Proceedings of the 37th Design Automation Con-
ference, Los Angeles, Calif., pp. 340–345 (2000)

13. Bonzini, P., Pozzi, L.: Code transformation strategies for extensible embedded processors.
In: Proceedings of the International Conference on Compilers, Architectures, and Synthesis
for Embedded Systems, Seoul, South Korea, pp. 242–252 (2006)

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 313–321, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Trends in Low Power Handset Software Defined Radio

John Glossner1,3, Daniel Iancu1, Mayan Moudgill1, Michael Schulte2,
and Stamatis Vassiliadis3

1 Sandbridge Technologies, 1 N. Lexington Ave., White Plains, NY 10601
2 UW Madison, Dept. of EECS, Madison, Wisconsin

3 Delft University of Technology, EEMCS, Delft, The Netherlands
jglossner@sandbridgetech.com

Abstract. This paper presents an overview of trends in low power handset SDR
implementations. With the market for SDR-enabled handsets expected to grow
to 200M units by 2014, the barriers to efficient handset implementations – both
hardware and software – have been removed based on new and innovative
architectures. We describe advances in DSP architectures and compilers that are
enabling SDR handset implementations and present some results for a specific
SDR design.

Keywords: Software Defined Radio, SDR, DSP, Multithreaded processors.

1 Introduction

Spectrum is scarce with precious little available for future technologies. Most of the
world’s available frequencies have already been allocated to specific services. What
precious little remains is auctioned by government agencies typically for billions of
dollars.

From a mobile operator’s perspective delivering services to customers is dependent
upon network capacity and coverage. Capacity is concerned with allowing more non-
interfering users within a basestation cell or providing higher bandwidth to users
within range of a basestation. Each new generation of communications systems
designs attempts to provide additional capacity based on technological advances in
the field. Recently MIMO-OFDM systems have been proposed [1] .

Coverage is concerned with providing voice and data services over large distances
– with quality of service. In the future, data services may be the focus of cellular
operators. Generally as a user moves farther away from a particular base station or
service area the data speeds available to a user decreases. Additionally, cost is a
concern. Providing high-speed cellular connections may be expensive. A common
scenario proposed is providing wireless LAN hotspot coverage over a few hundred
feet, WiMax coverage over a few miles, and cellular coverage (HSxPA, 1xEVDO)
everywhere else.

Fig. 1 shows that the situation is actually more complicated than the above
discussion. There are in fact multiple standards world-wide. Interestingly, the same is
true of multimedia, location-based services, and user interfaces.

314 J. Glossner et al.

Software Defined Radio (SDR) has been proposed as a solution to providing better
coverage. The SDR Forum [2] defines five tiers of solutions. Tier-0 is a traditional
radio implementation in hardware. Tier-1, Software Controlled Radio (SCR),
implements the control features for multiple hardware elements in software. Tier-2,
Software Defined Radio (SDR), implements modulation and baseband processing in
software but allows for multiple frequency fixed function RF hardware. Tier-3, Ideal
Software Radio (ISR), extends programmability through the RF with analog conversion
at the antenna. Tier-4, Ultimate Software Radio (USR), provides for fast (millisecond)
transitions between communications protocols in addition to digital processing
capability. This is an underlying technology necessary to realize cognitive radios.

W
A

N
TD

-S
C

D
M

A
W

-C
D

M
A

1x
EV

-D
O

1x
EV

-D
V

E
D

G
E

G
PR

S
ID

EN
P

H
S

LAN/PAN

802.16
802.15
802.11b

a,g,n
BT
IR

B
roadcast

DVB-H

ISDB
-T

DM
BD
A

BXMFM

V
oi

ce
di

al
in

g
&

 c
on

tr
ol

H
an

dw
ri

tin
g

re
co

gn
iti

on
S

M
S

 d
ic

ta
tio

n
E

as
e-

of
-u

se

A-GPS
Games

Encrytion

M
P-3

A
A

C
+

A
trac-3

W
M

A
/V

JPEG

H
.264

M
P

EG
-2/4

A
udio/Video

Fig. 1. Competing and Complementary Technologies

The advantages of reconfigurable SDR solutions versus hardware solutions are
significant. First, reconfigurable solutions are more flexible allowing multiple
communication protocols to dynamically execute on the same transistors thereby
reducing hardware costs. Specific functions such as filters, modulation schemes,
encoders/decoders etc., can be reconfigured adaptively at run time. Second, several
communication protocols can be efficiently stored in memory and coexist or execute
concurrently. This significantly reduces the cost of the system for both the end user
and the service provider. Third, remotely reconfigurable protocols provide simple and
inexpensive software version control and feature upgrades. This allows service
providers to differentiate products after the product is deployed. Fourth, the
development time of new and existing communications protocols is significantly
reduced providing an accelerated time to market. Development cycles are not limited
by long and laborious hardware design cycles. With SDR, new protocols are quickly
added as soon as the software is available for deployment. Fifth, SDR provides an
attractive method of dealing with new standards releases while assuring backward
compatibility with existing standards.

SDR enabling technologies also have significant advantages from the consumer
perspective. First, mobile terminal independence with the ability to “choose” desired
feature sets is provided. Second, global connectivity with the ability to roam across
operators using different communications protocols is enabled. Third, future
scalability and upgradeability provide for longer handset lifetimes.

 Trends in Low Power Handset Software Defined Radio 315

Software
Defined

Radio

Processor
SDR

Reconfigurable
(RDR)

Fig. 2. SDR Variants

Fig. 2 shows two variants of Tier-2 SDR systems. Reconfigurable Digital Radio
(RDR) platforms are generally FPGA-based with millisecond or longer
reconfiguration times between communications systems. Of key importance is that
RDRs generally follow a hardware design methodology. Processor SDR systems are
instruction set computers. They follow a software design methodology and generally
can be reconfigured in nanosecond timeframes. Historically, processor-based SDRs
have not had enough performance to implement modern communications systems.
Recently processor-based solutions with sufficient processing power have appeared
[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] . The remainder of this paper
focuses on processor-based SDR solutions.

Source: Pioneer Consulting, LLC

$123 $266 $574
$1,222

$2,478

$4,821

$8,911

$14,527

$20,641

$24,423

$26,981

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

$US(M)

0

50

100

150

200

250

 Units (M)
SDR Handset Revenue (71% CAGR) SDR Handset Units (86% CAGR)

Fig. 3. SDR Handset Market (source: Pioneer Consulting, LLC)

Fig. 3 shows the growth in the SDR handset time both in terms of money value and
unit shipments. We are now at the beginning of SDR-based handset deployments. In
Section 2 we discuss processor related design issues both in terms of real-time parallel
systems implementation and low-power. In Section 3 we discuss programmability and
applications development for SDR solutions. In Section 4 we make concluding
remarks on the future of SDR systems.

316 J. Glossner et al.

2 Processor Design

Since processor-based SDR systems are Digital Signal Processor (DSP) computer
systems, it is helpful to recognize the historical context from which they have
emerged. The types of processing include a mix of general purpose processing and
signal processing. In this section we define architectural and industrial terms.

The architecture of a computer system is the minimal set of properties that
determine what programs will run and what results they will produce [3] . It is the
contract between the programmer and the hardware. Every computer is an interpreter
of its machine language – that representation of programs that resides in memory and
is interpreted (executed) directly by the (host) hardware.

The logical organization of a computer’s dataflow and controls is called the
implementation or microarchitecture. The physical structure embodying the
implementation is called the realization. The architecture describes what happens
while the implementation describes how it is made to happen. Programs of the same
architecture should run unchanged on different implementations. An architectural
function is transparent if its implementation does not produce any architecturally
visible side effects. An example of a non-transparent function is the load delay slot
made visible due to pipeline effects. Generally, it is desirable to have transparent
implementations. Most DSP and VLIW implementations are not transparent and
therefore the implementation affects the architecture [4] [5] [6] [7] .

Execution predictability in SDR systems often precludes the use of many general-
purpose design techniques (e.g. speculation, branch prediction, data caches, etc.).
Instead, classical DSP architectures have developed a unique set of performance
enhancing techniques that are optimized for their intended market. These techniques
are characterized by hardware that supports efficient filtering, such as the ability to
sustain three memory accesses per cycle (one instruction, one coefficient, and one
data access). Sophisticated addressing modes such as bit-reversed and modulo
addressing may also be provided. Multiple address units operate in parallel with the
datapath to sustain the execution of the inner kernel.

In classical DSP architectures, the execution pipelines were visible to the
programmer and necessarily shallow to allow assembly language optimization. This
programming restriction encumbered implementations with tight timing constraints
for both arithmetic execution and memory access. The key characteristic that
separates modern DSP architectures from classical DSP architectures is the focus on
compilability. Once the decision was made to focus the DSP design on programmer
productivity, other constraining decisions could be relaxed. As a result, significantly
longer pipelines with multiple cycles to access memory and multiple cycles to
compute arithmetic operations could be utilized. This has yielded higher clock
frequencies and higher performance DSPs.

In an attempt to exploit instruction level parallelism inherent in DSP applications,
modern DSPs tend to use VLIW-like execution packets. This is partly driven by real-
time requirements which require the worst-case execution time to be minimized. This
is in contrast with general purpose CPUs which tend to minimize average execution
times. With long pipelines and multiple instruction issue, the difficulties of attempting

 Trends in Low Power Handset Software Defined Radio 317

assembly language programming become apparent. Controlling instruction
dependencies between upwards of 100 in-flight instructions is a non-trivial task for a
programmer. This is exactly the area where a compiler excels.

A challenge of using VLIW processors includes large program executables (code
bloat) that result from independently specifying every operation with a single
instruction. As an example, a VLIW processor with a 32-bit basic instruction width
requires 4 instructions, 128 bits, to specify 4 operations. A vector encoding may
compute many more operations in as little as 21 bits (for example – multiply two 4-
element vectors, saturate, accumulate, and saturate).

Another challenge of VLIW implementations is that they may require excessive
write ports on register files. Because each instruction may specify a unique
destination address and all the instructions are independent, a separate port must be
provided for the target of each instruction. This can result in high power dissipation,
which is unacceptable for handset applications.

A challenge of visible pipeline machines (e.g. most DSPs and VLIW processors) is
interrupt response latency. Visible memory pipeline effects in highly parallel inner
loops (e.g. a load instruction followed by another load instruction) are not typically
interruptible because the processor state cannot be restored. This requires
programmers to break apart loops so that worst case timings and maximum system
latencies may be acceptable.

Signal processing applications often require a mix of computational calculations
and control processing. Control processing is often amenable to RISC-style
architectures and is typically compiled directly from C code. Signal processing
computations are characterized by multiply-accumulate intensive functions executed
on fixed point vectors of moderate length. Therefore, a DSP requires support for such
fixed point saturating computations. This has traditionally been implemented as one
or more multiply accumulate (MAC) units. In addition, as the saturating arithmetic is
non-associative, parallel execution of multiple data elements may result in different
results from serial execution. This creates a challenge for high-level language
implementations that specify integer modulo arithmetic. Therefore, most DSPs have
been programmed using assembly language.

The problems associated with previous approaches require a new architecture to
facilitate efficient convergence applications processing. An SDR architecture must
allow for real-time execution, be highly parallel, and provide exceptionally low
latency interrupt response times. Sandbridge Technologies has designed a processor
with these characteristics. It is a multithreaded vector machine with multiple cores on
a single die. The simplicity of VLIW implementations is embodied in the design with
multithreading overcoming the limitations [20] .

3 Software Design

Obtaining full utilization of parallel processor resources has historically been a
difficult challenge. Much of the programming effort can be spent determining which
processors should receive data from other processors. Often execution cycles may be
wasted for data transfers. Statically scheduled machines such as Very Long

318 J. Glossner et al.

Instruction Word architectures and visible pipeline machines with wide execution
resources complicate programmer productivity by requiring manual tracking of up to
100 in-flight instruction dependencies. When non-associative DSP arithmetic is
present, nearly all compilers are ineffective and the resulting burden falls upon the
assembly language programmer. A number of these issues have been discussed in
[21] .

A good programming model should adequately abstract most of the programming
complexity so that 20% of the effort may result in 80% of the platform utilization [22]
[23] . While there are still some objections to a multithreaded programming model
[24] , to-date it is widely adopted particularly with the introduction of the Java
programming language [23] [25] .

With hardware that is multithreaded with concurrent execution and adopting a
multithreaded software programming model, it is possible for a kernel to be
developed that automatically schedules software threads onto hardware threads. It
should be noted that while the hardware scheduling may be fixed, the software should
be free to use any scheduling policy desired [26] . The POSIX pthreads open standard
[27] provides cross platform capability as the library is compilable across a number
of systems including Unix, Linux, and Windows.

There are many challenges faced when trying to develop efficient compilers for
parallel DSP technologies. First and foremost, the Sandblaster processor is transparent
in the architectural sense. This proscribes that there are no visible implementation
effects for the programmer or compiler to deal with [3] . This is in distinct contrast
with VLIW designs where the implementation strongly influences the architecture. A
benefit of a true architecture approach is that object code will execute unmodified
(e.g. without any translation required) on any Sandblaster compliant implementation.

If a SIMD datapath to implement vector operations is utilized, the compiler must
vectorize C code to exploit the data level parallelism inherent in signal processing
applications and then generates the appropriate vector instructions. The compiler must
also handle the difficult problem of outer loop vectorization.

Since saturating arithmetic is non-associative, out-of-order execution may produce
different bit results. In some wireless systems this is not permissible [28] . By
architecting parallel saturating arithmetic (i.e. vector multiply and accumulate with
saturation), a compiler is able to generate code with the understanding that the
hardware will properly produce bit-exact results. A compiler algorithm used to
accomplish this is described in [29] . Some hardware techniques to implement this are
described in [30] .

In multithreaded processors compilers should also automatically generate software
threads. If the same pthreads mechanism for thread generation in the compiler is used
as the programmer who specifies them manually, many economies of scale can be
achieved. For most signal processing loops it is not a problem to generate threads and
a compiler will automatically produce code for correct synchronization.

Fig. 4 shows the results of a number of communications systems as a percentage
utilization of a 4-core 600MHz Sandbridge SB3011 platform. Particularly, WiFi
802.11b, GPS, AM/FM radio, Analog NTSC Video TV, Bluetooth, GSM/GPRS,
UMTS WCDMA, WiMax, CDMA, and DVB-H. A notable point is that all these

 Trends in Low Power Handset Software Defined Radio 319

communications systems are written in generic C code with no hardware acceleration
required. It is also notable that performance, accuracy, and concurrency can be
dynamically adjusted based on the mix of tasks desired. For most of the systems, the
values are measured on hardware from digitized RF signals that have been converted
in real-time.

0

10

20

30

40

50

60

70

80

90

100

802
.1

1b
G

PS

AM
/F

M

Analo
g T

V

Blu
et

ooth

G
PRS

W
CDM

A

W
iM

ax

CDM
A

DVB-H

1/
2/5

.5/
11

Mbp
s

Clas
s 1

0/1
4

64
k /

 38
4k

 / 2
M

%
 S

B
30

11
 U

ti
liz

at
io

n

75
m

 .5
se

c x
yz

5m

.1
se

c x
yz

4x
60

0M
H

z

2.9
 M

bp
s

144
kb

ps /
 2.4M

bp
s

S-V
ide

o

2k/4
k/8

k (
25

0k
bps,

1.5
M

bps
)

Fig. 4. Communication Systems Results as a Percentage of Utilization (4 cores at 600MHz)

4 Conclusions

The market for SDR-enabled handsets is expected to grow significantly over the next
few years. This has been brought about by advances in low power DSP designs,
improved software design methodologies, and a market demand for multimode
multimedia devices. Such devices allow for improved carrier coverage over
increasingly limited spectrum ranges. The result of SDR devices is improved
coverage areas by means of dynamically reconfigurable radios.

References

[1] Stuber, G., Mclaughlin, S., Ingram, M., Pratt, T.: Broadband MIMO-OFDM Wireless
Communications. Proceedings of the IEEE 92(2), 271–294 (2004)

[2] http://www.sdrforum.org
[3] Blaauw, G., Brooks Jr., F.: Computer Architecture: Concepts and Evolution. Addison-

Wesley, Reading, MA (1997)
[4] Case, B.: Philips Hopes to Displace DSPs with VLIW. Microprocessor Report, pp. 12–15

(December 1997)
[5] Wolf, O., Bier, J.: StarCore Launches First Architecture. Microprocessor Report 12(14),

1–4 (1998)

320 J. Glossner et al.

[6] Fridman, J., Greenfield, Z.: The TigerSHARC DSP Architecture. IEEE Micro 20, 66–76
(2000)

[7] Turley, J., Hakkarainen, H.: TI’s New ‘C6x DSP Screams at 1,600 MIPS. Microprocessor
Report 11(2), 1–4 (1997)

[8] Glossner, J., Iancu, D., Lu, J., Hokenek, E., Moudgill, M.: A Software Defined
Communications Baseband Design. IEEE Communications Magazine 41(1), 120–128
(2003)

[9] Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., Chakrabarti, C., Flautner,
K.: SODA: A Low-power Architecture For Software Radio. In: Proceedings of the 33rd
Intl. Symposium on Computer Architecture, pp. 89–100 (June 2006)

[10] Kneip, J., Weiss, M., Drwscher, W., Aue, V., Strobel, J., Oberthür, T., Bolle, M.,
Fettweis, G.: Single Chip Programmable Baseband ASSP for 5 GHz Wireless LAN
Applications. IEICE Transactions on Electronics, pp. 359–367 (February 2002)

[11] van Berkel, C., Heinle, F., Meuwissen, P.P.E., Moerman, K., Weiss, M.: Vector
Processing as an Enabler for Software-Defined Radio in Handheld Devices. EURASIP
Journal on Applied Signal Processing 16, 2613–2625 (2005)

[12] Robelly, J.P., Cichon, G., Seidel, H., Fettweis, G.: A HW/SW Design Methodology for
Embedded SIMD Vector Signal Processors. International Journal of Embedded
Systems 1(11), 2–10 (2005)

[13] Duller, A., Panesar, G., Towner, D.: Parallel Processing — the picoChip Way!
Communicating Processing Architectures 2003, pp. 125–138 (2003)

[14] Lodi, A., Cappelli, A., Bocchi, M., Mucci, C., Innocenti, M., De Bartolomeis, C.,
Ciccarelli, L., Giansante, R., Deledda, A., Campi, F., Toma, M., Guerrieri, R.: XiSystem:
A XiRisc-Based SoC With Reconfigurable IO Module. IEEE Journal of Solid-State
Circuits 41(1), 85–96 (2006)

[15] Mohebbi, B., Filho, E.C., Maestre, R., Davies, M., Kurdahi, F.J.: A Case Study of
Mapping a Software-Defined Radio (SDR) Application on a Reconfigurable DSP Core.
In: Proceedings of the International Conference on Codesign and System Synthesis, p.
103 (2003)

[16] Ungerer, T., Robič, B., Šilc, J.: A Survey of Processors with Explicit Multithreading.
ACM Computing Surveys 35(1), 29–63 (2003)

[17] Smith, B.J.: The Architecture of HEP. In: Kowalik, J.S. (ed.) Parallel MIMD
Computation: HEP Supercomputer and Its Applications, pp. 41–55. MIT Press,
Cambridge, MA (1985)

[18] Mankovic, T.E., Popescu, V., Sullivan, H.: CHoPP priciples of operations. In:
Proceedings of the 2nd International Supercomputer Conference, pp. 2–10 (1987)

[19] Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous Multithreading: Maximizing on-
chip Parallelism. In: Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pp. 392–403 (June 1995)

[20] Glossner, J., Iancu, D.: The Sandbridge SB3011 SDR Platform. In: Proceedings of the
Symposium on Trends in Communications (SympoTIC’06), Bratislava, Slovakia (June
24-26, 2006)

[21] Glossner, J., Schulte, M., Moudgill, M., Iancu, D., Jinturkar, S., Raja, T., Nacer, G.,
Vassiliadis, S.: Sandblaster Low-Power Multithreaded SDR Baseband Processor. In:
Proceedings of the 3rd Workshop on Applications Specific Processors (WASP’04),
Stockholm, Sweden, pp. 53–58 (September 7, 2004)

[22] Goering, Richard: Platform-based design: A choice, not a panacea. EE Times (September
11, 2002), Available at http://www.eetimes.com/story/OEG20020911S0061

 Trends in Low Power Handset Software Defined Radio 321

[23] Silvén, O., Jyrkkä, K.: Observations on Power-Efficiency Trends in Mobile
Communication Devices. In: Hämäläinen, T.D., Pimentel, A.D., Takala, J., Vassiliadis, S.
(eds.) SAMOS 2005. LNCS, vol. 3553, pp. 142–151. Springer, Heidelberg (2005)

[24] Lee, E.: The Problem with Threads. Computer Magazine, IEEE Press (May 2006)
[25] Gosling, J., McGilton, H.: The Java Language Environment: A White Paper. Sun

Microsystems Press (October 1995)
[26] Schulte, M.J., Glossner, J., Mamidi, S., Moudgill, M., Vassiliadis, S.: A Low-Power

Multithreaded Processor for Baseband Communication Systems. In: Pimentel, A.D.,
Vassiliadis, S. (eds.) SAMOS 2004. LNCS, vol. 3133, pp. 393–402. Springer, Heidelberg
(2004)

[27] Nichols, B., Buttlar, D., Farrell, J.: Pthreads Programming: A POSIX Standard for Better
Multiprocessing, O’Reilly Nutshell Series, Sebastopol, CA (September 1996)

[28] Jarvinen, K., et al.: GSM Enhanced Full Rate Speech Codec. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing, pp. 771–774 (1997)

[29] Kotlyar, V., Moudgill, M.: Detecting Overflow Detection. In: Proceedings of the 2004
CODES+ISSS International Conference on Hardware/Software Codesign and System
Synthesis, Stockholm, Sweden, pp. 36–41 (September 8-10, 2004)

[30] Balzola, P., Schulte, M., Ruan, J., Glossner, J., Hokenek, E.: Design Alternatives for
Parallel Saturating Multioperand Adders. In: Proceedings of the International Conference
on Computer Design, pp. 172–177 (September 2001)

Design of a Low Power Pre-synchronization
ASIP for Multimode SDR Terminals

Thomas Schuster, Bruno Bougard, Praveen Raghavan, Robert Priewasser,
David Novo, Liesbet Van der Perre, and Francky Catthoor

IMEC
Kapeldreef 75

3000 Leuven, Belgium
{schuster,bougardb,ragha,priewasr,novo,vdperre,catthoor}@imec.be

Abstract. SDR enables cost-effective multi-mode terminals but still suf-
fers from significant energy penalty when compared to dedicated hard-
ware solutions. At system level, this energy bottleneck can be leveraged
capitalizing on heterogeneous MPSOC platforms where specific engines
are dedicated to classes of functions with similar computation character-
istics and duty cycle. In burst-based communication as in IEEE802.11 or
IEEE802.16, burst detection functions have high duty cycle and hence
need an ultra low power implementation. Besides, programmability must
be preserved to support multiple modes. A low-power pre-synchronization
ASIP is designed targeting the IEEE802.11a/g/n and IEEE802.16e syn-
chronization at 20MHz input rate. Power simulations at gate-level show
that an IEEE802.16e synchronization (20MHz) can be carried out with an
average power of 15.86mW. This corresponds to an effective energy effi-
ciency of 115.89MOPS/mW (32-bit equivalent operations).

1 Introduction

The combination of the continuously growing variety of wireless standards and
the increasing costs related to IC design and handset integration make imple-
mentation of wireless standards on reconfigurable radio platforms the only vi-
able option in the near future. The Software Defined Radio (SDR) paradigm,
according to which digital radio functionality is executed on widely reusable
programmable platforms, is an effective way to provide the therefore necessary
performance and flexibility.

If programmable from a high-level language (such as C), SDR enables cost-
effective multi-mode terminals but still suffers from a significant energy penalty
compared to dedicated hardware solutions. Hence, programmability and energy
efficiency must be carefully balanced. To maintain energy efficiency at the level
required for mobile device integration, abstraction may only be introduced where
its impact on the total average power is sufficiently low or at those places where
the resulting extra flexibility can be exploited by improved energy management
(Targeted Flexibility, [5]). Many different architecture styles have already been
proposed for SDR. Most of them are designed keeping in mind the important

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 322–332, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Design of a Low Power Pre-synchronization ASIP 323

characteristics of wireless physical layer processing: high data level parallelism
(DLP) and data flow dominance [11,14,18]. Targeted Flexibility and the fact
that in wireless systems area can partly be traded for energy efficiency ask for
heterogeneous MPSOC architectures [6,9], in which the different tasks of a trans-
mission scheme are implemented on specific engines providing just the necessary
performance at minimum cost.

In practice, a radio standard implementation contains, next to modulation
and demodulation, functionality for Medium Access Control (MAC) and, in case
of burst-based communication, signal detection and time synchronization. The
high DLP does not hold for the MAC processing which is, by definition, control
dominated and should be implemented separately (e.g. on a RISC). Moreover,
packet detection and coarse time synchronization have a significantly higher
duty cycle than packet modulation and demodulation. They, therefore require a
different flexibility/efficiency tradeoff.

In this work, we develop an instruction set processor specialized for signal
detection and coarse time synchronization that will be part of a heterogeneous
MPSOC platform for SDR [6]. We focus on the IEEE 802.11a/g/n and IEEE
802.16e standards, where packet-based radio transmission is implemented based
on Orthogonal Frequency Division Multiplexing or Multiple-Access (OFDM(A)).
The main design target is energy efficiency. Performance must be just sufficient to
enable real time processing at the rates defined by the standards. In our reference
implementations, packet detection and coarse synchronization account for less
than 5% of the total code size. Hence, the effort for assembly programming is
reasonable and compiler support not critical.

The remainder of the paper is structured as follows. In section 2, we analyze
the targeted functionality and define the processor architecture. Section 3 focuses
on design flow and implementation. Conclusions are drawn in section 5.

2 Architecture Definition

Specific target applications for our design are signal detection and time synchro-
nizations for IEEE 802.11a/g/n and IEEE 802.16e. Reason is that those functions
have the highest duty cycle and dominate the standby power consumption.

Because one also wants to take provision for future standards such as 3GPP-
LTE, an Application Specific Instruction-set Processor (ASIP) approach is pre-
ferred [12,14]. For energy-aware implementation, special attention must be paid
to the selection of the instruction-set, parallelization, storage elements (register
files, memories) and interconnect. In this section, the most important architec-
tural decisions are motivated.

2.1 Instruction-Set Selection

Usually, ASIP design starts with a careful analysis of the targeted algorithms.
We applied a flow where profiling is performed on the application to obtain the
parts of the data flow graph which are activated often [4,19]. Therefore, code for

324 T. Schuster et al.

end
corr[i] = accumulate(prod);
prod = sum * conj(sample);
sum = sample16 + sample32;
sample32 = indata[i−32];
sample16 = indata[i−16];
sample = indata[i];

begin
for i = START_IDX : END_IDX
/* loop 1 − correlate */

power_accu = accumulate(power);

sample = indata[i];
begin
for i = START_IDX:END_IDX
/* loop 2 − normalize */

power_corr = corr[i]*conj(corr[i]);
corr_normal = power_corr / power_accu;

end

power = sample * conj(sample);

/* loop 3 − detect */
for i = START_IDX : END_IDX
begin

end

if (corr_normal[i] > max) and (corr_normal[i] > THRESHOLD) then
max = corr_normal[i];
pos = i;

end
if (corr_normal[i] < max) and (i==pos+TRAILINGSMALLER) then
return(pos);

end

Accu*

conj

+z^−32

z^−16

corr

/

conj

corr_normal

indata

corr *

* Accu

conj

indata

Fig. 1. Pseudo-code and data-flow in 802.11a synchronization

the targeted modes was written in Matlab and evaluated. Figure 1 illustrates the
typical structure of a synchronization algorithm on the example of IEEE802.11a.

The code mainly consists of three loops. In the first two of them, the correla-
tion in the input signal is explored. Here significant DLP is present that can be
efficiently exploited by vector machines. In the third loop, one scans for a peak
in the correlation result and compares it to a threshold. This is a more control
oriented task. It can also be seen that a number of input samples (correlation
window) needs to be stored in memory.

The code for IEEE802.16e, shows very similar characteristics. Moreover, many
common computational primitives can be identified, which suits the followed
ASIP approach. However, compared to the IEEE802.11a synchronization, the al-
gorithms for IEEE802.16e are far more computationally intensive (191 op/sample
in average vs. 82 op/sample for IEEE802.11a). In terms of throughput, both ap-
plications are very demanding (up to 20Msamples/s). Throughput will be even
higher for the multi-antenna operations in IEEE802.11n. Here it is intended to
use 1 processor per antenna tile.

Fixed-point refinement shows that all computations for IEEE802.11a and
IEEE802.16e can be done within 16bit signed precision. Moreover, all divisions
can be removed by algorithmic transformations. The code has been optimized,
including merging of the kernels into a single loop to improve data locality and
reduce control. Afterwards, the code was vectorized and mapped to a number of
pragmatically selected primitives.

Table 1 shows the derived instruction set and the instruction count break-
down for the computations on a single input vector in our IEEE802.11a and
IEEE802.16e detection loop. Vector size is a parameter. The number of vector
operations per iteration is independent of the vector size. Bigger vectors will just
reduce the number of iterations needed to process the whole input stream.

Design of a Low Power Pre-synchronization ASIP 325

Table 1. Instruction-set and Statistic Coarse Time Synchronization

vector operation description 11a/g/n 16e

vmov fill vector with immediate 0 0
vcmul complex vector multiplication 5 16
vadd,vsub vector add, sub 2 9
vasr,vlsl shift vector elements right, left 1 0
vand,vor and, or vectors 0 0
vtriang accumulate across vector 2 5
vlevel fill vector with vector element 2 5
vrotX rotate vectors X positions 0 2
vcon conjugate complex vector 2 9
vreal/vimag real/imag vector components 0 0

generate vector description 11a/g/n 16e

spread fill vector with scalar elements 1 4
vload load vector from address 2 5
pinld load vector from i/o interface 1 1

evaluate vector description 11a/g/n 16e

rgrep/igrep extract real/imag value from vec 1 3
rmax/imax max in real/imag vec elements 1 1
vstore store vector to address 1 1

scalar operation description 11a/g/n 16e

mov move scalar register 2 5
mul scalar multiplication 0 0
add, sub scalar add, sub 4 1
lsl,asr shift left, right 1 0
and,or,xor and, or, xor scalar values 6 4
modi modulo index calculation 0 0
pinst write value to i/o interface 0 0
branch,jump cond., uncond. branch 3 3

Thebehavior of thederived instructions iswidely self-explaining (seedescription
columninTable1).Instructionswithzerooperationcountareusedinotherkernelsor
glue-code.Becauseall computationsaredoneoncomplexsamples,wedecidedto im-
plement complex arithmetic in hardware.This has alreadybeen proven efficient for
SDRprocessing [17].The biggest challengewas the development of amechanism for
vector accumulation.Thedetection of the synchronizationpeakmust be sample ac-
curate.Hence, all correlationoutputsneedtobeevaluated.Wetherefore introduced
a scheme that preserves the intermediate results of a vector accumulation (vtriang,
vlevel - fig. 2) and instructions to extract maxima from vectors (rmax/imax).

2.2 Parallel Processing

It has already been demonstrated that in-order VLIW machines with capabili-
ties for vector processing are most energy efficient for SDR [18]. Following this

326 T. Schuster et al.

Vector
Accumulation

(triang)

Accumulator
Offset

(level)

z^−n

C

B

A

A,B,C
z^−n − arbitrary delay

− vectors

Ck = triang(Ak, Bk) =

�
���

a0(k) +b0(k)
a0(k) +a1(k) +b1(k)
a0(k) +a1(k) +a2(k) +b2(k)
a0(k) +a1(k) +a2(k) +a3(k) +b3(k)

�
���

Bk = level(Ck ∗ z−n) =
�
c3 ∗ z−n c3 ∗ z−n c3 ∗ z−n c3 ∗ z−n

�T

Fig. 2. Vector accumulation concept

approach, after the instruction set definition, one has to decide about the amount
of parallel processing that is needed to guarantee real-time performance at min-
imum energy cost.

We first derive a target clock. The maximum achievable clock rate is limited
to 200MHz by the available low power memories, which we intend to read and
write without multi-cycle access or stalling the processor. Next, instruction and
data-level parallelism are analyzed. From the application, it is observed that
control and data processing can easily be parallelized. This yields separate scalar
and vector slots. Since DLP is largely present in the considered algorithms, the
amount of vectorization is decided first. Assuming a processor with a single
vector slot and a clock rate of 200MHz, we would need a vectorization factor of
at least 4.5 to process a zero-slack schedule of our most demanding application
real-time (IEEE802.16e at 20MHz input rate). Realistic (close to zero-slack)
schedule for a vectorization factor of 4 is made possible by using multiple vector
slots with orthogonal instruction set. This also guarantees maximum utilization
of the operators [13]. The ratio of vector operations to scalar operations is 46/28
in the IEEE802.16e and 23/16 in the IEEE802.11a kernel (Tab. 1). Accordingly,
the target architecture should ideally be able to process 3 vector and 2 scalar
operations in parallel. The design is therefore partitioned in three vector and
two scalar instruction slots.

Figure 3 shows the derived processor micro-architecture and the distribu-
tion of the instruction set. The instructions in the scalar slots operate on 16bit
signed operands, the instructions in the vector slots on 4 complex samples
in parallel (128bit). It is intuitive that further vectorization (256-bit or 512-
bit) will lead to larger complexity in the interconnection network and hence is
not considered [7]. Register file organization and interconnect will be discussed
next.

Design of a Low Power Pre-synchronization ASIP 327

SRF 16x16bit

vext
valu

gen_vec valign
vaccu

scalar cluster
cluster 1
vector

cluster 2
vector

cluster 3
vector

Slot Scalar1: Scalar2: Slot Vector1: Slot Vector2: Slot Vector3:

control
eval_vec
vstore
smul
salu vload

multiplexer

Legend:

scalar data

vector data

pipeline register

vector operand
read interconnect

write interconnect
vector result

VRF1 4x128bit VRF2 4x128bit VRF3 4x128bit

vcmul_2

vcmul_1

SyncPro ASIP
Datapath & Interconnect

Fig. 3. SyncPro Vector Processor

2.3 Clustered Registerfiles and Interconnect

A shared multiported register files is typically a scalability bottleneck in VLIW
structures and also one of the highest power consumers. Therefore, a clustered
register file implementation is preferred.

We decided to implement 4 general purpose register files (Fig. 3). The scalar
register file (SRF) contains 16 registers of 16 bit and has 4 read and 2 write ports.
Because of its small word-width, the costs of sharing it amongst the functional
units (FUs) in the two scalar slots is rather low [15]. The vector side of the
processor is fully clustered. Each of the three vector register files (VRF), holds
4 registers of 128 bit and has 3 read and 1 write port. Two of the read ports
are dedicated to the FUs in a particular vector slot. The third one, is used
for operand broadcasting (intercluster read) and can be accessed from all the
other FUs in non-local issue slots and slot scalar1 (vector evaluation, vector
store). Because each VRF has only one broadcast port, only one intercluster
read per VRF can be carried out per cycle. Routing the vector operands is
done via a vector operand read interconnect. Respectively, the vector result write
interconnect is used to route computation results to the write ports of the VRFs.
Each VRF write port can be written from all vector slots and from FUs in slot
scalar2 (generate vector, vector load). The programmer is responsible to avoid
access conflicts. The selected interconnect provides almost as much flexibility as
a central register file, but at a lower energy cost [16].

2.4 Memory and I/O

For all targeted modes, at least the correlation distance of the input signal needs
to be buffered in memory. We therefore implemented a data scratchpad with a

328 T. Schuster et al.

capacity of 256 vectors (4 kByte). In order to share interconnect, vector load
and vector store are implemented in different units. The load FU is connected to
the first scalar slot, which is capable of writing vectors. The store FU is assigned
to the second scalar slot, from which vector operands can be read (Fig. 3). The
L1 program memory has a capacity of 256 words of 96bit (3kByte). Both, L1
program memory and vector scratchpad are implemented as single port SRAM
macros. To ease platform integration, the processor provides a number of I/O
ports, specifically a blocking interface for reading vectors from an input stream.

2.5 Pipeline Model

Given the described architecture and the target technology in mind, it is now re-
quired to decide on the amount of pipelining that is needed to reach the targeted
clock rate of 200MHz and seamlessly interface the instruction and data memory.
We derived a pipeline model with two instruction fetch (FE1, FE2) and one
instruction decode (DE) stage. Additionally, the units in the scalar slots and in
the first and second vector slot have one execution stage (EX). The complex vec-
tor multplier FU, in the third vector slot, has two execution stages (EX, EX2).
The FE1 stage implements the addressing phase of the program memory. The
instruction word is read in FE2. In stage DE, the instruction is decoded and the
data memory is addressed. The decoder decides, which register file ports need
to be accessed. Routing, forwarding and chaining of source operands are fully
software controlled. Source operands are saved in pipeline registers at the end
of DE and consumed by the activated FUs in the following cycle. Register files
are written at the end of EX (or EX2).

3 Implementation

The proposed processor architecture has been implemented in a 90nm CMOS
technology. Therefore, three major steps have been carried out. First, the pro-
cessor was modelled in LISA (Language for Instruction-Set Architecture), capi-
talizing on the Processor DesignerTM toolsuite from Coware [2]. Then, RTL code
was generated, synthesized and profiled in a gate-level power simulation. Finally,
a backend experiment was carried out to ensure timing closure.

3.1 Instruction-Set Architecture Modelling

Coware Processor Designer is a tool-suite for automated embedded processor
design [8,10]. Our motivation for using it is that it enables the generation of soft-
ware development tools, such as assembler, linker and instruction-set simulator
very early in the design process. So that, the processor micro-architecture can
be co-optimized with the kernel software. Moreover, the tools offer strong sup-
port for platform integration (by generating wrapper for SystemC-based virtual
platform modeling) and good-quality automated RTL code generation. Figure 4
illustrates the mentioned co-optimization strategy.

Design of a Low Power Pre-synchronization ASIP 329

Description
Architecture
LISA 2.0

Designer
Processor
Coware

Simulator

Linker

Assembler

Testbench

Application

Generator
HDL

Coware

Stimuli
VHDL, Synthesis

Synopsys

Flow

START

generate generate

map

Application directed feedback

ISS

Architecture directed feedback

cycles,
Profiling:

resource

ipc,
coverage, power

area,
clock,

Profiling:
Gate−level END

Fig. 4. Optimization methodology

We start with describing the instruction-set architecture in LISA. The re-
sulting model is then iteratively refined into a pipelined micro-architecture rep-
resentation, from which RTL code can be generated. Software and hardware
are developed in parallel. The tools offer profiling functions, enabling fast ap-
plication and architecture directed feedback, based on information about cycle
count, instruction per cycle (IPC), code coverage and resource utilization. As
soon the targets on those high level figures are met, the exploration is extended
to architecture implementation level.

3.2 Logic Synthesis and Power Estimation

Implementation cost assessment requires the knowledge of silicon area, achiev-
able clock rate and power consumption. Therefore, VHDL is generated from
Processor Designer (HDL Generator - fig. 4) and synthesized using a mainly
Synopsys based tool-chain (fig. 5) [3].

Following the depicted flow, the design was synthesized for a 90nm general
purpose process with a standard cell library for nominal Vt. We target a clock
rate of 200MHz under worst case operating conditions (VDD = 0.9V , T = 125C).

Power estimation based on gate-level activity has been done utilizing Syn-
opsys PrimePowerTM. Therefore, the automatically generated netlist, after pre-
liminary placement and physical synthesis, was simulated with stimuli from the

SAIF

&

Parasitics

RTL Design 90nm techStimuli

Physical
Synopsys

Compiler

Gate−Level
Netlist

Synopsys
Prime−
Power

Place

Route
Gate−Level
Simulation

power profile

Fig. 5. Power Estimation Flow Fig. 6. Chip Layout

330 T. Schuster et al.

00

leakage
0.5

PKernel

0.5

leakage

power
Pwait

14.69

23.46

29.41

13.18

18.47

P [mW]

P [mW]

internal
power

7.17 Paverage

t [ns] t [ns]

switch.

Pwait=1.09mW

25.73

tkernel=70 titer=200

power profile

optimized design & testbench

power profile

initial design & testbench

power
internal

power

switch.

PKernel

Paverage

tkernel=70 titer=200

Fig. 7. Power Profile

11%

25%

Register
Files

Memories

Datapath
18%

Pipeline
Registers

23%

Decode,
Control,

Interconnect

23%

power breakdown

optimized design & testbench

Fig. 8. Power Breakdown

IEEE802.11a synchronization kernel. The left plot in figure 7 shows the power
profile (V DD = 1V , T = 25C) for a typical kernel iteration. The instruction-
and data-dependent instantaneous power variation is averaged out since non-
significant. The example refers to an input sample rate of 20MHz (5M vector/s
with 4x vectorization) and a clock rate of 200MHz. The profile is characteritic
for the processing of a real-time stream. At 0ns, the first vector is read from
the input interface. Consequently, the processor starts operating and consumes
maximum power (Pkernel). After all necessary computations are done (tkernel),
the processor goes back to halt mode, waiting for new data (titer) to arrive. In
this state, far less power is consumed (Pwait).

During micro-architecture design and software development, reduction of the
surface (energy) in this power profile has been our major concern. To further
reduce power consumption on implementation level two experiments have been
carried out: operand isolation and clock gating. While the first optimization is
supposed to cancel superfluous toggeling of operators, the latter aims on the re-
duction of the power dissipated within the boundaries of standard cells (internal
power).

By introducing clock gating the average power in the IEEE802.11a testbench
could be reduced by 64%. While clock gating dramatically reduces the cell in-
ternal power, operand isolation showed almost no effect and hence, will not be
implemented. This can be explained by the orthogonal instruction-set and the
fact that only 18% of the total power are consumed in the datapath (Fig. 8).
Biggest power consumer are the flip-flops (48%). It is particularly noted that the
pipeline registers (23%) consume almost the same share of the total power as
the four general purpose register files (25%). Indeed, our design contains a high
number of frequently accessed very wide (128bit) pipeline registers, to buffer
source operands between the decode (DE) and execute (EX) pipeline stage (Sec.
2.5). Moving the register file read in the execute stage could eliminate those
registers. However, it would have dramatic impact on the achievable clock rate.

The power profile for the optimized design, is depicted in the right part of
figure 7. The energy spend for the processing of one input vector of four complex

Design of a Low Power Pre-synchronization ASIP 331

samples could be reduced from 3.97nJ to 1.43nJ . First power simulations for
the IEEE802.16e synchronization show very similar results for Pkernel and Pwait.
However, for the most demanding mode with 20MHz input rate, we estimate a
duty cycle of 85%. Under this assumption, the energy for the computations on
one input vector is 3.17 nJ.

3.3 Backend Experiment

For a first place, route and clock tree insertion, we utilized SOCEncounterTM

from Cadence [1]. Post-Layout back-annotation was only performed for verifica-
tion and to ensure timing closure. The final processor will be taped out as an
integrated part of a MPSOC platform [6]. Our results show that the targeted
clock rate of 200MHz can be easily met. Assuming 9 layers of metal, the layout
footprint is 0.8mm2, including 3KB program memory (0.06mm2) and 4KB data
memory (0.07mm2) (fig. 6).

4 Conclusion

Heterogeneous MPSOC platforms are considered to enable SDR implementa-
tion competitive in energy efficiency with dedicated hardware solutions. In such
platforms, specific engines execute classes of functions that relate in their com-
putation characteristics and duty cycle. In burst-based communication, signal
detection functions have high duty cycle and hence need ultra low power imple-
mentation. Besides, programmability must be preserved to support the imple-
mentation of multiple modes. Therefore, a low-power pre-synchronization ASIP
is designed targeting IEEE802.11a/g/n and IEEE802.16e. The processor deliv-
ers a theoretical maximum performance of 5 GOPS (32bit equivalent) at a peak
power of 25 mW. Energy efficiency is hence 200 MOPS/mW (fully loaded).
An IEEE802.11a synchronization (20 MHz) requires only 630 MOPS. The pro-
cessor consumes 7.17 mW when executing this kernel (79.5 MOPS/mW). The
more demanding IEEE802.16e synchronization (20MHz) requires 1838 MOPS.
For this kernel the estimated average power is 15.86 mW (115.89 MOPS/mW).
The achieved energy efficiency is 2-4 times higher than in typical SDR baseband
processors. Our ASIP can therefore be used to implement low power packet
detection, enabling energy aware multi-processor SDR platforms.

References

1. Cadence, http://www.cadence.com/
2. Coware inc., http://www.coware.com/
3. Synopsys, http://www.synopsys.com/
4. Biswas, P., Choudhary, V., Atasu, K., Pozzi, L., Ienne, P., Dutt, N.: Introduction

of local memory elements in instruction set extensions. In: DAC ’04. Proceedings
of the 41st annual conference on Design automation, pp. 729–734 (2004)

http://www.cadence.com/
http://www.coware.com/
http://www.synopsys.com/

332 T. Schuster et al.

5. Bougard, B., Hollevoet, L., Naessens, F., Ng, A., Schuster, T., Van der Perre,
L.: A low power signal detection and pre-synchronization engine for energy-aware
software defined radio. In: SDRForum, November 2006 (2006)

6. Bougard, B., Novo, D., Naessens, F., Hollevoet, L., Schuster, T., Glassee, M., De-
jonghe, A., Van der Perre, L.: A scalable programmable baseband platform for
energy-efficient reactive software-defined-radio. In: CrownCom, June 2006 (2006)

7. DeMan, H.: Ambient intelligence: Giga-scale dreams and nano-scale realities. In:
Proc of ISSCC, Keynote Speech (February 2005)

8. Gloeckner, T., Hoffmann, A., Meyr, H.: Methodical low-power asip design space
exploration. In: Journal of VLSI Signal Processing 33 (2003)

9. Glossner, J., Moudgill, M., Iancu, D.: The sandbridge sdr communication platform.
In: SympoTIC, October 2004 (2004)

10. Hoffmann, A., Meyr, H., Leupers, R.: Architecture exploration for embedded pro-
cessors with LISA. Kluwer Academic Publishers, Dordrecht (2002)

11. Hosemann, M., Cichon, G., Robelly, P., Seidel, H., Draeger, T., Richter, T.,
Bronzel, M., Fettweis, G.: Implementing a receiver for terrestrial digital video
broadcasting in software on an application-specific dsp. In: SIPS (2004)

12. Ienne, P., Leupers, R.: Customizable Embedded Processors: Design Technologies
and Applications. Morgan Kauffman, San Francisco (2006)

13. Jacome, M.F., de Veciana, G., Lapinskii, V.: Exploring performance tradeoffs for
clustered VLIW ASIPs. In: Proc. of ICCAD, November 2000 (2000)

14. Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., Chakrabarti, C.,
Flautner, K.: SODA: A low-power architecture for software radio. In: Proc of ISCA
(2006)

15. Raghavan, P., Lambrechts, A., Jayapala, M., Catthoor, F., Verkest, D.: Empirical
power model for register files. In: Workshop on Media and Streaming Processors
(with MICRO-38) (November 2005)

16. Rixner, S., Dally, W.J., Khailany, B., Mattson, P.R., Kapasi, U.J., Owens, J.D.:
Register organization for media processing. In: HPCA, January 2000, pp. 375–386
(2000)

17. Rounioja, K., Puusaari, K.: Implementation of an hsdpa receiver with a customized
vector processor. In: SoC2006 (November 2006)

18. van Berkel, K., Heinle, F., Meuwissen, P., Moermann, K., Weiss, M.: Vector pro-
cessing as an enabler for software-defined radio in handsets from 3g+ wlan onwards.
In: SDR Technical Conference (2004)

19. Yu, P., Mitra, T.: Characterizing embedded applications for instruction-set exten-
sible processors. In: DAC ’04. Proceedings of the 41st annual conference on Design
automation, pp. 723–728 (2004)

Area Efficient Fully Programmable Baseband
Processors

Anders Nilsson and Dake Liu

Division of Computer Engineering at Department of Electrical Engineering,
Linköping University, Linköping, Sweden

{andni,dake}@isy.liu.se

Abstract. Multi-mode wireless devices and the ever changing wireless standards
have increased the popularity and the use of programmable baseband processors.
A large portion of the power consumption in programmable baseband proces-
sors arises from memory accesses and control-path overhead. It is for that reason
crucial to reduce the control-path overhead and the amount of memory accesses
by using efficient yet flexible execution units in the processor. By utilizing the
vector nature of most baseband processing algorithms it is possible to achieve
multi-GIPS processing performance with a limited power budget. In this paper we
present an architecture that uses the vector property to provide a good trade-off
between the flexibility of VLIW processors and the efficiency of SIMD proces-
sors. Our DSP is based on the Single Instruction stream Multiple Tasks (SIMT)
architecture which allows concurrent tasks to be executed on the processor con-
trolled by only a single instruction stream.

The SIMT architecture is demonstrated by the BBP2 processor which has been
fabricated using the ST 0.12µm process. The BBP2 processor is designed for
supporting DVB-T/H, WCDMA, Wireless LAN and WiMAX.

1 Introduction

Efficient programmable baseband processors are important to enable true multi-
standard radio platforms as convergence of mobile communication devices and systems
require multi-standard processing devices. The processors do not only need the capa-
bility to handle differences in a single standard, often there is a need to cover several
completely different modulation methods such as OFDM and CDMA with the same
processing device.

Programmability can also be used to quickly adapt to new and updated standards
within the ever changing wireless network industry in situations where a pure ASIC so-
lution will not be flexible enough. ASIC solutions for multi-standard baseband process-
ing are also less area efficient than their programmable counterparts since processing
resources cannot be efficiently shared between different operations.

However, as baseband processing is computationally demanding, traditional DSP ar-
chitectures cannot be used due to their limited computing capacity. Instead VLIW- and
SIMD-based processors are used to provide enough computing capacity for baseband
applications.

The drawback of VLIW-based DSPs is their low power efficiency due to the wide
instructions that need to be fetched every clock cycle and their control-path overhead.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 333–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

334 A. Nilsson and D. Liu

On the other hand, pure SIMD-based DSPs lack the possibility to perform different
concurrent operations. Since memory access power is the dominating part of the power
consumption in a processor [1], other alternatives should be investigated.

Instead of designing a processor based on traditional architectures, this project has
started from the application requirements and designed a processor with a new archi-
tecture to meet the requirements with efficiency in mind. The architecture is named
“Single Instruction stream Multiple Tasks”, SIMT in short. The SIMT architecture uses
the vector nature of most baseband programs to provide a good trade-off between the
flexibility of a VLIW processor and the processing efficiency of a SIMD processor.

Compared to other promising projects such as the OnDSP [2] or EVP16 [3] from
Philips/NXP and Sandblaster [4] from Sandbridge, the SIMT architecture proves com-
petitive. Even compared with the most efficient code compaction scheme for VLIW, the
code size is reduced by approximately a factor of two. In this paper we first present the
SIMT architecture. Secondly we present the BBP2 processor which demonstrates the
SIMT architecture.

2 Baseband Properties

Analysis of baseband processing applications reveals that most baseband processing
tasks can be divided into one of the following three categories:

– Front-end processing and filtering
– Modem processing
– Forward error correction

In order to ensure high computing efficiency, the processing resources used by each
category of tasks should be optimized for the tasks. If an operation is performed on
every sample in one or many standards it should be considered for acceleration. For
example, it is not justified to use generic computing resources to perform front-end
filtering, decimation and I/Q-mismatch compensation since these operations are used
by all standards and are performed on every received sample. Accordingly the data-type
should be selected with the operations performed in mind. In the presented architecture,
configurable accelerators are used to provide efficient yet flexible front-end and forward
error correction support.

Since the modem processing stage is the stage where the diversity among standards
and implementations differ the most, it is important to provide most flexibility here.

2.1 Task Level Pipelines

Further analysis of signal processing operations within the modem stage shows that
most operations operate on large vectors of data such as convolution, FFT or dot-
product. Since there is no or little backward data dependencies within a block of data,
task level pipelines can be used. Task level pipelining is a method of increasing the pro-
cessing parallelism by running several independent tasks simultaneously and passing
data between the tasks at specific times. Task level parallelism is illustrated in Figure 1.

This technique is also used to store incoming and outgoing samples in one memory
while other execution units operate concurrently. When a processing task is finished the

Area Efficient Fully Programmable Baseband Processors 335

In
pu

t d
at

a
In

pu
t d

at
a

O
ut

pu
t d

at
a

O
ut

pu
t d

at
a

Memory
bank

Memory
bank

Memory
bank

Memory
bank

Memory
bank

Memory
bank

Memory
bank

Memory
bank

......

......

Odd frames

On−chip network

On−chip network

Execution
unit unit

Execution
unit

Execution

unit
Execution

unit
Execution

unit
Execution

SIMD units or Accelerators

SIMD units or Accelerators

Even frames

Fig. 1. Illustration of the concept of task level parallelism. The vector property of baseband mo-
dem processing allows parallelization of processing tasks. Data are handed over between tasks at
distinct time intervals.

memory banks are reconnected so that the output memory buffer from one execution
unit is connected to the input port of the next execution unit in the processing pipeline.
This memory arrangement allows the processor to perform most reception and trans-
mission tasks without moving any data between memories.

3 SIMT Architecture

The SIMT architecture utilizes the vector property described earlier to provide an trade-
off between the flexibility of a VLIW processor and the efficiency of SIMD proces-
sors.

As detailed application benchmarking shows that most operations in a baseband pro-
cessor are performed on vectors of complex data, the SIMT architecture uses vector
instructions. Vector instructions operate on a large set of data, such as a 256 point com-
plex dot-product or one layer of an FFT. The vector instructions execute on one of
several heterogenous complex valued SIMD clusters attached to an on-chip network.
Typical SIMD clusters include Complex MAC (CMAC) units and Complex ALUs
(CALU).

An example of a SIMT processor architecture, the BBP2 processor is shown in Fig-
ure 2.

3.1 Instruction Set

The instruction set architecture (ISA) of a SIMT processor consists of three classes of
compound instructions.

336 A. Nilsson and D. Liu

T
o

ho
st

 p
ro

ce
ss

or

Memory
Complex

A
G

U

Memory
Complex

A
G

U

Memory
Complex

A
G

U

Vector load/store unit

V
ec

to
r

co
nt

ro
lle

r

D
P

D
P

D
P

D
P

C
M

A
C

C
M

A
C

C
M

A
C

C
M

A
C

C
A

L
U

D
P

C
A

L
U

D
P

C
A

L
U

D
P

C
A

L
U

D
P

Vector load/store unit

V
ec

to
r

co
nt

ro
lle

r Map/
demap

A
G

U

Frequency error
cancellation

Filter and
decimation

...

A
L

SU

M
A

C

RF Stack

PM

Memory
Integer

PR
B

S
ge

ne
ra

to
r

H
os

t
in

te
rf

ac
e

Integer oriented
on−chip network

N
C

O

Complex oriented on−chip network

Controller unitCMAC SIMD Data pathALU SIMD Data pathNCODigital front−end

T
o

A
na

lo
g

pa
rt

Memory bank 0 Memory bank 1 Memory bank 4

Fig. 2. The BBP2 processor; exemplifying the SIMT architecture

RISC instructions operating on 16 bit integers.
DSP instructions operating on complex numbers.
Vector instructions executing vector operations on a particular SIMD-cluster.

All instructions are narrow, typically 16-24 bit. The RISC-instruction class contains
most control oriented instructions and this instruction class is executed on the controller
unit of the processor. The DSP-instructions operate on complex-valued data and are ex-
ecuted on one of the SIMD units. Vector instructions are extensions of the DSP instruc-
tions since they operate on large data-sets and utilize advanced addressing modes.

3.2 SIMT - Instruction Issue

The key idea in the SIMT architecture is to issue only one instruction each clock cycle
while letting several operations execute in parallel as vector instructions may run for
several clock cycles on the SIMD units. This approach results in a degree of parallelism
equivalent to a VLIW processor without the need for the large control-path overhead.
This is illustrated in Figure 3.

In this way the vector property of baseband processing can be utilized to reduce the
complexity and thus the power and the area of the processor. For example the integer
data-path could execute operating system tasks while the CMAC performs one layer of
an FFT and the CALU performs DC-offset cancellation.

To be able to take full advantage of the SIMT architecture, several key components
are necessary: efficient vector execution units, a corresponding memory system and a
controller core capable of managing several threads efficiently.

3.3 SIMD Processing Clusters

The SIMT processor architecture contains one or several SIMD execution clusters, ac-
celerators and a controller unit. Common to the SIMD execution units are the vector
controller and vector load/store unit (VLU/VSU). The VLU is the interface towards the
memory blocks and the on-chip network (crossbar switch). The purpose of the VLU is
to relax the memory access rate and reduce the number of memory data fetches.

Area Efficient Fully Programmable Baseband Processors 337

CMAC.128

FFT.64

CSUB.8

CADD.32

Vector instruction issued to Complex MAC or ALU

fetched from PM
CMAC

SIMD unit SIMD unit
CALU

C
M

A
C

 S
IM

D

C
A

L
U

 S
IM

D
O

pe
ra

tio
n

O
pe

ra
tio

n

Instruction executed in the controller core

Instructions

Fig. 3. SIMT - Single issue. Vector instructions are issued to the corresponding SIMD cluster and
will execute for a number of clock cycles thus enabling processing parallelism with only a narrow
instruction flow.

The VLU can load data in two different ways. In the first mode, multiple data items
are loaded from a bank of memories. In the second mode, data are loaded one data item
at a time and then distributed to the SIMD-data paths in the cluster. This later mode is
used to reduce the number of memory accesses when consecutive data are processed by
the SIMD cluster. If consecutive data are processed, the load unit can reduce the number
of memory fetches by 3/4 in a 4-way execution unit. The VSU is used to create local
feedback between data-paths within the execution unit. This is used to post process data
in the accumulator registers without having to move data to a memory for intermediate
storage.

Control signals for memory read and write operations are generated locally in the
SIMD unit by the vector controller, while addressing support is provided by the memory
bank.

3.4 Memory System and On-Chip Network

Efficient memory management is essential in order to efficiently use SIMD data-paths.
To provide enough memory bandwidth to the SIMD data-paths and accelerators, a num-
ber of memory banks are used. The memory banks are then connected to the execu-
tion units via an on-chip network. Since each data-path within a SIMD execution unit

338 A. Nilsson and D. Liu

requires one or several data items per clock cycle, the memory banks are partitioned as
several small memory blocks that operate in parallel.

Each memory bank contains its associated address generator unit (AGU). The mem-
ory system is designed to minimize memory access conflicts due to memory block col-
lisions by using a small reordering crossbar switch within each memory bank. In this
way, radix-2/4 FFT and convolution based algorithms will execute completely collision
free.

The AGU unit within each memory bank can generate a number of addressing pat-
terns such as linear, bit-reversed and modulo addressing. However, as modern modula-
tion schemes such as OFDMA (Orthogonal Frequency Division Multiple Access) and
pilot extraction in DVB-H use non-continuous addressing, the complex memory banks
can be addressed by integer accelerators or memories. This feature is also used to create
buffers for “Rake finger” processing in WCDMA.

The on-chip network is realized as a crossbar switch which is under direct control
of the software running on the controller core. Since each execution unit get “private”
access to the memory bank, the execution time of each operation is fully predictable.

The crossbar switch is completely combinatorial and has pipeline registers at the
edge of the network thus relaxing the timing requirements of the network. Reconfigu-
ration of the network only consumes one clock cycle and does not affect other commu-
nications occurring in the network.

4 The BBP2 Processor

The BBP2 processor has been designed to demonstrate the SIMT concept by supporting
symbol processing in the following diverse wireless standards:

– DVB-T and DVB-H
– WiMAX, IEEE 802.16d,e
– Wireless LAN, IEEE 802.11a,b,g
– WCDMA R6, including HSDPA

To support these standards the BBP2 processor is equipped with the following core
components:

– Five complex valued memory banks organized as four banks of 8k complex words
(16+16 bit) and one larger bank of 10k complex words. Each bank is divided into
four memory blocks enabling read and write of four consecutive complex values
each clock cycle.

– One integer memory of 4k × 16 bit used for data buffering between the Media
Access Control layer and the processor.

– A controller core using 24 bit instructions with multi-context support, real valued
multiplier and a 512 byte integer stack.

– A 4-Way Complex Multiply-accumulate SIMD unit capable of performing one
radix-4 FFT butterfly per clock cycle.

– A 4-Way Complex ALU SIMD unit capable of performing multi-code de-spread in
WCDMA.

Area Efficient Fully Programmable Baseband Processors 339

The following functionality is accelerated using configurable accelerators:

– Digital front-end functionality such as filtering, decimation, sample-rate conver-
sion and I/Q mismatch compensation. The digital front-end also contains a packet
detector to wake up the processor core when a packet arrives.

– A 4-way Numerically Controlled Oscillator (NCO) used to provide coefficients for
the CMAC unit during phase error correction calculations.

– A map/demap unit capable of automatically map/demap vector data.
– A PRBS generator used to index pilot tones in OFDM symbols.

Accelerators are selected according to the methodology presented in [5].

4.1 SIMD Execution Units and Accelerators

Vector CMAC Unit. The Complex MAC execution unit is capable of performing a
number of different operations on its 4 Complex MAC lanes. The unit can execute a
radix-4 butterfly or two parallel radix-2 operations per clock cycle in addition to vector
multiplication and similar operations. The execution unit also supports Modified Walsh
Transforms (MWT) and DCT. Each data-path within the unit uses 14 × 14 bit complex
multipliers and has eight 2 × 40 bit accumulator registers.

Vector ALU Unit. The complex ALU unit is similar to the CMAC unit except for
the multipliers that are replaced by a “short” complex multiplier [6] capable of only
multiplying by {0,±1;0,±i}. Along with address and code generators, this unit can
efficiently be used to perform Rake finger processing and de-spread in WCDMA and
DSSS. By implementing a 4-way complex ALU unit with accumulator, the processor
can perform either four parallel correlations or de-spread of four different codes at the
same time in addition to normal add/subtract operations. The short complex multiplier
can be controlled from either the instruction word, a de-scrambling code generator or
from a OVSF code generator. All subunits are controlled from a vector controller which
manages load and store order and hardware loop counting.

4.2 Benchmarking

To illustrate the effectiveness of the SIMT architecture kernel benchmarks of the BBP2
processor are presented in Table 1.

Table 1. Kernel benchmarks on the BBP2 processor. The presented cycle cost includes all set-up
costs for memory addressing.

Operation Clock cycles

4k point FFT 6186
4k sample vector multiplication 1027
32 sample dot product 11
256 sample correlation 4288

340 A. Nilsson and D. Liu

Fig. 4. Layout snapshot of the BBP2 processor. IM denotes the integer memory. Note the size of
the Program Memory (PM) which is enough for managing Wireless LAN and DVB at the same
time. The core area including memories is 11 mm2 in a 0.12 µm process.

Since each vector operation only requires one 24 bit instruction word, the code den-
sity is very high. A complete 8192 sample FFT routine requires only 12 assembly in-
structions. A complex dot-product or vector multiplication can be performed using only
one instruction word. Processing efficiency is further improved by the SIMT concept
since multiple (up to two in BBP2) vector operations can be executed in parallel.

The resulting code size for the BBP2 processor is reduced by approximately a factor
of two compared to the state-of the art VLIW processors [3] with code compaction for
a comparable case of flexibility and parallelism.

5 Implementation

The BBP2 processor was taped-out in a ST 0.12 µm process early 2007. A layout snap-
shot is presented in Figure 4.

The main features of the BBP2 processor are:

– 1.92 G complex OP/s, @ 240 MHz (Complex MAC, Complex Arithmetics).
– Memory bandwidth of 153.6 Gbit/s @ 240 MHz.
– 24 bit instructions.
– 200k NAND2 equivalent gates.
– One 4-way CMAC unit with 14 × 14 bit multipliers and
– One 4-way complex ALU.
– Five complex valued memory banks of total 1.37 Mbit memory.
– 2k words of program memory. This is enough to hold a complete IEEE 802.11g

(both OFDM and DSSS/CCK) software stack together with a DVB-receiver stack
in RAM at the same time.

– 158 instructions divided among:
• 92 RISC instructions
• 22 Complex ALU instructions
• 30 Complex MAC instructions
• 14 Load / Store instructions

Area Efficient Fully Programmable Baseband Processors 341

5.1 Cell Area of Individual Components

The cell area of each individual core component is presented in Table 2. Worth noticing
is the low complexity of the controller core and the low percentage of the total cell area
used for on-chip interconnect. In total, only 4.3 % of all gates are located in the crossbar
switch.

Table 2. Gate count and relative area of BBP2 core components

Unit Area [kGates] Relative area [%]

Controller core 26.84 13.1
Complex ALU SIMD unit 20.01 9.8
Complex MAC SIMD unit 61.29 29.8
Complex memory AGU 5 × 2.53 5 × 1.7
Integer memory AGU 0.22 0.1
Complex network 8.61 4.2
Integer network 1.02 0.1
NCO 3.74 1.8
Map/Demap 2.35 1.1
Front-end, filter 6.12 3.0
Front-end, farrow 20.05 9.8
Front-end, misc. 33.99 16.5
Host interface 1.64 0.8
PRBS Address generator 2.38 1.2

Total 200.91 kGates (NAND2) 100 %

5.2 Clock and Power Gating

The SIMT architecture provides excellent opportunities for both clock and power gating
at the boundary of the on-chip network. Since the network and execution units are under
strict program control, clock and power gating can easily be applied. However, due to
lack of proper back-end tool support for clock and power gating, these techniques were
not implemented in the test chip.

6 Software

The availability of software tools is as important as a low silicon area for programmable
baseband processors. The SIMT architecture is compiler friendly due to the straightfor-
ward issue of SIMD instructions. Scheduling is simplified since the runtime and re-
source usage is known for all instructions. Currently a C-compiler and a task scheduler
are under development.

7 Conclusion

Programmability is essential for multi-standard baseband processors. For efficient sup-
port of multiple standards within a processing device, new architectures are necessary.

342 A. Nilsson and D. Liu

As a response to this, we have presented the SIMT architecture, a SIMD based archi-
tecture utilizing the vector property of baseband processing tasks to reduce the control
overhead and the amount of memory accesses. We have also presented the BBP2 pro-
cessor which is a versatile and area efficient processor capable of efficiently supporting
a broad range of wireless standards.

To conclude, the SIMT architecture provides a flexible yet efficient platform for
multi-standard baseband processing combining benefits from both VLIW- and SIMD-
based DSPs. Relying on the large fraction of vector based processing in baseband
processing, it achieves a high degree of parallelism combined with low control over-
head and compact programs by using SIMT technology, enabling future efficient multi-
standard wireless terminals.

Acknowledgments. Back-end, verification and design support from Coresonic AB,
especially Dr Eric Tell and Erik Alfredsson are gratefully acknowledged. This work
was supported by the STRINGENT research center at Linköping University and the
Swedish Foundation for Strategic Research.

References

1. Lidsky, D.B., Rabaey, J.: Low-power design of memory intensive functions. In: IEEE Sym-
posium on Low Power Electronics, October 1994, pp. 16–17. IEEE Computer Society Press,
Los Alamitos (1994)

2. Kneip, J., Weiss, M., Drescher, W., Aue, V., Strobel, J., Bolle, M., Fettweis, G.: Hipersonic:
Single-chip programmable baseband assp for 5 GHz wireless lan applications. In: Cool Chips
IV, Tokyo, April 2001, pp. 359–367 (2001)

3. van Berkel, K., Heinle, F., Meuwissen, P.P.E., Moerman, K., Weiss, M.: Vector processing
as an enabler for software-defined radio in handheld devices. EURASIP Journal on Applied
Signal Processing 16, 2613–2632 (2005)

4. Glossner, J., Iancu, D., Lu, J., Hokenek, E., Moudgill, M.: A software-defined communications
baseband chip. IEEE Communications Magazine (January 2003)

5. Nilsson, A., Tell, E., Liu, D.: An accelerator structure for programmable multi-standard base-
band processors. In: International conference of Wireless Networks and Emerging Technolo-
gies, Banff, AB, Canada (July 2004)

6. Nilsson, A., Tell, E., Liu, D.: A programmable simd-based multi-standard rake receiver archi-
tecture. In: European Signal Processing Conference, Antalya, Turkey (September 2005)

The Next Generation Challenge for Software
Defined Radio

Mark Woh1, Sangwon Seo1, Hyunseok Lee1, Yuan Lin1, Scott Mahlke1,
Trevor Mudge1, Chaitali Chakrabarti2, and Krisztian Flautner3

1 University of Michigan - Ann Arbor, Ann Arbor MI, USA
2 Arizona State University, Tempe, AZ, USA

3 ARM Ltd., Cambridge, UK

Abstract. Wireless communication for mobile terminals has been a high
performance computing challenge. It requires almost super computer per-
formance while consuming very little power. This requirement is being
made even more challenging with the move to Fourth Generation (4G)
wireless communication. It is projected that by 2010, 4G will be available
with data rates from 100Mbps to 1Gbps. These data rates are orders of
magnitude greater than current 3G technology and, consequently, will
require orders of magnitude more computation power. Leading forerun-
ners for this technology are protocols like 802.16e (mobile WiMAX) and
3GPP LTE.

This paper presents an analysis of the major algorithms that comprise
these 4G technologies and describes their computational characteristics.
We identify the major bottlenecks that need to be overcome in order to
meet the requirements of this new technology. In particular, we show that
technology scaling alone of current Software Defined Radio architectures
will not be able to meet these requirements. Finally, we will discuss
techniques that may make it possible to meet the power/performance
requirements without giving up programmability.

1 Introduction

The Third Generation Wireless age (3G) has provided an increase in data rate
to the user which allows them to experience more than just voice over the air.
Fourth Generation (4G) wireless networks is aimed at increasing that data rate
by an order of magnitude in order to allow for users to experience richer con-
tent and get true mobility, freeing themselves from the need for wires or WiFi
networks. The International Telecommunications Union (ITU) released a recom-
mendation ITU-R M.1645 which sets data rate goals for 4G. They proposed a
maximum data rate of 100Mbps for high mobility situations and 1Gbps for sta-
tionary and low mobility situations like hot spots. These targets are being used
by most research on 4G today. It is also envisioned that 4G will include earlier
standards and their protocols, and that they will work harmoniously together.
SDR solutions can help reduce the cost of systems, which are required to support
such a wide range of existing wireless technologies.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 343–354, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

344 M. Woh et al.

Fig. 1. The physical layer for a 4G terminal

Previous papers have characterized the computational requirments of 3G [1].
There have been several proposals for SDR architectures capable of support-
ing 3G W-CDMA and 802.11 physical layers. Examples are Sandbridge’s Sand-
blaster [2] and SODA [3]. But these architectures are not able to handle the
almost 10-1000x increase in throughput required for 4G systems. This paper
outlines the 4G physical layer. The aim is to show the requirements that are
needed to process the new 4G physical layer and also to identify computational
patterns that might suggest an architecture that can support 4G.

The 4G system we will study is based on orthogonal frequency division multi-
plexing (OFDM) that uses a 1024-point FFT/IFFT, a 4x4 16QAM multiple input
multiple output (MIMO) antenna system, and a low density parity (LDPC) en-
coder and decoder. Detailed analysis of the major algorithms that make up these
components and their computational characteristics show the following repeated
computational pattern: load data from a memory element (initially this is the re-
ceived data), permuting that data, performing one or two ALU operations, and
storing the processed data back to memory. These patterns are similar to those
found in 3G kernels. The architectures that are designed to support them, such
as SODA, will not be able to meet the 4G requirements through technology scal-
ing alone. As we will show, other techniques will have to be enlisted such as wider
SIMD engines, special purpose functional units, and special memory systems.

This paper is organized as follows. In the next section, we begin by present-
ing a simplified 4G system and by describing some of major kernels: an OFDM
modulator/demodulator, a MIMO modulator/demodulator, and a channel de-
coder for LDPC. In section 3, we give a brief overview of SODA and use it as a
baseline to identify the dominate workload profiles and common computational
patterns of the kernels. In section 4, we present programmable hardware support
for implementing these kernels efficiently to meet the high throughput required
for 4G. The summary and concluding remarks are given in section 5.

2 4G Physical Layer

Figure 1 shows a 4G wireless terminal. Like other wireless communication sys-
tem, its major blocks are a channel encoder/decoder and a modulator/
demodulator. The role of the channel encoder is forward error correction that
enables receivers to correct errors without retransmission. Modulation maps in-
put data sequence onto signal waveforms which are specifically designed for the
wireless channel. Demodulation estimates the transmitted data sequence from

The Next Generation Challenge for Software Defined Radio 345

(a) Data movement patterns
(b) Computation patterns

Fig. 2. The data movement of an 8 point FFT and the computations in a 2 point FFT

the received waveform, which have been corrupted by noise and interference
when they traversed the wireless channel.

In order to satisfy the gigabit level throughput requirement, 4G systems em-
ploy three techniques not found together in 3G: 1) orthogonal frequency division
multiple access (OFDMA); 2) MIMO to support multiple antennas; and 3) LDPC
codes for the channel encoder/decoder.

2.1 OFDMA

OFDMA is a modulation scheme which transmits input signals over multiple
narrow sub-channels. Both modulation and demodulation in OFDMA systems
can be implemented with fast fourier transforms (FFT). Although additional
synchronization procedures are required in OFDMA receivers, we can ignore
them because their contribution is small.

FFT. As shown in Figure 1, the transmitter uses an inverse FFT (IFFT) for
modulation and the receiver uses an FFT for demodulation. Because FFT and
IFFT are almost identical, we will just analyze the FFT.

The FFT operation consists of a data movement followed by multiplication
and addition on a complex number. If we assume an N point FFT, it consists of
log2 N stages. As an example, Figure 2.1 shows the data movement pattern of
an 8 point FFT. It consists of 3 stages. Each stage shows a different but regular
data movement pattern. The operation of each stage can be divided into several
2 point FFT operation as depicted in Figure 2.1.

The FFT allows wide data level parallelism because all 2 point FFT operations
required for proceeding from one stage to the next can be done in parallel. It
is important to exploit this type of data level parallelism to meet power and
performance requirements of 4G system, because the FFT width of 4G systems
can be as large as 2048.

2.2 MIMO

MIMO is a technique that uses multiple antennas both for the transmission
and reception. It can be used for two purposes: signal quality enhancement by

346 M. Woh et al.

Time
slot, T

Antenna
Tx 1 Tx 2

1

2

x1 x2

-x2* x1*

(a) Transmission Matrix—the * in-
dicates complex conjugate.

Complex
Conjugate Negation

Complex
Conjugate

Antenna 2

Antenna 1
x[0]

x[1]

x[0]

x[1]

y[0]

y[1]

y[0]

y[1]

(b) Computation patterns of an STBC encoder

Complex
Multiply Accumulate

Channel
Estimation

H2[1], H1[1], H2[0], H1[0]

Y*1[1], Y1[0]

Y*2[1], Y2[0]

Receiver Antenna 1 and 2

X[1], X[0]

Conjugate
+Negation

(c) Computation pattern of an STBC decoder

Fig. 3. Transmission code matrix and computation patterns of the Alamouti 2x2 STBC

transmitting identical signal through multiple antennas and channel capacity
enhancement by transmitting different signals on multiple antennas. Space time
block codes (STBC) is a popular MIMO technique for the signal quality en-
hancement and the vertical Bell Laboratories layered space-time (V-BLAST)
technique is popular for channel capacity enhancement.

STBC. This is used to increase the signal quality by transmitting the same
signal multiple times through different antennas. Signal quality is increased by
receiving those redundant copies of the same signal and using the information
from each receiver to optimally combine them to produce a better signal. The
implementation we used is based on Alamouti’s 2x2 scheme [4], which uses 2
transmit and 2 receive antennas.

STBC Encoder. The encoder orders and transmits data based on the transmis-
sion matrix shown in figure 3(a). The operation consists of transmitting two
different symbols at the first time instance, then transmitting the conjugate of
the same two symbols with antennas switched (see the matrix in figure 3(a)).
Figure 3(b) shows the computation needed to perform this operation. First the
data is sent to each modulator and then the conjugate and negation are per-
formed. This corresponds to a simple predication operation to obtain the real
and imaginary values. This is highly parallelizable, and a 1024 point FFT could
be run in parallel on a 1024 wide SIMD (Single Instruction, Multiple Data)
processor.

STBC Decoder. The decoder takes the transmitted data from both time in-
stances and combines them together to create the original two symbols. The

The Next Generation Challenge for Software Defined Radio 347

decoder operation consists of performing complex multiplications between each
of the received signals and the channel estimation for each antenna and then
summing the values. Figure 3(c) shows this operation pattern. Calculating both
symbols can be done at the same time with the least amount of data move-
ment. Once again, because subcarriers are totally independent, this algorithm is
highly data parallel, and a 1024 point FFT could be run in parallel on a 1024
wide SIMD.

V-BLAST. This is one of the spatial multiplexing schemes that improves mul-
tiplexing gain by transmitting independent data streams over different antennas.
This technique combines multipath signals to obtains higher data rate compared
to STBC. The V-BLAST algorithm that was used was based on work from [5]
which reduces the computational complexity of V-BLAST.

V-BLAST encoder. The V-BLAST encoder is similar to the STBC encoder. It
also uses a transmission matrix to decide ordering, conjugating and negating for
a block of data. Therefore, the pattern of required operations is: load the real and
imaginary received data, permute the data based on the transmission matrix,
then negate and store the result before sending it to the OFDM modulators
associated with the multiple antennas. The computation pattern would be the
same as figure 3(b) except the matrix for V-BLAST is 4x4.

V-BLAST decoder. The decoding process of V-BLAST consists of two major
steps: channel estimation and signal detection. The channel matrix is estimated
based on pre-defined training symbols. The operations for channel estimation are
relatively simple with shift and sign-change operations. Once the channel matrix
has been estimated, the detection order is determined. The detection order is
based on signal strength found among all the signals received. The strongest
signal is selected and extracted from the received signal. This process is repeated
for the remaining signals. This process is iterative and is referred to as successive
interference cancelation. The signal detecting operations can be described by the
following steps: 1) load the received signal; 2) vector multiplication for obtaining
the stongest signal; 3) vector multiplication and subtraction for canceling the
strongest signal; and 4) repeat.

2.3 Channel Encoder/Decoder

4G systems are expected to use both Turbo codes and LDPC codes as channel
coding schemes. We limit our discussion to the characteristics of the LDPC codes
in this section, because Turbo codes have already been used in 3G systems and
their characteristics have been well documented elsewhere [6] [7].

LDPC. Figure 1 shows the channel encoder and decoder for LDPC. It is cur-
rently used in IEEE 802.16e and 802.11n. The encoder for LDPC is trivial in
the sense that for each LDPC code there are a set of codewords available. For

348 M. Woh et al.

L0 L1 L2 L3 L4 L5 L6 L7

E0 E1 E2 E3

Bit Nodes

Check Nodes

L0,0

E0,0 E3,0 E6,0 E7,0

(a) Graphical representation of LDPC code

(b) LDPC decoding in 4 steps

Fig. 4. LDPC graphical representation and decoding operations

different data rates there are different number of codewords. In order to trans-
mit data a codeword is picked and sent through the transmitter. Because the
operation is fairly simple we will only discuss the LDPC decoding operation.

Decoding is based on an architecturally aware design for LDPC codes given
in [8]. The code rates and the block sizes used were based on the IEEE 802.16e
standard [9] and picked in order to meet the 100Mbps and 1Gbps target data rate.

The graphical representation of LDPC is shown in figure 4(a). The check
nodes represents the number of rows in the parity check code and the bit nodes
represent the number of columns. The edges connecting the check nodes and bit
nodes are the 1’s in the parity check code matrix—all other values are 0. The
LDPC decoding operation is broken down into 4 stages as shown in figure 4(b).
These four stages are the Initialization, Bit Node, Check Node, and Bit Update
operation. This implementation is based on the Min-Sum algorithm.

The major operation in the implementation of LDPC is to first load the Ln

and En,m values. The next step is to permute the Ln’s so they align with the
En,m values. Then it is possible to compute Ln,m by performing an subtraction.
Finally we do a compare and select to find the first and second minimum. This
operation performs the Bit Node operation and the Check Node operation. The
Bit Update operation first loads the Ln, then it does a comparison to determine
whether the location of the minimum En,m is the same as the Ln position. If it is
not, then it will use the first minimum as the minimum En,m. Otherwise it will
use the second minimum. Finally, it adds the new En,m value to Ln , updating
the Ln value. This operation is done for each block row of the code. After all
block rows have been updated an iteration is complete.

LDPC exhibits considerable data level parallelism. For each En,m we process
one Ln at a time. Potentially we can do an N SIMD wide operation for the Bit
Node and Check Node operation where N is the number of Check Nodes.

3 Computational Analysis

3.1 Baseline Architecture

In order to calculate the workload characteristic we took an existing architecture
for 3G and programmed the 4G algorithms onto it. The architecture we used is

The Next Generation Challenge for Software Defined Radio 349

512-bit

SIMD

Reg.

File

E

X

512-bit

SIMD

ALU+

Mult

SIMD

Shuffle

Net-

work

(SSN)

W

B

Scalar

ALU

W

B

E

X

Scalar

RF

Local

SIMD

Memory

Local

Scalar

Memory

S

T

V

AGU

RF
E

X

W

B
AGU
ALU

1. SIMD pipeline

2. Scalar pipeline

4. AGU pipeline

V

T
S

Pred.

Regs

W

B

SIMD

to

Scalar

(VtoS)ALU

RF

DMA

SODA

PE

5. DMA

3. Local

memory

Local

Memories
Execution

Unit

In
te

rc
o

n
n

e
c
t

B
u

s

Global

Scratchpad

Memory

Control

Processor

SODA System

To

System

Bus

PE

Local

Memories
Execution

Unit

PE

Local

Memories
Execution

Unit

PE

Fig. 5. SODA Architecture for SDR

SODA. The SODA multiprocessor architecture is shown in Figure 5. It consists
of multiple processing elements (PEs), a scalar control processor, and global
scratchpad memory, all connected through a shared bus. Each SODA PE consists
of 5 major components: 1) an SIMD pipeline for supporting vector operations;
2) a scalar pipeline for sequential operations; 3) two local scratchpad memories
for the SIMD pipeline and the scalar pipeline; 4) an AGU (address generation
unit) pipeline for providing the addresses for local memory access; and 5) a
programmable DMA unit to transfer data between memories and interface with
the outside system. The SIMD pipeline, scalar pipeline and the AGU pipeline
execute in VLIW-styled lock-step, controlled with one program counter.

The SIMD pipeline consists of a 32-way 16-bit datapath, with 32 arithmetic
units working in lock-step. It is designed to handle computationally intensive
DSP algorithms. Each datapath includes a 2 read-port, 1 write-port 16 entry reg-
ister file, and one 16-bit ALU with multiplier. The multiplier takes two execution
cycles when running at the targeted 400MHZ. Intra-processor data movements
are supported through the SSN (SIMD Shuffle Network). The SIMD pipeline can
also take one of its source operands from the scalar pipeline. There are also sev-
eral SIMD reduction operations that are supported, including vector summation,
finding the minimum and the maximum.

3.2 Workload Profile

The breakdown of the major algorithms in our 4G protocol is listed in table 1.
This analysis is based on the algorithms as they would be programmed for the
SODA architecture. We calculated the number of cycles per second needed to
support the data rate shown. Referring back to the system diagram in figure 1:
for the 100Mbps rate we assume the STBC algorithm based on the Alamouti
scheme which uses 2 transmit and 2 receive paths; and for the 1Gbps rate we
assume a 4 transmitter and 4 receiver multiplexing diversity scheme based on V-
BLAST. In the STBC algorithm we require that each receiver performs one FFT
but only one STBC decoder for all the receivers. Each receiver is independent

350 M. Woh et al.

Table 1. Cycle Count of Major 4G Kernels on SODA

Algorithm Name
100Mbps Data Rate 1Gbps Data Rate

MCycle/s MCycle/s
FFT 360 360
IFFT 360 360
STBC 240 -
V-BLAST - 1900
LDPC 7700 18500

Table 2. Computational Pattern of 4G algorithms

Algorithm Name Load Permute First ALU Op Secondary Op Store

FFT X X X X
IFFT X X X X
STBC X X X X X
V-BLAST X X X X X
LDPC X X X X X

of the other’s operation so both FFTs can run on separate processors. For the
multiplexing diversity scheme each receiver processes separate data. That means
that for the 1Gbps data rate we have 4 independent streams of 250Mbps being
processed, but still only one V-BLAST decoder has to be performed.

From the table we can see that the channel coding algorithm is the dominate
workload. Assuming we were processing each multiplexing diversity stream on
one processor it would require us to run SODA at more than 10GHz for the
100Mbps case and almost 30Ghz for the 1Gbps case. An alternative approach
would be to have one processor for each kernel. This would mean we would
need the maximum frequency of SODA to be 8GHZ and 20Ghz for the 100Mbps
and 1Gbps cases respectively. Though it may seem that the FFT, IFFT, STBC
and V-BLAST algorithms are somewhat negligible compared to the channel
coding we should not forget that the workload of channel coding is related to
the data rate. As the data rate decreases the workload of the channel coding also
decreases but the other kernels do not. At low data rates the other algorithms
become comparable in cycle count and the optimization for these algorithms will
then be key to an efficient design.

3.3 Computational Patterns

Analysis of each algorithm reveals that there is a consistent computational pat-
tern. Table 2 shows each kernel’s inner loop broken down into simpler operations.
The pattern of loading the received data, permuting the data, performing an
ALU operation, then a secondary ALU operation and finally storing the result
back is very common to all the algorithms. These patterns make up the majority
of the cycle time and are repeated for all the data being streamed in.

The Next Generation Challenge for Software Defined Radio 351

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

180nm 130nm 90nm 65nm 45nm 32nm 22nm

F
re

qu
en

cy
 (

M
hz

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ow

er
 (

W
)

Scaled Frequency Scaled Power

(a) Technology Scaled SODA

180nm 130nm 90nm 65nm 45nm 32nm 22nm

1.8 1.3 1.1 1.1 1 0.9 0.8

Technology
Node

Vdd (V)

(b) Vdd Voltage Scaling

Fig. 6. Technology scaling from 180nm to 22nm with respect to Frequency, Power,
Vdd on SODA for 4G

Another point to the note is that the data is streamed through the operations.
Once the data is consumed we do not refer back to it until the next iteration,
or a summation, or a max/min is performed. Often sequences of operations
are performed before having to store results. This suggests that there is little
temporal locality of the data. Once the data is consumed we do not expect it to
be used again. This is true for most DSP applications [10].

Data alignment is a key problem in each of the algorithms. Each algorithm
has to align data before any computation can be performed. In the SODA ar-
chitecture we use the SSN which includes a perfect shuffle network to perform
this operation.

4 Architectural Implications

The frequency that the SODA processor would need to operate at in order to
processes 4G was estimated at 20Ghz. Based on data from the ITRS roadmap
[11] and [12] we show in figure 6(a) that technology scaling will still leave us a
factor of 3x behind in frequency for a given power budget at 22nm. The power
budget was set at 3W/mm2 combined for all cores. It is set by limitations of
cooling and packaging based on data from ITRS. At 22nm this would be around
1W. Until recently technology scaling has also been accompanied by a scaling
in supply voltage. As we get to smaller technology nodes this is no longer the
case and the supply voltage is not scalling as much [13]. Figure 6(b) shows the
decrease in supply voltage with technology node. The table shows that power
consumption will be decreasing more slowly and also that frequency scaling and
voltage scaling will be less effective in terms of power reduction.

From the figure we see that at 22nm we could support the 100Mbps data rate
on SODA and still meet the power requirement. The 100Mbps solution would
require 2 SODA processors running at 10Ghz. If our projections are correct, this
is a possible future solution, because the 22nm technology node is expected to be
in production in 2011 [14] which coincides with when ITU expects 4G networks
to be deployed. This still does not leave us with any solution for the 1Gbps data

352 M. Woh et al.

rate. However, there are many features of the algorithms which we can exploit
architecturally to help us reach the goal of 1Gbps and still retain the flexibility
of a programmable SDR processor.

Multi-Processor. Most of the 4G algorithms can be divided onto multiple
processors especially for FFT, and STBC, and even LDPC. The workload can
be divided evenly among the processors. However, as we subdivide the algorithms
across processes we get an increase in data communication. Although each stage
of an algorithm is highly data parallel, stages requires data movement between
different subcarriers in the FFT and between different check nodes in the LDPC.
As we subdivide the algorithms, communication will increase, but, because the
operations of each stage are streamed, we may be able to hide the latency of this
communication under the computations itself. This would require an efficient
routing and interconnect network and also scheduling that would be able to
meet the constraints of data communication when multiple processors are used.

By dividing the workload across multiple processors we would be able to meet
the frequency target for the 4G 1Gbps workload but we would still be 3x off the
power budget. Multicore designs themselves cannot solve the problem of meeting
the 4G requirement.

Wider SIMD. Increasing the SIMD width of the processors takes advantage of
the highly data parallel nature of the algorithms. Based on historical transistor
growth, at the 22nm node we can expect to grow from a 32 wide SIMD to a
2048 wide SIMD machine. This assumes a fixed area constraint. This increase in
width would allow us to reduce the cycle count to compute any size FFT as long
as N is greater than or equal to the SIMD width. For FFT, the data movement
can be accomplished by the SSN shuffle network.

For LDPC this increase in SIMD would also be beneficial because we can
process more parity check nodes for LDPC at once. LDPC though would not
gain the same data movement advantages as FFT, because it needs to align the
check nodes and the bit nodes. However, this would not increase the amount of
data movement dramatically.

STBC would also benefit, because it would be possible to process more sub-
carriers at one time. Because there is little data movement within the STBC we
can expect gains equal to the increase in width.

Special Purpose Functional Units. Currently in SODA the operations are
RISC like in that after every instruction is simple and then writes back to the
register file. This can be costly in terms of power and latency, because, as we
stated earlier, the algorithms are streaming in nature. Writing back the data
may not be very efficient. This suggests that functional units that chain opera-
tions will be beneficial not only in performance but also power. There has been
work [15] that shows that using special functional units to streamline common
operational patterns may not only increase performance but also will be more
area and energy-efficient.

The Next Generation Challenge for Software Defined Radio 353

LDPC would also benefit from having special minimum and maximum regis-
ters embedded into the ALU. For each row operation of the parity check matrix
that is performed the result will be compared with the current state of the
register and swapped if the condition is met. In comparison with SODA, by im-
plementing this special functional unit, LDPC can be reduce in cycle count by
about 30 percent.

Memory System. Most of the algorithms like LDPC, FFT and STBC all treat
each row of the SIMD as independent. The data is loaded from memory then
permuted and stored back. There is no instance in those algorithms where two
rows have to access the same data at the same time. This suggests that the
memory system does not have to be a large global shared memory. Instead it
can be divided into banks. Banking the memory as much as possible will reduce
the cost of reading and writing data into a large global memory. Banking will
allow us to reduce the size of each memory, increase the speed, and lower power
of the memory system. In algorithms like LDPC, which may need block sizes
that are larger than currently used, we would be able to efficiently scale the size
of the memories too.

Algorithms would also benefit from a smarter memory systems that support
flexible gather/scatter accesses. Currently many cycles are wasted in LDPC
aligning the check nodes and bit nodes. V-BLAST would also benefit, because
the algorithm has to read and write back data in changing orders.

5 Conclusion

The power/performance requirements for 4G presents a significant challenge
for computer architects, especially if some degree of programmability is to be
retained. Currently technology is not capable of processing a 4G system on a
single processor. In this paper we have analyzed a 4G system in the context
of the SODA architecture and have shown that 3G solutions cannot meet the
performance of 4G even if technology scaling is taken into account. We have
presented architectural options that can improve the performance and reduce
the power consumption of 4G solutions. We have argued that one solution to
the power/performance challenge for 4G will increase the number of cores, and
that each core will include a very wide SIMD processor with special purpose
function units and highly banked memories.

References

1. Lee, H., Lin, Y., Harel, Y., Woh, M., Mahlke, S.A., Mudge, T.N., Flautner, K.:
Software defined radio - a high performance embedded challenge. In: Conte, T.,
Navarro, N., Hwu, W.-m.W., Valero, M., Ungerer, T. (eds.) HiPEAC 2005. LNCS,
vol. 3793, pp. 6–26. Springer, Heidelberg (2005)

2. Schulte, M., Glossner, J., Jinturkar, S., Moudgill, M., Mamidi, S., Vassiliadis, S.:
A low-power multithreaded processor for software defined radio. J. VLSI Signal
Process. Syst. 43, 143–159 (2006)

354 M. Woh et al.

3. Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S.A., Mudge, T.N., Chakrabarti,
C., Flautner, K.: Soda: A low-power architecture for software radio. In: ISCA, pp.
89–101. IEEE Computer Society Press, Los Alamitos (2006)

4. Alamouti, S.M.: A simple transmit diversity technique for wireless communications.
IEEE J. on Select Areas in Communications 16, 1451–1458 (1998)

5. Guo, Z., Nilsson, P.: A vlsi architecture of the square root algorithm for v-blast
detection. J. VLSI Signal Process. Syst. 44, 219–230 (2006)

6. Lin, Y., Mahlke, S., Mudge, T., Chakrabarti, C., Reid, A., Flautner, K.: Design
and implementation of turbo decoders for software defined radio. In: SiPS, IEEE
Computer Society Press, Los Alamitos (2006)

7. Lee, S.-J., Shanbhag, N.R., Singer, A.C.: A low-power vlsi architecture for turbo
decoding. In: ISLPED ’03. Proceedings of the 2003 international symposium on
Low power electronics and design, pp. 366–371. ACM Press, New York (2003)

8. Zhu, Y., Chakrabarti, C.: Architecture-aware ldpc code design for software defined
radio. IEEE Workshop on Signal Processing Systems (2006)

9. http://www.ieee802.org/16/pubs/80216e.html
10. Robelly, J.P., Seidel, H., Chen, K.C., Fettweis, G.: Energy efficiency vs. pro-

grammability trade-off: architectures and design principles. In: DATE ’06. Pro-
ceedings of the conference on Design, automation and test in Europe, Leuven,
Belgium. European Design and Automation Association, vol. 3001, pp. 587–592
(2006)

11. http://public.itrs.net
12. Rodriguez, S., Jacob, B.: Energy/power breakdown of pipelined nanometer caches

(90nm/65nm/45nm/32nm). In: ISLPED ’06. Proceedings of the 2006 international
symposium on Low power electronics and design, pp. 25–30. ACM Press, New York
(2006)

13. McPherson, J.W.: Reliability challenges for 45nm and beyond. In: DAC ’06. Pro-
ceedings of the 43rd annual conference on Design automation, pp. 176–181. ACM
Press, New York (2006)

14. Chau, R., Doyle, B., Doczy, M., Datta, S., Hareland, S., Jin, B., Kavalieros, J.,
Metz, M.: Silicon nano-transistors and breaking the 10 nm physical gate length
barrier. In: Device Research Conference, pp. 23–25 (2003)

15. Karnik, T., Borkar, S., De, V.: Sub-90nm technologies: challenges and opportu-
nities for cad. In: ICCAD ’02. Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, pp. 203–206. ACM Press, New York (2002)

http://www.ieee802.org/16/pubs/80216e.html
http://public.itrs.net

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 355–364, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design Methodology for Software Radio Systems

Chia-han Lee and Wayne Wolf

Princeton University
Princeton, New Jersey, USA

{chial, wolf}@princeton.edu

Abstract. The design of software radio systems faces many challenges due to
demands on high bandwidth processing. In order for system designers to tackle
the problems more easily, we propose a complete, efficient, and flexible design
methodology. The proposed method not only considers software radios from
front-ends to baseband but also includes the performance and power models.
This methodology is efficient in the way that the whole system and constraints
are described by mathematical equations and inequalities such that it becomes
an optimization problem which is easier to solve. By replacing the equations
and with different combination of the models, various architectures can be
simulated. In this paper, design considerations and procedure for software
radios are described, and the constraints are formulated in the form of equations
and inequalities. Examples are also given to demonstrate the methodology.

Keywords: Software radio, methodology, front-ends, RF, ADC, baseband,
convex optimization.

1 Introduction

The design of software radio systems [1] is a challenging interdisciplinary work
involving the knowledge of analog and digital circuits, front-end and baseband
architectures. Due to inherently demanding high bandwidth processing, it requires
high performance ADC and high speed baseaband processing, resulting in significant
power consumption [2]. To alleviate required ADC sampling rate and resolution
while introducing minimal noise, novel front-end architectures are required. Several
design methodologies were proposed to accommodate an easy environment for
software radio designers. However, either does it lack the front-end and power
consumption model [3], [4], or it relies on Matlab models and lacks flexibility [5].
That motivates us to propose an efficient, flexible, and complete design methodology
for software radios. “Efficient” means the design time is short and the simulation
result is informative. We use mathematical equations and inequalities to describe the
functions and constraints, so it is much faster than probabilistic approaches.
“Flexible” means that this methodology is able to model different hardware
architectures. It is also “complete” because the design methodology considers the
whole system, from front-ends to baseband, and includes models of processing speed,
error rate performance, and power consumption. At the end, we model this as an
optimization problem, which can be solved efficiently with handy tools.

356 C.-h. Lee and W. Wolf

2 Software Radio Systems and the Challenges

The concept of software radio was proposed by J. Mitola in 1992 [1]. It originated
from the need to detect and access various frequency bands and recognize different
modulation signals using one single transceiver. The idea of software radio is to place
the ADC as close as possible to the antenna, ideally right after the low noise amplifier
(LNA) and bandpass filter (BPF), thus the remaining RF/IF functions can be
performed digitally on the general purpose processors (GPP) to provide the full
advantages of reconfigurability. To achieve this, software radio needs to deal with
wideband signals so, according to the Nyquist sampling criterion, high speed
processing is unavoidable. Performing high-frequency and high-data rate functions in
software requires large amounts of computation, so various software radio front-end
architectures have been proposed in the last few years.

2.1 RF Front-End Architectures

Traditional analog radios use heterodyne or superheterodyne architectures for the
front-end, but it is hard to fulfill the need of software radio systems. Among the
proposed front-end software radio architectures are direct conversion (zero-IF), six-
port architecture, low-IF, wideband IF double conversion, and bandpass sampling.
Different architectures require different sampling rates and generate different kinds of
noise, such as DC offset caused by I/Q mismatch, LO leakage, flicker noise, and
aliasing. Different filter coefficients result in different distortion, and RF circuits
usually exists mismatch and nonlinearity distortion problems. Those noise and
distortion are reflected in the noise figure (NF), which describes noise generated by
receiver circuits and noise due to images. Other than noises, ADC sampling rate and
resolution are two important parameters need to be determined. Sampling rate is
dependent on the chosen front-end architecture, and the resolution depends mainly on
the signal bandwidth, although it also depends on the architecture. Besides, the cost
and the chip area depend on the number of components, which and the easiness of
implementation are the two main concerns to pick a front-end architecture.

2.2 ADC

To process very wideband signals, it requires not only high sampling rate according to
Nyquist sampling criterion but also large dynamic range due to aliasing problems.
The dynamic range is determined by the resolution, i.e., how many bits in an ADC.
Unfortunately, it is usually hard to achieve high sampling rate and high resolution at
the same time, and the power consumption is very high [6]. Currently available high-
speed and high-resolution ADC structures are Sigma-Delta ADC, interleaved ADC,
and polyphase filter banks. Sigma-Delta ADCs are well-known for their high
resolution performance, but the oversampling may become an issue when dealing
with already high sampling rate. Interleaved ADCs have high sampling speed but the
mismatch in gain, offset, and clock skew results in linearity problem, causing the
degradation in SFDR [7]. Calibration has to be employed to alleviate those problems.

 Design Methodology for Software Radio Systems 357

2.3 Baseband Architectures

Many efforts have been spent on building baseband architectures for high speed
signal processing purposes. The ideal software radio uses single processor, but
currently available processor is unable to handle such huge amount of information
generated by software radio front-ends, and the power consumption is usually
unacceptable. The combination of DSP, GPP, and FPGA in a heterogeneous
multiprocessor platform provides a balance between flexibility, processing capability,
and power consumption [2]. The decision of which baseband architecture to follow is
truly a trade-off of the reconfigurability, processing speed, and power consumption.
Sample rate conversion, channelization, and digital filtering are basic software radio
functions which have to run on baseband processors. After the front-end architecture
is chosen, the noise compensation scheme, such as I/Q compensation for direct
downconversion receiver, must also be implemented in digital domain. For bandpass
sampling architecture, baseband needs to run an algorithm to find the ADC sampling
rate. Compensation for ADC distortion, such as using calibration techniques, also
needs to be included. In addition, the baseband processors have to deal with
traditional time and frequency synchronization, channel coding, and source coding.

3 Optimization

Optimization, especially convex optimization, has been developed for decades and
recently reaches its maturity. Convex optimization has already been applied to various
areas, including wireless communications and networks [8]. The strength of convex
optimization is that many tools are available and efficient methods have been
developed. To form an optimization problem, functions have to be rewritten as
standard form. The standard form of an optimization problem is [9]

pixh

mixftosubject

xf

i

i

,,1,0)(

,,1,0)(

)(min 0

…
…

==
=≤ , (1)

where)(0 xf is called objective function or cost function,)(xfi are inequality

constraint functions, and)(xhi are equality constraint functions. Predetermined

parameters are regarded as constants and the others become variables to be decided
through the optimization process. According to the type of the object and constraint
functions, an optimization problem can be categorized into linear programming (LP),
quadratic programming (QP), second-order cone programming (SOCP), geometric
programming (GP), or semidefinite programming (SDP) problem [9]. After finding
out what type of optimization it belongs to, commercial tools or free tools available to
download from the internet, such as MOSEK [10], will take care of the rest work. It
may happen that some problems are very difficult to solve and approximations need
to be applied. Another scenario is to handle uncertainties. Noise is uncertain for sure,
but even models can be inaccurate to some extent. Robust optimization provides a
way to take uncertainties into account. The underline is to leave a margin at the

358 C.-h. Lee and W. Wolf

constraint functions and the details can be found in [9]. A variant of optimization
problem is called feasibility problem. This is useful when we want to find out whether
a particular target is achievable or not. A feasibility problem is formulated like this

pixh

mixftosubject

xfind

i

i

,,1,0)(

,,1,0)(

…
…

==
=≤ . (2)

4 Methodology

Our design methodology is based on several building blocks, as shown in Fig. 1. A
software radio system has three main parts, namely front-ends, ADC, and baseband.
The performance and power consumption of the described architecture is evaluated
using models in the form of sets of equations. The design must satisfy a bunch of
constraints, categorized as either performance-related or power-related constraints.
Since it is desirable to implement software radio systems on portable devices, the
battery model is also included to give an accurate description of the battery usage.

Performance
model

ADC
Front-ends

circuits
Baseband
processors

Battery
model

Power model

Performance
related

constraints

Power related
constraints

Performance
model

ADC
Front-ends

circuits
Baseband
processors

Battery
model

Power model

Performance
related

constraints

Power related
constraints

Fig. 1. Overall model for software radio design process

4.1 Design Process and Constraints

The design flow of a software radio system is (1) Pick and determine parameters of
front-end architecture. (2) Choose ADC architecture according to the parameters of
the front-end. (3) Apply noise reduction schemes in digital domain according to the
front-end architecture. (4) Choose a baseband architecture based on the work load. (5)
Formulate power consumption models of front-ends, ADC, and baseband processors.
(6) Formulate performance model considering bit-error-rate caused by circuit noise
and distortion generated by front-ends and ADC. (7) Write power consumption,
performance, and constraint equations and inequalities into standard form of
optimization problem, and then use optimization tools to solve the problem.

 Design Methodology for Software Radio Systems 359

Table 1. Design constraint parameters

Constraint Symbol Unit Constraint Symbol Unit
Highest frequency

Hf Hz Battery power
BatE Joule

Lowest frequency
Lf Hz Data rate R Bit/Second

Signal bandwidth BW Hz Transmitter latency
TXτ Second

Total noise figure NF None Receiver latency
RXτ Second

Channel noise
0N Walt/Hz FEC code rate

CR None

Design parameters and constraints are summarized in Table 1 and Table 2, and the

constraints are listed below.

Latency constraints: The total latency of front-end, ADC, and baseband has to smaller
than the specified value.

RXRXBBADCRF ττττ ≤++ ,

TXPADACTXBB ττττ ≤++,
(3)

Power dissipation constraints: The total power consumption of front-end, ADC, and
baseband processing has to smaller than the designed value.

TXPADACTXBBtotalTX PPPPP ≤++= ,,

RXRXBBADCRFtotalRX PPPPP ≤++= ,,
(4)

Data rate and error rate (noise) constraints: The system data rate cannot be smaller
than the system specification. The data rate is dependent on the error rate, which is
affected by the circuit noise figure [11].

() RR
N

N
BW DDECDETC

Packet

Data
BW ≥⋅−⋅⋅⋅⋅ ,1 εεη

εεε ≤⋅ UDECDET ,

NFCCNFNFNF ADCRFADCRFtotal ≤⋅⋅⋅=

(5)

ADC constraints: The ADC sampling rate needs to be fast enough in order not to lose
signal information.

signalADC BWf ⋅≥ α2

BBADCADC Rbf ≤⋅
(6)

360 C.-h. Lee and W. Wolf

In the first equation, α is the oversampling ratio and signalBW depends on the front-

end architecture. The second equation states that the output from the ADC must be
lower than the processing rate that the baseband processor can support.

Battery constraints: The operation time of portable devices are usually limited by the
battery power, so the total energy has to lower than the battery capacity.

BatTXTotalTXRXTotalRX ETPTP ≤⋅+⋅ ,, (7)

Baseband constraints: The baseband constraints depend on the specific structure of
the baseband processors. Two basic constraints are that the tasks must be done by a
specified time and the total power consumption has to be limited.

Table 2. Design parameters

Parameter Symbol Unit Parameter Symbol Unit
Receiver RF power
dissipation RFP

Walt Receiver baseband
latency RXBB,τ

Second

Receiver ADC power
dissipation ADCP

Walt Transmitter output
latency PAτ

Second

Receiver baseband power
dissipation RXBBP ,

Walt Transmitter DAC latency
DACτ

Second

Transmitter DAC power
dissipation DACP

Walt Transmitter baseband
latency TXBB,τ

Second

Transmitter baseband
power dissipation TXBBP ,

Walt Received power (signal
strength)

S Walt

Total noise figure
TotalNF

None Probability of detection
error DETε

None

RF noise figure
RFNF

None Probability of detected
decoding error DDEC ,ε

None

ADC noise figure
ADCNF

None Probability of undetected
decoding error UDEC ,ε

None

RF noise and distortion
compensation RFC None Bandwidth efficiency

BWη
None

ADC noise and distortion
compensation ADCC None Data length

DataN
Byte

ADC sampling rate
ADCf

Hz Packet length
PacketN

Byte

ADC resolution
ADCb

Bit Total receiver power
consumption TotalRXP ,

Walt

Baseband processor rate
BBR

Bit/Sec Total transmitter power
consumption TotalTXP ,

Walt

Receiver RF latency
RFτ

Second Supply voltage
ddV Volt

Receiver ADC latency
ADCτ

Second

4.2 Front-End Model

In order to evaluate the system performance, it is necessary to build hardware models.
The front-ends can be viewed as a set of functional blocks, in which signals go
through sequentially. This simplifies the modeling process, meaning that each block

 Design Methodology for Software Radio Systems 361

can be modeled separately. Therefore, the total response is simply the convolution of
all the responses in time domain, or multiplication in frequency domain as

nHHHH *** 21 "= . (8)

Receiver circuit models include LNA, filter, mixer, PLL, VCO, ADC, and
baseband amplifier. The transmitter circuit models contains DAC and power
amplifier. Since the total power consumption is the summation of power consumption
of each block, we can build the power models individually. The total power is then

MPPPP +++= "21 . (9)

With different combination of the equations for circuit blocks, power consumption of
various architectures can be modeled.

4.3 Baseband Processor Model

The baseband model could be more challenging than front-end and ADC model. In
order to process significant amount of software radio data, the baseband architecture
is usually quite complicated. Different number and combination of GPP, DSP, and
FPGA might be used. Even if a single processor is used, that processor might employ
complicated parallel processing architectures and specialized circuits for specific
functions, increasing the difficulty of modeling. Therefore, the best (and maybe the
only) strategy is to use the models or simulation tools provided by the baseband
designers. Parameters extracted from the data sheets or the simulation results are then
be plugged back into the system model to check whether design constraints are
satisfied or not. In the single processor case, if the processor detail is known,
processor architectural-level simulation tools like Wattch [12] can be used. For multi-
processor cases, the hierarchical modeling approach [13] is available to tackle this
problem.

4.4 Design Optimization by Performance and Power Evaluation

Performance of RF front-ends is reflected in two aspects- bit error rate and power
consumption. Bit error rate performance can be estimated by modeling and simulating
the front-end architecture. This model includes down-conversion circuits and ADC.
The RF front-end model also includes the impairments such as I/Q imbalance, DC
offset, and modulation image which affect bit error rate performance. The power
consumption of front-end circuits can also be simulated and modeled in equations.
After gathering all the equations of constraints and models, a feasibility or
optimization problem is formed and then can be solved efficiently.

5 Design Example

5.1 Front-End Model Example

Namgoong proposed a hardware model for direct conversion receiver (DCR) [14]. To
avoid DC offset problem, he used an AC-coupled version DCR. Through this model,

362 C.-h. Lee and W. Wolf

we are able to simulate the performance (distortion, nonlinearity, and etc.) of a direct
conversion front-end architecture. Usually a receiver has two paths, i.e., in-phase and
quadrature-phase channels, so the signal right before ADC can be described as

∑ ∑ +−+−=
k k

eqsymksymk tnkTtpxkTtpxtz)()()()(2
*

1
 (10)

where)(1 tp and)(2 tp are convolution of RF time response RFh , in-phase channel

response)(thI , and quadrature-phase channel response)(thQ . The ADC error

model can be built using equations derived in [7]. Those equations can then be used to
derive the ADC noise figure. As to power model, Li et al. proposed a comprehensive
energy model for wireless transceiver front-ends [15]. These power models are
functions of gain (G), quality factor (Q), capacitance (C), resistance (R), center

frequency (0ω), reference (reff) and LO frequency (LOf), supply voltage (ddV),

bandwidth (B), noise figure (NF), antenna gain (A), driving current (I), signal-to-noise
ratio (SNR), symbol error rate (SER), peak-to-average ratio (PAR), and path loss (Lp).

Table 3. Power models

Component Power model
LNA

LNALNALNA NFAGP /=

Mixer
mixermixermixer NFKGP /⋅=

Analog filter 2
0 SNRfQkTnPfilter ⋅⋅⋅⋅=

Phase-locked loop
refddLOddPLL fVCbfVCbP ⋅⋅⋅+⋅⋅⋅= 2

22
2

11

Voltage-controlled
oscillator 2

2
0

2
22

0
22

ddddddVCO V
L

R
VRCV

L

R
CP

ω
ω ===

ADC

)838.41525.0(

min
2

110

)(
+⋅−

+⋅⋅
=

N

signalsampledd
ADC

ffLV
P

DAC (current-
steering)

()125.0 02.6/77.4
0 −⋅⋅= −+ dBPARSNR

ddDAC IVP

Power amplifier

PARSERQN
KGG

Ld
P

k
b

tr

p
PA

2
1

2/
1

2

22

2

1
1

4

1
)12(

3

16

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅−⋅=

−
−

λ
π

5.2 Baseband Model Example

The example baseband model is SODA [16], which focuses on low power baseband

architecture. Power consumption of a processing element (PE) PEP is the product of

frequency BBf and PEE , the energy consumption of one cycle of PE operation.

 Design Methodology for Software Radio Systems 363

BBPEPE fEP ⋅=

desemeaereePE UDUSUMUAURILwCE ++++++=)(
(11)

5.3 Example of Optimization Problem

To give a quick example, we consider a simple feasibility problem. The object
function is ADC sampling rate, and the subjects are a set of equations and inequalities
stating the power consumption constraints related to ADC sampling rate. For
simplicity, we do not consider the battery model. The baseband model is based on
SODA architecture.

0

0
10

)(
0

00

00

002..

,,

)838.41525.0(

min
2

,

,,,

,,

1

=
−+++

++++

=
+⋅⋅

−≤−

=−−≤−
=−++≤⋅−⋅

=⋅−≤−⋅

+⋅−

totalRXRXBBBAADC

VCOPLLfiltermixerLNA

N

signalsampledd
ADCRXtotalRX

totalRXtotalTXtotalTXtotalTX

totalTXPADACTXBBBBADCADC

BBPEPEADCsignal

ADC

PPPP

PPPPP

ffLV
PPP

PPPPP

PPPPwfbf

fEPfBWts

ffind

(12)

A more complicated but interesting case is to maximize the ratio of data processing

rate over total power consumption. In this case,)(xRi ,)(xRj ,)(xPi , and)(xPj

are inequalities and equations for data rate and power consumption models.

qjxP

pixP

njxR

mixRtosubject
P

R

j

i

j

i

total

overall

,,1,0)(

,,1,0)(

,,1,0)(

,,1,0)(

max

…
…
…
…

==
=≤
==

=≤ (13)

6 Conclusions and Future Works

To solve the design challenges of software radio due to large signal bandwidth and
high computational rate, we have given comprehensive design considerations and
proposed a systematic, complete, flexible, and efficient design methodology. We have
shown how to build and describe models and constraints for software radio systems
using equations and inequalities. In addition, examples were given to show the
modeling of performance and power consumption of the direct downconversion
architecture and the formation of optimization problem. This paper shows the idea of

364 C.-h. Lee and W. Wolf

using optimization methods to solve the completely-modeled software radio system
design problem. Our future work is to provide more concrete examples, solutions, and
results to this methodology.

References

1. Mitola III, J.: Software radios-survey, critical evaluation and future directions. In: National
Telesystems Conference, May 19-20, 1992, vol. 13, pp. 15–23 (1992)

2. Lee, C.-H., Wolf, W.: Architectures and platforms of software (defined) radio systems.
Int’l Journal of Computers and Their Applications 13(3), 106–117 (2006)

3. Dorie, L., Le Nours, S., Pasquier, O., Diouris, J.F.: A system level model for software
defined radio design. In: IEEE Radio and Wireless Symposium, pp. 463–466 (2006)

4. Vasilko, M., Machacek, L., Matej, M., Stepien, P., Holloway, S.: A rapid prototyping
methodology and platform for seamless communication systems. In: 12th International
Workshop on Rapid System Prototyping, June 25-27, 2001, pp. 70–76 (2001)

5. Agnelli, F., Albasini, G., Bietti, I., Gnudi, A., Lacaita, A., Manstretta, D., Rovatti, R.,
Sacchi, E., Savazzi, P., Svelto, F., Temporiti, E., Vitali, S., Castello, R.: Wireless multi-
standard terminals: system analysis and design of a reconfigurable RF front-end. IEEE
Circuits and Systems Magazine 6(1), 38–59 (2006)

6. Kenington, P.B., Astier, L.: Power consumption of A/D converters for software radio
applications. IEEE Tran. on Vehicular Tech. 49(2), 643–650 (2000)

7. Walden, R.H.: Analog-to-digital converter survey and analysis. IEEE Journal on Selected
Areas in Communications 17(4), 539–550 (1999)

8. Eisenblatter, A., Geerd, H.-F.: Wireless network design: solution-oriented modeling and
mathematical optimization. IEEE Wireless Comm. 13(6), 8–14 (2006)

9. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

10. The MOSEK optimization sofeware, http://www.mosek.com/
11. Bose, V., Hu, R., Morris, R.: Dynamic physical layers for wireless networks using

software radio. In: ICASSPP, Salt Lake City, UT (May 2001)
12. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level power

analysis and optimizations. In: ISCA, June 10-14, 2000, pp. 83–94 (2000)
13. Delahaye, J.P., Palicot, J., Leray, P.: A hierarchical modeling approach in software defined

radio system design. In: IEEE SiPS, November 2-4, 2005, pp. 42–47. IEEE Computer
Society Press, Los Alamitos (2005)

14. Namgoong, W.: Modeling and analysis of nonlinearities and mismatches in AC-coupled
direct-conversion receiver. IEEE Trans. on Wireless Comm. 4, 163–173 (2005)

15. Li, Y., Bakkaloglu, B., Chakrabarti, C.: A comprehensive energy model and energy-
quality evaluation of wireless transceiver front-ends. In: IEEE SiPS, November 2-4, 2005,
pp. 262–267 (2005)

16. Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., Chakrabarti, C., Flautner, K.:
SODA: A low-power architecture for software radio. In: ISCA, June 17-21, 2006, pp. 89–
101 (2006)

Power Efficient Co-simulation Framework for a
Wireless Application Using Platform Based SoC

Tseesuren Batsuuri1, Je-Hoon Lee2, and Kyoung-Rok Cho1

1 CCNS Lab., San 12, Gaeshin-dong, Cheongju, Chugnbuk, Rep. of Korea
tslee@hbt.cbnu.ac.kr

2 CBNU BK21 Chungbuk Information Technology Center, Rep. of Korea
leejh@hbt.cbnu.ac.kr, krcho@cbu.ac.kr

Abstract. This paper presents a new co-simulation framework support-
ing system level power estimation. The goal of this work is to support
precise power estimation in the early design stage. The proposed co-
simulation provides a guideline to reduce the power dissipation for a SoC
design. This approach resulted in energy saving of 61% for redesigned
medium access control processors while code size increased by 14%. The
accuracy of the power estimation obtained from the proposed frame-
work was around 94.9%. The contribution of the proposed framework
was a straightforward method to merge system level power estimation
techniques into the system level design environment.

Keywords: Platform based SoC, verification, HW/SW co-simulation.

1 Introduction

To yield large-power saving of a target SoC, the designer should make analysis
and optimization for power consumption in its early design stage. It can lead to
fewer and faster design iterations with aggressive power consumption constraints.
Reducing design turn-around-time while better exploring system-level constrains
requires efficient and accurate analysis tools. These tools should be compliant
with the de facto system level design strategy such as platform/IP based design
methodology.

Our survey covers two research domains, including a survey on system level
power estimation techniques and a survey on efficient methods to combine these
power estimation techniques with a system level design environment. The power
estimation for software design can be classified into structural and instruction
level techniques. The structural techniques use a RTL description to collect dy-
namic activity information for each architectural block [1]. The RTL description
is not always available to a designer. The instruction-level techniques compute
the energy consumption of a program based on its instruction profile. It is a
viable approach in practice [2].

The power estimation for hardware designs also can be classified into informa-
tion theoretic approaches and macro modeling techniques. Nemani and Najm [3]
proposed an information theoretic approach employing an entropy function of

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 365–374, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

366 T. Batsuuri, J.-H. Lee, and K.-R. Cho

input/output signals to predict area complexity and average transition density
in a logic circuit. The power macro modeling is a promising approach. A key
idea of power macro modeling is to generate a mapping table between power
dissipation of a circuit that is obtained by low level power simulation and cer-
tain statistics of its input-output signals such as the average signal probability or
average transition density [4]. The mapping process is a one time process. Once
the mapping is executed, the power estimation uses the mapping results instead
of using expensive low level power estimation. Many power macro models have
been proposed using different mapping approaches. An effective lookup table
(LUT) based approach was introduced in Gupta’s paper [5].

There has been some work focused on the use of these power estimation tech-
niques in a co-simulation environment. Lajolo et al. [6] proposed a co-simulation
based power estimation for on chip hardware/software system designs. This
system-level co-simulation actually involves integration between heterogeneous
simulation tools that operate at different design levels such as gate or circuit
level. This approach is computationally expensive and inefficient, although it
can result in high accuracy.

Talarico et al. [7] proposed a new power estimation framework for a system
level design. He used some power estimation techniques for hardware and soft-
ware designs. There was no obvious method of how he merged it into a system
level design environment. Lidsky and Rabaey [8] proposed a power estimation
framework reporting estimation results as a datasheet for web applications. A
drawback is its power estimation techniques aiming at computing average power
consumption, rather than generating power profiles.

We propose a co-simulation framework enhancing some efficient system level
power estimation techniques for all major components in SoC. This framework
shows a very straightforward method, based on XML, to merge power estimation
techniques into a co-simulation environment. The rest of paper is organized as
follows. Chapter 3 describes the proposed co-simulation framework. Chapter
4 presents a demonstration of the proposed idea through case study. Finally,
Chapter 5 provides the conclusion.

2 Proposed Co-simulation Environment

This chapter presents the proposed co-simulation framework and its power es-
timation techniques in detail. The proposed co-simulation environment is illus-
trated in Fig 1. We extended the conventional co-simulation environment by
adding power estimation techniques. The conventional co-simulation environ-
ment uses a cycle accurate (C/A in Fig.1) simulator for hardware design, an
ISS (instruction set simulator) for software design and a TL (transaction level)
model for an on-chip bus.

It includes some additional models. For example, it includes an interface be-
tween processor and software code. A transactor is used to connect different
simulators and models operating at different signal levels (TL←→C/A). The ISS
for a target processor is to simulate the software component while the hardware

Power Efficient Co-simulation Framework 367

Fig. 1. Proposed co-simulation framework

component is simulated on a HDL simulator [9-11]. The proposed environment
provides monitoring and power estimation functions. The monitor probes a dat-
apath needed to characterize the component’s behavior. The power estimation
function then computes an accurate cycle or average power and total energy
consumption using the trace. This power estimation process, however, actually
proceeds in three steps.

The first step is the characterization of a component, which is a one-time
process. The characterization step is a low-level circuit simulation for a pre-
designed circuit. Pre-selected test benches are used to construct a lookup table
since promising power estimation techniques, used in the proposed framework,
are based on the lookup table. The lookup table contains power dissipation data
of a circuit and its corresponding input/output signals.

The next step is a hardware/software co-simulation for probing execution
traces of components. The final step is power estimation using the probed traces
and power estimation functions to derive the power from the lookup table. A
notable feature of the proposed environment is its XML based configuration.
All of the data extracted at the characterization step are stored in a lookup
table in XML format. The results of power estimation and output profiling are
also stored in XML format. Figure 2 shows in detail an estimation flow of the
power estimation technique for software. We have adopted an instruction level
technique. This power estimation technique is originally from Sinha et al [3]. It
is given by equation (1)

Etotal =
∑

VddIinsΔt (1)

Here Vdd is a supply voltage, Iins is current consumption for an instruction of
a processor, and Δt is instruction execution time. In the proposed framework,
all current consumptions of the instructions, which were measured at a circuit

368 T. Batsuuri, J.-H. Lee, and K.-R. Cho

Fig. 2. The power estimation flow, a) a trace file example; b) a look up table example

level, are stored in a file in XML format as shown in Fig. 2b. The tool reads the
file and software’s execution trace file probed in the co-simulation step for an
estimation of the given soft-ware, as shown in Fig. 2a. There are two ways to get
the programming trace: using ISS or probing data on a system bus. The format
has three columns: an instruction type, an address and an operation code. The
instruction type is set to ’IT’ (instruction taken) when the processor normally
executes the instruction. Otherwise it is set to ’IS’ (instruction skipped) indi-
cating cache misses. If an instruction type is ’IT’, the corresponding instruction
is encoded by an operation code. The power and timing values are subsequently
estimated. For the instruction type ’IS’, power and timing values of the NOP
instruction are used.

The power consumption of the bus is another sizeable component. The total
energy dissipation of a bus increases linearly when the hamming distance in two
consecutive data increases. It means that the hamming distance based approach
is useful for power estimation of the on-chip bus at a system level. The linear
relation between the ham-ming distance and the power dissipation implies that
power consumption on the bus is a first order function of the hamming distance,
which can be written as,

Pcycle = V 2
dd · f · (Ceff + Cswitch · HD(di, di+1)) (2)

Here Vdd is a supply voltage, f is a clock frequency. Ceff is an effective capac-
itance, Cswitch is the switching capacitance and HD is the hamming distance
between 2 consecutive data di and di + 1. Figure 3 shows a transactor for the
bus tracing and power estimation. The power consumption of a hardware de-
sign as an IP is discussed next. However it is not easy to find out a technique
for power estimation for all IPs. At a minimum, we need the details of IPs’.
But sometimes this detail is not available to a designer. We have brought in a

Power Efficient Co-simulation Framework 369

Fig. 3. A power estimation scheme for the bus, a) lookup table example

Fig. 4. A power estimation scheme for the hardware, a) a lookup table example

simple LUT that contains all input signal patterns and the corresponding aver-
age power consumption for an IP. The designer builds the LUT using low level
power estimation tools.

We use the same method used to merge the hamming distance based technique
into the co-simulation environment for this approach, as shown in Fig 4. The
transactor is used to probe input signals of the hardware design. The probed
input signals are used as an address of the lookup table to get the corresponding
average power.

3 Case Study

In the case study, we try to reduce power consumption of a software part after
analyzing its power consumption using the proposed framework. The experi-
mental design is a modem chip complying with the IEEE 802.11a standard, and
includes a baseband and a MAC processor. The entire MAC was implemented
with C/C++, and the baseband processor was implemented with HDL.

We focused on reducing the MAC design’s power. The 802.11a MAC handles
a set of communicating tasks. Figure 5 shows the MAC operations for outgoing
frames. The LLC (Logical Link Control Layer) receives data frames and stores

370 T. Batsuuri, J.-H. Lee, and K.-R. Cho

Fig. 5. 802.11a MAC processing and its main tasks

Fig. 6. An experimental co-simulation framework

them in system memory. The ICV task then computes an integrity checksum
vector. The WEP task encrypts the frame data using the RC4 stream cipher.
Then, the HDR task generates a MAC header and adds this to the start of a
frame. The FCS task computes a CRC-32 checksum over the encrypted frame
and its header. The MAC CTRL controls all other tasks and transmits the frame
data according to the CSMA/CA algorithm. The PLI (Physical Layer Interface)
task retrieves encrypted frames from the MAC memory and sends them to the
baseband processor [12]. Figure 6 shows an experimental framework for a SoC
platform, comprising ARM processor and AMBA bus. For this task, we used
commercial simulators MaxSim and ModelSim [13].

The MAC and a testbench are simulated on an ISS of the target ARM pro-
cessor. The baseband processor is connected to the AMBA AHB bus as a slave
element. There is a transactor, called ”tr wlan,” which is used to connect two
simulators and is also extended by the proposed power estimation functions. In
a simulation, 1950 byte frame data is sent through the MAC and AMBA bus to
the baseband processor.

A simulation result is summarized in Table 1. The rows 1-4 show energy
dissipations of MAC functions. The rows 5, 6 show the total energy for the
MAC software and corresponding bus energy consumption, respectively. The

Power Efficient Co-simulation Framework 371

Table 1. Power estimation and accuracy

Fig. 7. Power profiling of the CRC implemented using a bitwise algorithm

column 2 shows a power estimation of the proposed tool and column 3 is power
estimation with Joule-Track which has been developed by Sinha et al [3]. The
column 4 shows power estimation by Nanosim from Synopsys for the bus. The
bus has been implemented with Verilog-HDL. The Synopsys Design Compiler
was used for circuit synthesis based on the Hynix 0.35μm CMOS process. The
power estimation error for the software is less than 2% compared to the results
from JouleTrack. The power estimation for the bus has an error of about 5.1%,
compared to the results from Nanosim. In the simulation results in Table 1, the
CRC function, called in the FCS and ICV tasks, consumes the greatest amount
of energy. The CRC32 function was implemented using a bitwise algorithm [14].

Figure 7 shows power profiling of the CRC function. The function is called
10 times in a simulation. It generates a 256 byte CRC code. A part framed by
the dotted line in Fig. 7 shows power profiling of CRC generation. The function
was re-implemented by the LUT based approach [14]. Figure 8 shows power
profiling of the new CRC function. The LUT initialization takes many cycles,
and consumes most of the power. However, CRC generation process takes very
few cycles and consumes less power than the previous design. If we call the CRC
function 10 times, the new one’s energy is increased by just 15% and the bitwise
based CRC function’s energy is increased by 88.9%.

In such a way, we chose an efficient algorithm. Once the algorithm is selected,
the source code level optimization is also effective. For example, ’for’ loop coded

372 T. Batsuuri, J.-H. Lee, and K.-R. Cho

Fig. 8. Power profiling of the CRC implemented using a LUT algorithm

Table 2. Percentage change by power reduction technique

as ’for (i = 1; i ≤ max; i++)’ can be replaced by for (i = max ; i>0 ; i– –).
The latter style is more efficient, since no register is required for saving max.
Another approach is to use an inline function. A program normally contains a
number of subroutines. Calling a subroutine is always associated with stacking
and unstacking overhead. In Fig. 7 and 8, ten peaks appear in every start of the
CRC generation due to this overhead.

Because the stacking and un-stacking often involves load and store instructions
that consume more power than typical data processing instructions. This overhead
can be eliminated if the function is coded inline. The other efficient power reduc-
tion techniques refer the ARM application note [15]. Table 2 shows the perfor-
mance, size and energy consumption for the original and the optimized function.
The row 1 shows the WEP functions. The re-designed WEP function uses 55%
less energy. The row 2 shows the FCS, ICV functions employing CRC32. The re-
designed CRC implementation uses up to 71% less energy. The row 3 shows the
other functions that are not able to use power reduction techniques. The row 4
summarizes the total results for the MAC design. The power reduction techniques
yield an energy saving of 61%, while its code size increases by 14%.

4 Conclusion

This paper proposes a co-simulation framework supporting power estimation at
the system level. It helps to reduce power consumption of an embedded design.

Power Efficient Co-simulation Framework 373

For demonstration, we estimated power consumption of a modem chip com-
plying with the IEEE 802.11a standard. The range of power estimation error is
around 5.1% based on the evaluating results from commercial software including
Nanosim, JouleTrack. The MAC was designed again to reduce power yielding
energy saving by 61%, while its code size increased by 14%. This paper provides
a method to merge the power estimation techniques into a system level design
environment using XML.

Acknowledgments

This work was supported by the Regional Research Centers Program of the
Ministry of Education & Human Resources Development in Korea. And Dr. J.
H. Lee participated in this work is supported by the Second Phase of the Brain
Korea 21 Project at Chungbuk National University.

References

1. Hsieh, C.T., Pedram, M.: Microprocessor power estimation using profile–driven
program synthesis. IEEE Trans. Computer–Aided Design of Integrated Circuits
and Systems 17(11), 1080–1089 (1998)

2. Sinha, A., Ickes, N., Chandrakasan, A.P.: Instruction level and operating system
profiling for energy exposed software. IEEE Trans. Very Large Scale Integration
(VLSI) Systems 11(6), 1044–1057 (2003)

3. Nemani, M., Najm, F.N.: Towards a high–level power estimation capability. IEEE
Trans. Computer–Aided Design of Integrated Circuits and Systems 15(6), 588–598
(1996)

4. Wu, Q., Qiu, Q., Pedram, M., Ding, C.S.: Cycle–accurate macro–models for RT–
Level power analysis. IEEE Trans. Very Large Scale Integration Systems 6(4),
520–528 (1998)

5. Gupta, S., Najm, F.N.: Power modeling for high–level power estimation. Very Large
Scale Integration Systems 8(1), 18–29 (2000)

6. Lajolo, M., Raghunathan, A., Dey, S., Lavagno, L.: Co–simulation-based power
estimation for system–on–chip design. IEEE Trans. Very Large Scale Integration
Systems 10(3), 253–256 (2002)

7. Talarico, C., Rozenblit, J.W., Malhotra, V., Stritter, A.: A framework for power
estimation of embedded systems. IEEE Trans. Computer 38(2), 71–78 (2005)

8. Lidsky, D., Rabaey, J.M.: Early power exploration – a world wide web application.
In: Proc, DAC Conf., pp. 27–32 (1996)

9. Yoo, S., Jerraya, A.A.: HW/SW co–simulation from inter face perspective,” Proc.
IEE Computer and Digital Techniques. Proc. IEE Computer and Digital Tech-
niques 152(3), 369–379 (2005)

10. Chung, S.K., Kyung, C.M.: Enhancing performance of HW/SW co–simulation and
co–emulation by reducing communication overhead. IEEE Trans. Computers 55(2),
125–136 (2006)

11. Chung, M.K., Yang, S., Lee, S.H., Kyung, C.M.: System–level HW/SW co–
simulation framework for multiprocessor and multithread SoC. In: Proc. VLSI-TSA
Design, Automation, and Test Conf., pp. 177–179 (2005)

374 T. Batsuuri, J.-H. Lee, and K.-R. Cho

12. emphISO/IEC, Wireless LAN MAC and PHY Specifications – High–Speed Phys-
ical Layer in the 5 GHz Band, ISO/IEC 8802–11:1999(E)/Amd 1:2000(E), New
York IEEE (2000)

13. MaxSim Developer Suite User’s Guide ver 5.0, AXYS Design Automation Inc.
(March 2004)

14. Ramabadran, T.V., Gaitonde, S.S.: A tutorial on CRC computations. IEEE Trans.,
Micro 8(4), 62–75 (1988)

15. Writting Efficient C for ARM, ARM Application Note 34, ARM Corporation (1998)

A Comparative Study of Different FFT
Architectures for Software Defined Radio

Shashank Mittal, Md. Zafar Ali Khan, and M.B. Srinivas

Center for VLSI and Embedded System Technologies
International Institute of Information Technology, Gachibowli, Hyderabad,

INDIA-500032
shashankmittal@research.iiit.ac.in,{zafar, srinivas}@iiit.ac.in

Abstract. Fast Fourier Transform (FFT) is the most basic and es-
sential operation performed in Software Defined Radio (SDR). Thus
designing regular, reconfigurable, modular, low hardware and timing-
complexity FFT computation block is very important. A single FFT
block should be configurable for varying length FFT computation and
also for computation of different transforms like Discrete cosine/sine
transform (DCT/DST) etc. In this paper, the authors analyze area, tim-
ing complexity and noise to signal Ratio (NSR) of Bruun’s FFT w.r.t.
classical FFT from a SDR perspective. It is shown that architecture of
Bruun’s FFT is ideally suited for SDR and may be used in preference over
classical FFT for most practical cases. A detailed comparison of Bruun’s
and classical FFT hardware architectures for same NSR is carried out
and results of FPGA implementation are discussed.

1 Introduction

The concept of SDR was first introduced in by Mitola [1] and Tuttlebee [2].
SDR refers to a converged system or hardware which can be reconfigured eas-
ily to support all wireless communication standards. This device should provide
backward support and capability to adapt to future communication standards
without any changes in hardware. Thus there is a need for converged and recon-
figurable hardware architectures to perform various signal processing functions.

In order to effectively utilize the services provided by different wireless commu-
nication standards, especially those with high bandwidth, devices such as mobile
phones should also support various multimedia standards which require compu-
tation of different transforms like FFT, DCT etc. Here baseband and multimedia
operations are on different parts of the chip and different multimedia standards
themselves require different transforms for their computations. Further, these
computational blocks should be able to operate at varying computational (word
or bit) lengths [3]. These converged architectures should have properties like reg-
ularity, reconfigurability, low hardware complexity, low timing complexity and
low NSR.

Recent research related to FFT computation for SDR applications has dealt
mainly with two issues, viz., i) variable length FFT computation architectures

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 375–384, 2007.
� Springer-Verlag Berlin Heidelberg 2007

376 S. Mittal, M.Z. Ali Khan, and M.B. Srinivas

[4-5] that focus on how one can utilize a 16-point or smaller length FFT for 32
or higher length FFT computation and vice-versa. ii) universal computational
FFT architectures [6-7] in which a single FFT structure can compute different
transforms like decimation in time/frequency (DIT/DIF) FFT, DCT, DST etc.

Bruun’s FFT [8] can be considered to be an ideal candidate for SDR since
its architecture has low computational complexity and can also be configured to
compute FFT, DCT and DST [8]. However it suffers from high NSR [9] for a
given fixed point implementation and because of this, is not generally used in
practice. In this paper, the authors compare the hardware and timing complexity
of Bruun’s and DIT/DIF FFT for same NSR. It is shown that Bruun’s FFT has
less hardware complexity than that of DIT/DIF FFT for a given NSR, in most
cases practical for SDR.

The rest of the paper is organized as follows: Section 2 describes the basic FFT
computation algorithm while Bruun’s FFT architecture is described in section 3.
In section 4 we analyze and compare various FFT architectures for SDR. Results
of hardware implementation are provided in section 5 and a detailed comparison
is carried out. Finally, conclusions are drawn in section 6.

2 Basic FFT Computation Algorithm

A DFT of length N is defined as

X(k) =
N−1∑

i=0

x(i)· W ik
N , 0 ≤ k ≤ N − 1 (1)

where W denotes the Nth root of unity, with its exponent evaluated modulo
N . Among the many possible ways, DFT can also be implemented by using
transversal filters [8]. This filter structure has N, Z-transform based transfer
functions, one at each output node of FFT, of the form

Fn(z) = z−(N−1) + W−1.nz−(N−2) + · · ·

+ · · · W−k.nz−(N−k−1) + · · · W−(N−1).n (2)

Equation (2) can be factored using repeated application of

Fn(z) = (z−(N/2) + W−(N/2).n)(z−((N/2)−1)

+W−n.1z−((N/2)−2) + · · · + · · · + W−((N/2)−1).n

so that (2),

Fn(z) =
log2N∏

t=1

(z−(N/v) + W−(N/v).n) (3)

Where, v = 2t and Z−1 ∗ x(0) = x(1). This transfer function can also be rep-
resented as a tree structure after decomposition [8], which results in a classical
FFT structure.

A Comparative Study of Different FFT Architectures 377

3 Bruun’s FFT Algorithm

Bruun’s algorithm [8] is a very promising method for computation of different
discrete transforms, particularly FFT. It utilizes the fact that (2) can also be
factored using the following equation (4)

1 + aZ2q + Z4q = (1 +
√

2 − aZq + Z2q)(1 −
√

2 − aZq + Z2q) (4)

Fig. 1. Bruun’s FFT Computation Architecture for length N=16 [8]

This factorization has a nice property that all the coefficients are real except
in the last stage. Equation (4) replaces complex multiplications with real ones by
requiring only real coefficients to be multiplied with complex inputs which needs
only two real multipliers instead of four in a complex multiplication. This re-
composition reduce the area required by corresponding hardware implementation
to a significant extent. An example architecture of this is given in Fig. 1 [8].

Bruun’s algorithm not only reduces the number of computations, which is
same as that for a split-radix algorithm, but also maintains the regularity in the
structure which is a primary requirement for hardware realization of a recon-
figurable system like SDR. It also allows computation of cos/sin transform of
an input signal with small changes at the last stage [8], which is essential for
universal transform computation.

4 Comparison of Different FFT Architectures for
Software Defined Radio

SDR requires flexible DSP algorithms which can be implemented effectively
as/on a reconfigurable hardware like FPGAs. Main disadvantages of a recon-
figurable system, however include extra hardware required for providing recon-
figurability and features like dynamic and partial reconfiguration, etc. One more

378 S. Mittal, M.Z. Ali Khan, and M.B. Srinivas

disadvantage is that reconfigurable systems tend to be slower than dedicated
systems due to extra switches/multiplexers and long interconnect lengths in the
critical path of computation. This requires them to operate at higher frequencies
which in turn increase the power consumption of the system.

Further, regular architectures can be partitioned easily in to sub-blocks and
both classical and Bruun’s FFT exhibit regularity in their architecture. In con-
trast, split-radix algorithm has low computational complexity, same as that of
Bruun’s FFT, but does not exhibit regularity. Therefore, split-radix FFT archi-
tectures are not considered for SDR [3].

In FFT computation, reconfigurability means a provision for change in op-
erational length along with the option of computing other discrete transforms
using the same architecture. Both classical and Bruun’s FFT can be made to
operate at variable lengths but Bruun’s FFT has an added advantage that it
can also compute different transforms like DCT, DST [8] etc. easily and with
minimum changes in internal memory. This feature makes it an ideal candidate
for converged systems. DIT and DIF FFT architectures have nearly the same
performance, therefore further analysis is carried out for Bruun’s and DIT FFT
only.

4.1 NSR

In [9], Bruun’s FFT was rejected only due to its higher NSR. To understand this,
a comparison between NSR performance of Brunn’s and DIT FFT is provided
in this subsection. Signal power followed by noise power calculations for these
FFT algorithms are explained below.

If an overall scaling factor 1/k is used, then the output signal power (SP) is
given by [9]

SP = N/(3K2)

Classical complex FFT has scaling factor k = N , whereas Bruun’s FFT has
scaling factor k = N2/8 for N>8 [9]. For a complex input sequence, the output
signal power for both FFT algorithms is as follows:
i) Signal power for classical FFT (SPcfft)

SPcfft = 1/(3N) (5)

ii) Signal power for Bruun’s FFT (SPbfft)

SPbfft = 64/(3N3) (6)

The reduction in signal power with (1/N3) in Bruun’s FFT as compared to
(1/N) in classical FFT is a significant disadvantage for the Bruun’s algorithm.
Noise power introduced due to ’b’ bit quantization at the output of a real mul-
tiplier is σ2

e = 2−2b/12. Total output noise at each output node is equal to the
sum of the noise propagated to that node with scaling which is done on per stage
basis in FFT. This attenuates noise introduced at early stages by scaling intro-
duced in later stages. Scaling is performed by shifters and because of truncation
they also contribute noise in the computation.

A Comparative Study of Different FFT Architectures 379

i)Noise power in classical FFT (NPcfft)

NPcfft = (4/3)· 2−2b [10] (7)

From (5) and (7) NSR value for classical FFT (NSRcfft) can be written as:

NSRcfft = 4N · 2−2b (8)

ii) Bruun’s FFT
In Bruun’s FFT, first stage requires scaling by (1/2) while all the middle stages
need scaling by (1/4) and no scaling is required for the last stage of computa-
tion.Due to this unequal scaling requirement, noise power is calculated as follows:

a) O/P noise power due to noise sources of first stage (NP1):
A FFT computation consists of v = log2 N stages. Using the procedure in [10],

NP1 = (1/3)· 2−2b· (1/2)(3v−7) (9)

Note that 2v noise sources at first stage are connected to one particular output
node of FFT.

b) O/P noise power due to noise sources in middle stages (NP2):
Number of noise contributing butterflies and therefore noise sources contributing
to overall noise at a particular output node decreases by 2 per stage as the
computation progresses from one stage to the next stage. (NP2) is given by,

NP2 = (32/21)· 2−2b (10)

c) O/P noise power due to noise sources at last stage (NP3):

NP3 = (1/3)· 2−2b (11)

Total noise power for Bruun’s FFT (NPbfft) is

NPbfft = NP1 + NP2 + NP3

In this calculation we can neglect NP1 for v ≥ 3, so equation (10) and (11) gives,

NPbfft = (39/21)· 2−2b (12)

From (6) and (12), NSR value for Bruun’s FFT (NSRbfft) can be written as:

NSRbfft =
39
448

· 2−2b· N3 (13)

In this paper, a simplified noise analysis has been done for complex input
sequence-based Bruun’s FFT using a general procedure given in [10] as com-
pared to that in [9]. From (8) and (12), we see that for the same bit width
’b’ the NSR of Bruun’s FFT increases in proportion to N3 while that of DIT
FFT is proportional to N . However this comparison is not fair as the hardware
requirement of the two architectures is different.

380 S. Mittal, M.Z. Ali Khan, and M.B. Srinivas

Fig. 2. Butterfly structure for Classical FFT computation

Fig. 3. Butterfly structure for Bruun’s FFT computation

4.2 Hardware Complexity

Butterfly architectures used in classical and Bruun’s FFT computation are shown
in Figs 2 and 3 respectively. Here Wnk

N and Rnk represents complex and real
valued coefficients for classical and Bruun’s FFT butterflies respectively. A clas-
sical FFT butterfly require complex multiplication which is equivalent to four
real multiplications and two real additions. Overall it requires 4 real multiplica-
tions and 6 real additions. Similarly a Bruun’s FFT butterfly require to multiply
a complex input with a real coefficient and therefore needs only two real mul-
tiplications. It overall needs two real multiplications and six real additions to
get it’s output. Now it is clear from Figs. 3 and 4 that Bruun’s FFT will reduce
the number of multiplications by half without adding any extra arithmetic block.
Since an N point FFT consists of N/2 butterflies per stage, hardware complexity
for different FFT algorithms is as follows:

i) Classical FFT

Cm
cfft = 2Nlog2N, Ca

cfft = 3Nlog2N (14)

ii) Bruun’s FFT
In Bruun’s computation, last stage consists of classical butterflies, therefore com-
plexity will be given by,

Cm
bfft = Nlog2N + N, Ca

bfft = 3Nlog2N (15)

Here Cm and Ca represent the cost function for real multipliers, adders in FFT
computation and subscripts cfft, bfft represent classical and Bruun’s FFT re-
spectively.

In literature, complexity of a single multiplier is assumed to be 6-8 times the
complexity of an adder [11]. In this analysis, authors assumed this number to
be 5 based on their experiments. Bruun’s FFT also uses classical butterfly at
the last stage which has the complexity of 13N and is different from it’s regular
butterfly. Therefore, total hardware complexity for classical and Bruun’s FFT
in terms of real adders (Ccfft) and (Cbfft) using (14) and (15) is

A Comparative Study of Different FFT Architectures 381

Ccfft = 5· 2N · log2 N + 3N · log2 N ⇒ 13N log2 N (16)

Cbfft = 5N(log2 N − 1) + 3N(log2 N − 1) + 13N ⇒ 8N log2 N + 5N (17)

4.3 Comparison Between Hardware Complexity of Different FFT
Architectures for Same NSR

In this subsection we first find the bit widths required by Bruun’s FFT to get
same NSR as DIT FFT. Let b1 denote the bit width required by Bruun’s FFT
to obtain the same NSR as that of DIT FFT for bit width b. Equating the NSR’s
of both FFTs and using (8) and (13) we have,

NSRcfft = NSRbfft

which simplifies as,
b1 = b + log2 N − 3 (18)

Equation (18) indicates that for 8 (= 23) point Bruun’s FFT, no extra bit
is required for equal NSR. But Bruun’s FFT requires 3 extra bits for 64-point
FFT to achieve same NSR as classical FFT. In general hardware complexity of
an adder increases linearly with the number of bits [12], for example, as in high
speed parallel-prefix adders. In order that classical FFT will have more hardware
complexity compared to Bruun’s FFT the following condition must be satisfied:
using equation (16), (17) and (18)

13N log2 N · b ≥ (8N log2 N + 5N)· b1

13 log2 N · b ≥ (8 log2 N + 5)· (b + log2 N − 3)

by simplifying above equation,

8(log2 N)2 − (5b + 19) log2 N + (5b − 15) ≤ 0

log2 N =
(5b + 19) ±

√
(5b + 19)2 − 32(5b − 15)

16
(19)

for b = 8,
N ≤ 26.92 ⇒ N ≤ 121

Usually in wireless communication applications, bit sizes of 10-16 or more
have been used. As an example, using b=12 in (19) gives

N ≤ 29.26 ⇒ N ≤ 613

This shows that up to 613�512 point FFT with bit width b=12, Bruun’s FFT
will provide less hardware complexity than DIT FFT for same NSR. Therefore,
Bruun’s FFT can be used with higher bit length operations for compensating
the high NSR value while maintaining it’s low hardware complexity.

382 S. Mittal, M.Z. Ali Khan, and M.B. Srinivas

4.4 Timing Complexity

Timing complexity for Bruun’s and classical FFT can be realized from the but-
terfly structures shown in Figs. 2 and 3. In Fig. 2, critical path delay is the
summation of delays offered by one real multiplier (Tm) and two real adders
(Ta) for a particular stage of classical FFT. Therefore, log2 N stages in FFT
structure will make total delay for DIT FFT (Tcfft) to be

Tcfft = (Tm + 2Ta)log2N

In Bruun’s FFT, critical path delay per stage is sum of delays offered by one
real multiplier and one real adder, so total delay Tbfft is given by

Tbfft = (Tm + Ta)log2N,

which is less than the critical path delay of classical FFT.
In Bruun’s FFT, operations will be done with higher bit length for same

NSR but that will add just one more level of basic gate computation in delay
of adders/multipliers. But a new adder attached sequentially in classical FFT’s
critical path will increase the delay to at least 5-7 levels of basic gates compu-
tation [12]. Therefore Bruun’s FFT has less computational delay as compared
to classical FFT which reduces linearly with the number of stages. Thus it may
be claimed that Bruun’s FFT architecture is an optimal FFT architecture for
reconfigurable and converged hardware systems like SDR.

5 Hardware Implementation Results for Different FFT
Architectures and Comparisons

Both classical and Bruun’s FFT architectures have been coded in Verilog HDL,
simulated and synthesized on Virtex series FPGA, v50bg256 (speed grade -6)
from Xilinx using Mentor’s Leonardo Spectrum. Butterflies in Fig. 2 and 3 are
basic components of FFT and they determine the hardware requirement and
also the critical path delay of the design. Therefore we have implemented and
compared hardware architecture of these butterflies for different bit lengths. Co-
efficient length is fixed for a constant NSR and only precision of arithmetic op-
erations needs to be changed. Thus one operand in multiplier will have constant
bit length.

Table 1 provides a comparison of area and delay performance of classical
and Bruun’s butterfly architectures. It can be seen from the table that Bruun’s
butterfly consumes less number of LUTs (and therefore less area) for 10 bit
operation as compared to 6 bit operation in classical butterfly, for a comparable
NSR. This is due to the fact that two 2-bit functions will take 2 LUTS while a
single function with 4 bits takes only one LUT to implement. Table 1 also shows
that delay in Bruun’s butterfly is very less compared to classical butterfly for
reasonable bit lengths which is due to reasons explained in subsection 4.4. This
reduction in delay allows designer to operate FFT with lower frequency which
reduces the dynamic power consumption.

A Comparative Study of Different FFT Architectures 383

Table 1. A Comparison of Hardware and Timing performance of Butterfly Architec-
tures for different bit lengths

Synthesis Parameters Classical Butterfly Bruun’s Butterfly
Device of comparison 6 bits 8 bits 6 bits 8 bits 10 bits 11 bits
FPGA Area(LUTs) 134 258 76 88 116 138

(Virtex) Time(ns) 12.1 12.5 10.5 10.7 10.9 11.1

4 6 8 10 12 14 16
10

1

10
2

10
3

10
4

Bit Length (b)−−>

FF
T

Le
ng

th
 (N

) o
n

Lo
ga

rit
hm

ic
(L

og
10

) S
ca

le
 −

−>

Limiting values of FFT length for comparable hardware complexity in Bruuns
 and classical FFT for constant NSR

Fig. 4. Limiting values of FFT length N (log10 scale) for comparable hardware com-
plexity and constant NSR in Bruun’s and classical FFT, according to equation (19)

In Fig. 4 straight line shows the limiting values of FFT length (N) on log10

scale for which classical FFT will have more hardware complexity as compared
to Bruun’s FFT for a particular bit length (b) and same NSR according to (19).
Bruun’s FFT will have more hardware complexity for values of N greater than
or equal to the limiting values for maintaining same NSR. This clearly shows
that for practical operational bit lengths in FFT computation, N should be high
to invert the low hardware complexity advantage offered by Bruun’s algorithm.

A programmable shifter at the output will adjust the final output bit length
according to requirement of next computing block’s input in the system. Bit
length adjustment adds to reconfigurability in SDR as different modules may
require different bit lengths for their operation. This block can also perform
re-ordering of FFT outputs and also helps in increasing the SNR value at the
output by doing appropriate shifting. Moreover, it can be well adjusted with
Bruun’s FFT due to it’s low hardware and timing complexity.

Our analysis covers nearly all basic and important properties required for
SDR. VLSI implementation results show that Bruun’s FFT requires less area
and also has less delay which in turn reduce both static and dynamic power

384 S. Mittal, M.Z. Ali Khan, and M.B. Srinivas

consumption. Thus it may be suggested that Bruun’s FFT provides a better
modular and universal architecture.

6 Conclusion

This paper provides an insight in to an important problem of finding and analyz-
ing optimal FFT architectures for SDR. The authors have shown that Bruun’s
FFT can operate at larger bit lengths that are practical for a SDR, give better
hardware performance in terms of area and delay compared to the classical FFT,
while maintaining comparable NSR. It is suggested that Bruun’s FFT may be
preferred over classical and split-radix FFT in applications such as SDR.

References

1. Mitola, J.: The Software Radio Architecture. IEEE Communications Magazine,
26–38 (May 1995)

2. Tuttlebee, W.: Evolution of radio systems into the 21st century. In: Proc. IEE Int.
conf. on Radio receivers an associated systems (1995)

3. Reed, J.H.: Software Radio: A Modern Approach to Radio Engineering. Prentice
Hall, Englewood Cliffs (2000)

4. Lin, Y.T., Tsai, P.Y., Chiueh, T.D.: Low-power variable-length fast Fourier trans-
form processor. In: IEE Proceedings-Computers and Digital Techniques (July 2005)

5. Hung, C.-P., Chen, S.-G., Chen, K.-L.: Design of an efficient variable-length FFT
processor. In: International Symposium on Circuits and Systems(ISCAS)’04 (2004)

6. Britanak, V., Rao, K.R.: Two-Dimensional DCT/DST Universal Computational
Structure for 2m X 2n Block Sizes. IEEE Transaction on Signal Processing 48(11),
3250–3255 (2000)

7. Tell, E., Seger, O., Liu, D.: A converged hardware solution for FFT, DCT and
Walsh transform. In: Seventh International symposium on Signal Processing and
Its Applications, pp. 609–612 (2003)

8. Bruun, G.: Z-Transform DFT filters and FFT’s. IEEE Trans.Acoust. Speech, Signal
Processing ASSP-26, 56–63 (1978)

9. Storn, R.: Some Results in Fixed Point Error Analysis of the Bruun-FFT Algo-
rithm. IEEE Transaction on Signal Processing. 41(7) (1993)

10. Oppenheim, A.V., Schafer, R.: Digital Signal Processing.Pearson Education (2004)
11. Parhami, B.: Computer Arithmetic: Algorithms and Hardwrae Designs. Oxford

University Press, New York (2000)
12. Zimmermann, R.: Binary Adder Architectures for Cell-Based VLSI and their Syn-

thesis, PhD thesis, Swiss Federal Institute of Technology (ETH) Zurich, Hartung-
Gorre Verlag (1998)

Design of 100 �W Wireless Sensor Nodes on
Energy Scavengers for Biomedical Monitoring

Lennart Yseboodt1, Michael De Nil1, Jos Huisken2, Mladen Berekovic3,
Qin Zhao3, Frank Bouwens3, and Jef Van Meerbergen1,4

1 Eindhoven University of Technology Den Dolech 2
5612 AZ Eindhoven, Netherlands

lennart@belf.be, michael@flex-it.be
2 Silicon Hive High Tech Campus 45 5656 AA Eindhoven, Netherlands

jos.huisken@philips.com
3 Holst-centre High Tech Campus 48 5656 AA Eindhoven, Netherlands

mladen.berekovic@imec-nl.nl, frank.bouwens@imec-nl.nl,
qin.zhao@imec-nl.nl

4 Philips Research Eindhoven High Tech Campus 5
5656 AA Eindhoven, Netherlands
jef.van.meerbergen@philips.com

Abstract. Wireless sensor nodes span a wide range of applications. This
paper focuses on the biomedical area, more specifically on healthcare
monitoring applications. Power dissipation is the dominant design con-
straint in this domain. This paper shows the different steps to develop
a digital signal processing architecture for a single channel electrocar-
diogram application, which is used as an application example. We aim
for less than 100�W power consumption as that is the power energy
scavengers can deliver.

We follow a bottleneck-driven approach, the following steps are ap-
plied: first the algorithm is tuned to the target processor, then coarse
grained clock-gating is applied, next the static as well as the dynamic
dissipation of the digital processor is reduced by tuning the core to the
target domain. The impact of each step is quantified. A solution of around
11�W is possible for both radio and DSP with the electrocardiogram
algorithm.

1 Introduction

A new generation of biomedical monitoring devices is emerging. The main chal-
lenge for this kind of devices is low power dissipation. In this context a power
budget of only 100�W is available for the whole system including radio, digital
processing and memories. This power is taken from extremely small batteries
or energy scavengers. To reduce the power dissipation of the radio data com-
pression or feature extraction is used to reduce the number of bits that must
be transmitted. Thus the bottleneck shifts towards the digital part which is the
focus of this paper.

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 385–395, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

386 L. Yseboodt et al.

The goal of our work is to create a low-power C-programmable DSP, opti-
mized for the application domain via hardware support for application specific
instructions. As starting point a reconfigurable processor from Philips’ technol-
ogy incubator Silicon Hive [4] is selected. This technology includes a retargetable
C compiler making code development and portability for these processors easy.
This programmability is important because of the wide range of applications
that can run on the nodes. Programmable nodes allow a lower non recurring
engineering cost for the software and the hardware.

We differentiate between static and dynamic power dissipation. The dynamic
power is the power consumed due to switching and the internal power, which
is the power used inside the cells due to short-circuits and all the power used
in the internal nets. It includes the functional units, memories, controller and
clock. Current CMOS technology trends indicate that leakage is becoming more
dominant with every new process generation. In our experiments leakage power
soon turns out to be an important factor, up to 100�Wof leakage was measured.
Our focus has gone both into reducing static as in reducing dynamic power by
minimizing the time the processor is active. As a case study we examined an
ECG algorithm running on the proposed platform, what we learned from this
example led to more general system level conclusions.

2 System Level Architecture

A generic sensor node consists of several subsystems as depicted in Fig. 1. There
is a digital processing subsystem with level 1 local memory, a level 2 memory
subsystem, including RAM and non-volatile memories, an array of sensors and
possibly actuators, a radio system and a power subsystem including a source
and powermanager, which is responsible for waking up various parts of the node
when needed. This conceptual model holds independent of specific chip or die
boundaries and leaves open several packaging technologies. If level 2 memories
are kept off-die then multiple instances of the sensor node can be made without
having to create a new chip.

In current systems the power is supplied by a small battery or from energy
scavengers. Battery powered nodes have the disadvantage of requiring mainte-
nance. Different forms of energy scavenging are possible but in this paper we
assume a power budget of around 100�W [5]. This number includes power con-
sumed by the radio and the sensors, it is the global power budget of the entire
sensor node.

Fig. 1. Overview of the architecture of a wireless sensor node

Design of 100 �W Wireless Sensor Nodes 387

The digital subsystem must be programmable in order to be able to run
different algorithms such as ECG or EEG analysis, or altogether new algorithms
from the biomedical domain. Furthermore real time constraints must be met
especially when actuators are involved.

From a power dissipation point of view the most important consumers are the
radio, the memory and the digital subsystem. Commercially available radios con-
sume 150nJ/bit [7] and as a consequence the transmission of raw data can be ex-
pensive. An algorithm to reduce the amount of data via compression or feature
extraction usually is a better compromise between computation and communi-
cation. In addition to the radio most subsystems exploit duty cycling and sleep
modes to reduce the dissipation. Next the DSP must be tuned to the application.
Also the memory subsystem can dissipate a lot of power. What is needed is a hier-
archical memory subsystem optimized for power dissipation by reducing the size
of the lowest level memories. These design principles will now be discussed in more
detail and illustrated with an example, which is explained first.

3 Application

The electrocardiogram is a well studied topic, several interesting algorithms ex-
ist. One of the simplistic functions such an algorithm can offer is the detection
for the ventricular contraction, when the heart pumps blood to the lungs and
the body. In an ECG we call this event the R peak, situated in the QRS complex
(Fig. 2). The algorithm we use as a testcase is based on the opensource ECG
detection program from EP Limited [3].

The algorithm uses the Pan-Tomkins [1] method for R peak detection. The
Pan-Tomkins method is a filtering based method to detect the frequency that is
unique to the steeper R peak.

This algorithm extracts the key features reducing the amount of transmitted
bits by 100x. The minimum frequency for ECG analysis is 200Hz, with a 16 bit
sample width. Indeed sending raw data requires 200 ∗ 16b = 400B/s. Assuming
150 nJ/ bit the dissipation is 480�W which is higher than the available budget.
The Pan-Tomkins method reduces this to 4B/s or 4.8 �W. The 4 bytes can hold
all the information that can be extracted by this algorithm: the time between R
peaks, the height of the R peak and the baseline drift.

4 Optimization DSP

After removing the radio bottleneck the problem shifts towards the DSP. There-
fore we have chosen an ASIP (Application Specific Instruction set processor
[12]) approach which allows to tune the core to the application domain. First we
describe the reference core followed by the power optimizations.

4.1 Reference Core

Because of flexibility (easy to modify) a PearlRay processor from Silicon Hive [6]
was selected. The processor is reconfigurable, i.e. there exists a parameterizable

388 L. Yseboodt et al.

(a) (b)

Fig. 2. The QRS complex and the detection of beats

description of the architecture and a C-compiler that can generate code for any
possible architecture instance. The top level configuration file controls certain as-
pects of the processor: data widths, functional unit placement, custom functional
units, configurations of the issue slots. . . We generated a default configuration
with 32kB of data memory and 32kB of program memory. The processor is a
VLIW with three issue slots, 128 bit wide instructions and is synthesized for a
speed of 100MHz. This speed is the ‘sweet spot’ for this design. Synthesizing
the core for several clock frequencies shows that speeds above 100MHz make the
design grow exponentially in area and leakage as depicted in Fig. 3.

Fig. 3. Clock frequency vs. Area & Leakage

The algorithm was optimized by recoding the filters in such a way that their
behavior was largely unaffected, when several expensive divisions were replaced
by shifts. The PearlRay does not have a hardware divider and relies on a soft-
ware divider taking 25 cycles per division. After these optimizations the cost

Design of 100 �W Wireless Sensor Nodes 389

of analyzing one sample of ECG data at a 200Hz sampling frequency was 250
cycles, however when a beat is detected this number is higher: 1200 cycles. A
detection of a beat occurs only once or twice every second so on average it takes
198 ·250 + 2 · 1200 = 51900 cycles per second. If the PearlRay is running at
100MHz the duty cycle is 51900/100 ·106 = 0.05%.

Power figures for the processors, as seen in Table 2, were obtained using
Synopsys PrimePower with layout extracted capacitances. As input a vector file
from a netlist simulation was used, which was generated using Cadence Ncsim.
Simulations were based on the processor netlist after layout on a 90nm CMOS
process.

The power dissipation of the PearlRay was analyzed first. Three modes are
identified: active, idle and sleep. In active mode the processor is running a pro-
gram and processing samples. In idle mode the clock is still running. In sleep
mode the only dissipation is due to leakage.

Graphically sketched this is visible in Fig. 4. In this diagram the x axis is the
time that elapses, while the y axis represents the power consumption at that
time. The area of the bars represents the energy consumed. The lightest bars
represent the active energy, which can vary dependent on the input sample. We
also observed this behavior in our ECG software. The middle bar is the idle
energy and the darkest block is the ever present leakage energy.

Fig. 4. Causes of power consumption over the time domain

PTot = PLeak + fsample

(
(PAct · tAct avg) + (PIdle · tIdle avg)

)

The ECG application is an example of an algorithm that does not require a
large portion of the processing power that a typical DSP offers. The developed
processor is optimized for algorithms with a low duty cycle. Table 1 shows the
power characteristics of the standard version of the PearlRay, which is used as a
reference. At first glance the active power is dominant, but since the processor is
only ‘active’ for a small fraction of the time, the actual energy usage attributed
to active mode constitutes only to 0.4% of the total energy consumption. The
power used in idle mode is the dominant factor here.

390 L. Yseboodt et al.

Table 1. Standard version of the PearlRay used as a reference. The last column shows
the energy for one input sample and one ECG computation.

Source Power Duration Mean Power
Active 6.87mW 496�s 3.41�W
Idle 0.76mW 1s−496�s 758�W
Leak 100�W 1s 100�W

Total power 861.4�W

Table 2. PrimePower output results for reference PearlRay while active. The coreio
contains the data memory.

P Switch P Int P Leak P Total %

imec ref 1.46e-3 5.41e-3 1.00e-4 6.97e-3 100%

core 9.11e-4 7.78e-4 9.53e-6 1.70e-3 24.4%

dec 3.86e-5 1.75e-4 2.34e-7 2.13e-4 3.1%

is I0 1.00e-4 4.21e-5 9.67e-7 1.44e-4 2.1%

is I1 2.71e-4 1.56e-4 2.80e-6 4.30e-4 6.2%

is I2 8.96e-5 5.64e-5 9.61e-7 1.47e-4 2.1%

rf I0 4.69e-5 9.61e-5 1.35e-6 1.44e-4 2.1%

rf I1 1.03e-4 8.30e-5 2.07e-6 1.88e-4 2.7%

rf I2 3.24e-5 5.32e-5 8.07e-7 8.65e-5 1.2%

coreio 2.21e-4 1.11e-3 5.01e-5 1.38e-3 19.8%

genI1 2.69e-6 3.45e-5 7.15e-7 3.79e-5 0.5%

genI2 3.54e-5 5.92e-5 2.69e-7 9.49e-5 1.4%

genI3 1.47e-6 6.69e-5 1.38e-6 6.98e-5 1.0%

pmem 4.14e-5 3.37e-3 3.90e-5 3.45e-3 49%

4.2 Reduce Idle Mode Dissipation

To counter the effects of idle energy we use coarse grained clockgating. The
PearlRay reference core was already using fine grained low-level clock gates but
the top level clock gate was not implemented. The top level clock gate disconnects
the clock from the entire clocktree, meaning that when this gate is open no
switching will occur in the processor. As a consequence an external piece of
circuitry must revive the processor when this is required. Such a clock gate was
very important as shown by the results in Table 3. After this optimization the
dominant energy component is leakage (96%).

4.3 Reducing Leakage

Now we are faced with dominant leakage power so we analyze in which part of
the processor the leakage occurs. Our total leakage is 100�W, of which 50�W is
caused by the data memory, 40�W by the program memory and 10�W by the
processor itself. The large majority of the leakage is in the memories. We tried
four things to improve this leakage.

Design of 100 �W Wireless Sensor Nodes 391

– Reduce the size of that data memory to 2kB. Since the ECG program only
requires 1.2kB and 120 bytes of stack this was possible. This reduced the
leakage to 65.6 �W, a 34.5% improvement.

– By removing one of the three issue slots in the PearlRay processor and re-
ducing the size of the immediates, the width of the program memory could
be reduced from 128b to 64b. Due to the decrease of parallelism the instruc-
tion count was increased with 27%, but the instruction width was reduced
by 50%, allowing us to reduce the program memory from 32kB to 16kB. This
resulted in a reduction of leakage power to 82�W, a 18% improvement.

– The use of memory modules designed in a technology with a high threshold
option (HighVt). This drastically reduces the leakage of the memories. They
will become slower but speed was not really a constraint and the memories
still operated on 100MHz. Using these memories leakage was reduced to
16.2�W, a 84% improvement.

– Reduce the datapath from 32 bit to 16 bit. As the samples are only 16 bit
wide and all operations occur on them, it is optimal to scale the core to this
width. This gave a moderate improvement in leakage to 94.7�W, or 5.3%.

When combining these techniques together with floorplan optimizations, the
results shown in Table 4 were obtained, which reduced the leakage of the original
PearlRay processor to 5.45�W, a 94.5% improvement. Furthermore scaling down
the datapath to 16 bit also contributed to reduce the dissipation of the active
mode.

Table 3. Power results with a top level clockgate installed

Source Power Duration Mean Power
Active 6.87mW 496�s 3.41�W
Idle 0W 1s−496�s 0W
Leak 100�W 1s 100�W

Total power 103.41�W

Table 4. Power result with anti-leakage techniques combined

Source Power Duration Mean Power
Active 4.7mW 628�s 2.95�W
Idle 0W 1s−628�s 0 W
Leak 5.45�W 1s 5.45�W

Total power 8.4�W

5 System Level Optimization

In this section we describe system level optimizations that are a work in progress.
We are currently experimenting with power gating and level 2 memories that
can be used to save the state and shutdown the core.

392 L. Yseboodt et al.

5.1 Power Down the Core

From Table 4 we conclude that the leakage is still dominant. Therefore an inter-
esting option is to power down the core and to save the state to level 2 memory
and restore it when the next batch of samples have to be processed. There are
positive and negative contributions to the power dissipation. In those circum-
stances where the final net result is positive this is an interesting option. It means
a hierarchical memory subsystem: small level 1 memories with a high number
of accesses and larger level 2 memories with a very limited number of accesses.
This is similar to a memory hierarchy in computer architectures but optimized
for power dissipation instead of performance. Level 2 memory (or part of it) is
also used for other purposes, e.g. to collect the samples that arrive while the core
is down or to store multiple applications, which are not active simultaneously.

Let’s apply this to the ECG example. The state includes not only data (1.2kB)
but also the program (16kB). This data is used to retain the state of the filters
and for several other variables such as the baseline drift. An important decision
is the granularity of switching between modes. If we do this at a sample basis
this can become quite expensive. Assuming a low power (level 2) SRAM memory
in a 90 nm process and a size of 32kB the cost of an access is 0.875 pJ/B and
the leakage equals 2.5�W. If the processor is powered down after every sample
the cost is 28.8�W, the calculation is detailed in Table 5. This can be improved
by grouping the samples in groups of 50, then the cost of saving and restoring is
also reduced by a factor 50 which translates into an acceptable level of 3.0�W.
This can even be further improved to 0.5 by using a non-volatile memory (flash).

The swapping between level 2 and level 1 memories can be done for complete
applications but also for parts of an application. The Pan-Tomkins algorithm for
ECG is a good example. As mentioned above it consists of 2 parts: the filtering
and the feature extraction. Both parts have similar code size. The filtering is
executed for every sample but the feature extraction is executed with a low
probability (0.5%), i.e. only when a beat is detected, which is about once per
second. Therefore it is possible to reduce the level 1 code memory by a factor of
2, which reduces the access energy. The consequence is that the programmer or
the compiler must be aware of this, e.g. to insert statements for code swapping.

5.2 Results

Table 6 shows a system level overview of the different components of the power
consumption in �W. Furthermore the application scope is widened. The first
four rows show an ECG application with different assumptions. The first row
shows the simple baseline ECG case with 1 channel as discussed above. The
second row assumes 3 channels. The next one is again 1 channel but now a
more complex algorithm for a more extensive analysis including extra parameters
(such as Q&S peaks and average beat rate). The fourth one is the same as the
previous one but now for 3 channels. The last two rows show FFT analysis on
1 and 10 channel(s) respectively. The different columns represent the different
contributions to the power dissipation in �W. A 90 nm process is assumed.

Design of 100 �W Wireless Sensor Nodes 393

Table 5. Level 1 to level 2 state save calculation

Cause Calculation Result
Granularity: 1 sample

Leak 2.5�W
Rpm

a 16kB · 8192 · 0.875pJ · 200/s 22.94�W
Wst

b 1200B · 8 · 0.875pJ · 200/s 1.68�W
Rst

c 1200B · 8 · 0.875pJ · 200/s 1.68�W
Total: 28.8�W

Granularity: 50 samples
Leak 2.5�W
Rpm 16kB · 8192 · 0.875pJ · 4/s 0.46�W
Wst 1200B · 8 · 0.875pJ · 4/s 0.03�W
Rst 1200B · 8 · 0.875pJ · 4/s 0.03�W

Total: 3.02�W

a Read program memory
b Write state
c Read state

Table 6. Power consumption with different assumptions, all numbers represent micro
watts

P
r
a

d
io

P
a

c
ti

v
e

P
id

le

P
s
ta

te

P
to

t
L

1

P
to

t
L

1,
L

2

1ch 4.8 3.3 5.5 3.0 13.5 11.0
3ch 4.8 9.8 5.5 3.1 20 17.6
1ch+ 9.6 4.6 5.5 3.3 19.6 17.5
3ch+ 9.6 13.7 5.5 3.6 28.7 26.8
eeg1 2.16 2.1 5.5 3.0 9.8 7.3
eeg10 21.6 21.3 5.5 3.0 48.4 45.9

The second column represents the radio power assuming 150 nJ/bit. Columns
3 and 4 are related to the processor and show the dissipation when active and
the leakage. The next column shows the dissipation due to state-saving and
restoring in a 32 KB level 2 SRAM memory. The last 2 columns show the total
dissipation for 2 different scenarios. The last column assumes level 2 memory is
used and the processor put in power down mode. The previous column assumes
the opposite.

We conclude for various use scenarios different components can have the
largest contribution in power consumption. Therefore it is not easy to predict
and a careful analysis is needed for each situation. The data in Section 4 shows
that the average power consumption constraint of 100�W is feasible.

394 L. Yseboodt et al.

6 Conclusion

Power dissipation is the most important constraint for wireless sensor nodes for
healthcare applications. This paper describes the different steps in the
development of an architecture using a single channel ECG application as an
example. It shows that a 100�W solution is feasible.

For minimum power dissipation there is an optimum balance between com-
putation and communication. Transmitting raw data is usually not optimal. A
significant reduction in the amount of transmitted bits is obtained via compres-
sion or feature extraction. As a consequence the bottleneck shifts towards the
DSP. Static as well as dynamic dissipation must be tackled. Both components
are reduced by tuning the core to the target domain (application specific in-
structions, proper memory sizes, etc.) In an optimized architecture the level 1
memories have a limited size due to the high number of accesses in active mode.
When the processor is inactive it can be powered down while the state is saved
in level 2 memory. This requires that the granularity is carefully chosen. Analyz-
ing different ECG applications it is shown that optimizing the digital processing
technology is important.

Therefore this is chosen as the focus of this paper. Using ECG as a driver and
adopting a bottleneck-driven step-by-step approach a factor of 100 reduction of
power dissipation of the DSP core was measured via simulations. This is a result
of the following actions that span the different design levels.

– Algorithm level: optimization and simplification of the code.
– Architecture level: e.g. level 1 memory size reduction by a factor of 2 for

instructions and a factor of 16 for data
– Gate level: e.g. clock gating.
– Technology with HighVt.

References

1. Rangayyan, R.: Biomedical Signal Analysis. USA: Wiley c©2002
2. Pan, J., Tompkins, W.J.: A Real-Time QRS Detection Algorithm. IEEE Transac-

tions Biomedical Engineering BME-32(3), 230–236 (1985)
3. EP Limited http://www.eplimited.com
4. Silicon Hive http://www.siliconhive.com
5. Bert Gyselinckx. Human++: emerging technology for body area networks
6. Halfhill, T.R.: Silicon Hive Breaks Out. December 1, 2003 Microprocessor Report

(2003), www.MPRonline.com
7. True System-on-Chip with Low Power RF Transceiver and 8051 MCU, TI

Datasheet CC, SWRS033A 1110
8. Low power DSP, TI MSP430F149, http://www.ti.com
9. Coolflux DSP, www.coolfluxdsp.com

http://www.eplimited.com
http://www.siliconhive.com
www.MPRonline.com
http://www.ti.com
www.coolfluxdsp.com

Design of 100 �W Wireless Sensor Nodes 395

10. Ekanayake, V.N., IV Kelly, C., Manohar, R.: BitSNAP: Dynamic Significance Com-
pression For a Low-Energy Sensor Network Asynchronous Processor. In: Proc.
ASYNC, pp.144–154 (March 2005)

11. Warneke, B.A., Pister, K.S.J.: An Ultra-Low Energy Microcontroller for SmartDust
Wireless Sensor Networks. In: Proc.ISSCC, (February 2004)

12. Meyr, H.: System-on-chip for communications: The dawn of ASIPs and the dusk of
ASICs. In: Proc. IEEE Workshop on Signal Processing Systems (SIPS’03), Seoul,
Korea (August 2003)

Tool-Aided Design and Implementation of Indoor
Surveillance Wireless Sensor Network

Mauri Kuorilehto, Jukka Suhonen, Marko Hännikäinen, and Timo D. Hämäläinen

Tampere University of Technology, Institute of Digital and Computer Systems
P.O. Box 553, FI-33101 Tampere, Finland

{mauri.kuorilehto, jukka.suhonen, marko.hannikainen,
timo.d.hamalainen}@tut.fi

Abstract. This paper presents the design and implementation of an indoor sur-
veillance Wireless Sensor Network (WSN) using tools for hastening and facili-
tating the different phases in the WSN development. First, the application case
is described in WISENES (WIreless SEnsor NEtwork Simulator) framework by
four models, which define application, communication, node, and environment.
WISENES enables a graphical design of the models combined with accurate
simulations for performance evaluation. Next, surveillance application tasks and
communication protocols are implemented on node platforms on top of SensorOS
Operating System (OS). A congruent programming model of SensorOS allows a
straightforward mapping of WISENES models to the final implementation. The
evaluation of the indoor surveillance WSN implemented with Tampere Univer-
sity of Technology WSN (TUTWSN) protocols and platforms reaches a lifetime
in order of years while still ensuring reactive operation. Further, the results show
only 9.5 % and 6.6 % differences in simulated and measured networking delay
and power consumption, respectively. Our results indicate that accurate early de-
sign phase simulations can relieve the burden of prototyping and low level imple-
mentation by a realistic configuration evaluation during design time.

1 Introduction

Wireless Sensor Networks (WSN) are an emerging ad hoc networking technology, in
which a large number of miniaturized sensor nodes organize and operate autonomously.
Communication, computation, energy, and memory capacities of individual nodes are
limited, but the overall network capability results from the cooperation of nodes [1].

The envisioned applications for WSNs are diverse in environmental monitoring,
home, industry, health care, and military. In spite of the diversity of applications, they
possess common domain independent characteristics. A typical application gathers
measurement data from different sensors, aggregate them, and route data to a central
gathering point, a sink. Alternatively, nodes perform in-network data fusion and make
either independent or distributed control actions through actuators [2].

The communication in WSNs is controlled by a layered protocol stack. The key
layers are Medium Access Control (MAC) that manages channel access and network
topology, and routing that creates and maintains multi-hop paths between end points
[1]. The communication requirements for a WSN are application-specific, thus a single
protocol stack is not suitable for all cases. Yet, the maturity and properties of WSN

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 396–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Tool-Aided Design and Implementation of Indoor Surveillance WSN 397

protocol stacks are evolving, which allow the optimization of existing protocols and
software architectures for a variety of applications through configuration [3].

As the number of design choices and complexity of WSN applications increases, the
management of the vast design space and the configuration exploration for an applica-
tion requires design automation tools. Until recently, design automation has not been
considered in WSN community, but the main focus of research has been on energy ef-
ficient and scalable protocols [2]. However, considering the rapid evolution, the burden
of WSN design without tools will evidently be unbearable. In order to substantially
hasten and facilitate WSN development, tools need to support all phases in the WSN
design and help the designer to make reasonable the design choices [4].

The WSN design flow used in this paper is presented in Fig. 1. Design dimensions
extract the key parameters from the application requirements for steering system design
and implementation phases. In the design phase, a system is divided into separate mod-
els for application, communication, node, and environment. These models are defined,
configured, and evaluated to obtain a suitable system composition for hardware and
software implementation. The system is evaluated by both simulations and prototyping.
In general, simulations reveal possible performance tweaks in large-scale and long-term
deployments, while prototyping verifies the operation of the implementation in its final
execution environment. Before the final deployment, required phases are iterated until
application requirements are met.

In this paper, we present the design and implementation of an indoor surveillance
WSN using support tools. For WSN design, our WIreless SEnsor NEtwork Simulator
(WISENES) [5] defines methods for the formal description of application and com-
munication model functionality and dependencies. WISENES allows accurate perfor-
mance evaluation of graphical Specification and Description Language (SDL) models
through simulation. For the final deployment, application and communication models
are implemented on top of SensorOS [6] Operating System (OS) that offers a congruent
interface with WISENES. The indoor surveillance application is designed and imple-
mented with TUTWSN (Tampere University of Technology WSN) node platforms and
protocols [7]. The evaluation of the design case shows the feasibility of the tools and
their applicability for rapid development of application-specific WSNs.

WSN application requirements

Evaluation of design dimensions

Hardware and software implementation

Prototype WSN evaluation

System model design, configuration, and evaluation

Final deployment

WSN application requirements

Evaluation of design dimensions

Hardware and software implementation

Prototype WSN evaluation

System model design, configuration, and evaluation

Final deployment

Fig. 1. Different phases in the proposed WSN design flow

398 M. Kuorilehto et al.

The rest of the paper is organized as follows. Section 2 discusses related research in
area of WSN design. The requirements for the surveillance application, and TUTWSN
protocols and platforms are presented in Section 3. Section 4 shows WSN design with
WISENES. The prototype implementation of the surveillance WSN on top of SensorOS
is presented Section 5. Finally, conclusions are given in Section 6.

2 Related Work

While a wide variety of system architectures are proposed for WSNs, TinyOS [8] has
gained the most popularity. TinyOS is a component-based OS for event-driven WSNs.
TinyOS component development is facilitated by nesC [9] programming language that
adopts the TinyOS programming model. TOSSIM [10] implements a simulation en-
vironment for large scale WSNs built with TinyOS. For data gathering applications,
TinyOS can be supplemented with TinyDB [11] that abstracts WSN as a database.

Several higher abstraction level design tools are also proposed for TinyOS systems.
VisualSense [12] extends Ptolemy II with WSN features and allows the development of
WSN protocols and applications using different Models-of-Computation (MoC) avail-
able in Ptolemy II. Applications developed with VisualSense are integrated to TinyOS
and TOSSIM through a Viptos interface. GRATIS [13] introduces a graphical tool for
TinyOS component design and management. In [14], the mapping of applications im-
plemented as SDL models to TinyOS components is proposed. A loose relation to
TinyOS is present also in Prowler [15] that is a MATLAB-based simulation environ-
ment targeted for application algorithm testing and optimization for TinyOS nodes.

A platform based design methodology for WSNs is proposed in [4]. The approach
is based on three abstract models for applications, protocols, and hardware platforms.
A Rialto tool defines requirements for the protocols by exploring all possible com-
munication combinations of the application model. The protocol stack configuration
is optimized to meet application requirements in the constraints set by platform can-
didates. A quite similar approach is taken in [16], in which communication protocols
and platform are abstracted to a virtual architecture for algorithm design and synthesis.
The proposed design flow concentrates on the modeling concepts and does not provide
tool support. In [17], a system level design methodology is proposed for cost function
guided optimization of mainly hardware parameters. The tool supported optimization
utilizes static network graphs and energy models for design space exploration.

From the related proposals, most are singular tools addressing only a minor part of
the WSN design. The platform based design in [4] and VisualSense are nearest to our
approach. Compared to [4], WISENES allows the graphical design of not only applica-
tion models but also communication protocols. Further, the mapping of the models to
the final implementation is more straightforward through SensorOS. Compared to Visu-
alSense, WISENES design abstractions and interfaces are more comprehensive and ori-
ented for WSN applications in particular. Further, due to detailed modeling WISENES
outputs more accurate performance results in earlier phase, which hastens the overall
development by avoiding unnecessary iterations caused by flawed design choices.

Tool-Aided Design and Implementation of Indoor Surveillance WSN 399

3 Indoor Surveillance WSN

An indoor surveillance WSN monitors temperature and detects motion in the public
premises of a building. The WSN has three active tasks; motion detection, temperature
sensing, and a sink task for data gathering. The relations between tasks together with
the basic network architecture are illustrated in Fig. 2a.

The surveillance WSN is designed and implemented with TUTWSN protocols and
platforms. In addition to a configurable protocol stack and a family of node platforms,
TUTWSN consists of several applications and different monitoring and control User In-
terfaces (UI) [7]. TUTWSN is accessed through an Application Programming Interface
(API) that defines the data interests for the network.

3.1 Surveillance WSN Requirements

The motion detection task interfaces a Passive Infra-Red (PIR) sensor for generating
movement alerts, which are forwarded to the sink task. The temperature sensing task
measures surrounding temperature periodically and sends it to the sink task. Tempera-
ture sensing task is activated once per minute in all nodes. The motion detection task
is present only on nodes located in public premises, such as isles. The sink task is exe-
cuted on a gateway that connects WSN to external networks. The sink stores data to a
database and forwards alerts to monitoring UIs.

The requirements for the two sensing tasks differ significantly. The motion detection
task is event-based and activated by movement. Generated alerts have high priority,
are delay critical, and need reliable transmission. Instead, periodic temperature mea-
surements are low priority packets and occasional data losses are acceptable. In order
to avoid constant maintenance, the WSN should operate approximately a year without
battery replacements.

3.2 TUTWSN Protocols

TUTWSN MAC protocol combines slotted-ALOHA and reservation data slots for adap-
tive and extremely energy efficient operation. The clustered topology is maintained with
periodic beacons by cluster headnodes that also perform inter-cluster communication
by synchronizing to neighbor headnodes. Subnodes maintain synchronization and com-
municate only with their parent headnodes. The MAC protocol provides a reliable data
transmission service for upper layers. A bandwidth allocation within a cluster is con-
trolled by an adaptive algorithm that reacts to the communication profile changes.

TUTWSN routing protocol forms routes towards a sink based on cost-gradients.
Each node maintains several alternative routes each with a different cost function. Rout-
ing selects typically two or three synchronized parents for MAC according to the next
hops for routes. The cost function used for application data depends on the traffic class.
The cost information is updated in the network maintenance communication, thus addi-
tional control communication is needed only for adaptive recovering from link failures.

TUTWSN protocols can be tailored for different kinds of applications with a rich set
of configuration parameters during both design and runtime. Design time MAC layer
configuration includes e.g. access cycle and network maintenance timing, role selection

400 M. Kuorilehto et al.

WSN

Motion

Temperature
Sink

Nodes
UIUIUI

EthernetGateway

Database

WSNWSN

Motion

Temperature
Sink

Nodes
UIUIUI

EthernetGateway

Database

(a)

Antenna

MCU board
(MCU, radio,
sensors)

Power unit

UI (led,
button)

Antenna

MCU board
(MCU, radio,
sensors)

Power unit

UI (led,
button)

(b)

Fig. 2. An overview of (a) surveillance WSN architecture and (b) TUTWSN PIC node

directions, intervals for topology control, and bandwidth reservation and usage param-
eters. Cost function coefficients and protocol reactiveness can be configured for routing
at design time. During runtime, MAC layer can be configured by altering number of
Time Division Multiple Access (TDMA) slots and node roles, and routing by selecting
used cost functions. The applications of a network can be configured by changing the
data interests.

3.3 TUTWSN Prototype Platform

TUTWSN node platform used in this paper is illustrated in Fig. 2b. The main compo-
nent is PIC18LF4620 nanowatt series Micro-Controller Unit (MCU) with 64 KB code
and 3986 B data memory. MCU contains also an 10-bit integrated Analog-to-Digital
Converter (ADC) and 1 KB of EEPROM as a non-volatile data storage. The power unit
consists of a MAX1725 regulator with 2.4 V output voltage and a 3 V CR123A lithium
battery with 1600 mAh capacity. In addition, a DS620 digital thermometer is integrated
to the platform. A PIR-sensor is attached to a connector provided for external sensors.
The radio interface on the platform is a 2.4 GHz nRF2401A transceiver unit, which
supports 1 Mbit/s data rate and transmit power between -20. . .0 dBm.

4 WSN Design with WISENES

In WISENES [5], protocols and applications are designed in high abstraction level us-
ing SDL. SDL components, blocks, can be structured hierarchically in order to clarify
the presentation, while the functionality is implemented in processes described as Ex-
tended Finite State Machines (EFSM). Processes communicate with signals that initiate
state transitions at the recipient processes. Such a programming model is suitable for
communication systems and for WSN applications that are typically activated by an
event and alter their state and processing depending on the events and their parameters.

WISENES utilizes commercial Telelogic TAU SDL Suite for the graphical design of
protocols and applications, and for the code generation of simulation cases. The core
functionality, modeling approach, simulation framework, and environment and platform

Tool-Aided Design and Implementation of Indoor Surveillance WSN 401

description are independent of the Telelogic tools. The characteristics of the environ-
ment and sensor nodes are defined accurately for WISENES in a set of eXtensible
Markup Language (XML) configuration files. The detailed parameters and the realis-
tic modeling of wireless transmission medium, physical phenomena, and sensor node
hardware capabilities result to accurate performance information of simulated proto-
cols, nodes, and networks. Simulation results are stored to logs for the post-processing
of the energy, processing, memory, and sensor usage statistics for individual nodes.
Further, networking performance for the whole WSN and for different applications is
output in terms of delays, throughput, collisions, and bandwidth utilization.

4.1 WISENES Model Abstraction

WISENES incorporates four models defined by a designer. These are application model,
communication model, node model, and environment model. The hierarchy and main
properties of the models are depicted in Fig. 3. The environment model defines the
parameters for wireless communication (signal propagation, noise), describes overall
characteristics (average values, variation) for different phenomena, and specifies sepa-
rate target areas (e.g. buildings) and objects (e.g. humans, animals, vehicles). The en-
vironment model defines also the mobility of nodes and target objects.

WISENES application model allows a designer to describe the functionality and re-
quirements of an application separately. This eases the exploration of the performance
and suitability of application configurations for different kinds of networks and envi-
ronments. The functionality of an application is divided into tasks that are implemented
as SDL statecharts. The operational parameters and requirements of the application
are specified in XML configuration files. These parameters define the dependencies
between the application tasks, task activation patterns, and Quality of Service (QoS) re-
quirements for the applications. The QoS parameters define task priorities, networking
requirements in terms of data reliability and urgency, and an overall network optimiza-
tion target. The optimization target is used to steer communication model and it can be
for example a maximal network lifetime, load balancing, or high performance.

The communication model specifies the networking for WSN applications. The
WISENES communication model consists of a protocol stack implemented in SDL and

Environment model
• Wireless medium

parameters
• Phenomena

characteristics
• Target areas and

objects
• Mobility charts
• Parameters in XML

Node model
• Resource control
• Interfaces for

application and
communication
models

• Runtime functionality
in SDL

• Parameters in XML

Application model
• Set of communicating tasks
• Functionality in SDL
• Parameters in XML

Communication model
• Layered protocol stack
• Functionality in SDL
• Compile-time parameters

in header files

Environment model
• Wireless medium

parameters
• Phenomena

characteristics
• Target areas and

objects
• Mobility charts
• Parameters in XML

Node model
• Resource control
• Interfaces for

application and
communication
models

• Runtime functionality
in SDL

• Parameters in XML

Application model
• Set of communicating tasks
• Functionality in SDL
• Parameters in XML

Communication model
• Layered protocol stack
• Functionality in SDL
• Compile-time parameters

in header files

Fig. 3. WISENES models for designer and their main characteristics

402 M. Kuorilehto et al.

a set of configuration parameters. Protocol configuration parameters are set at design
time, while application-specific requirements, such as network optimization target, are
input from the application model during runtime.

The node model describes the characteristics and capabilities of physical node plat-
forms. The node model is implemented by WISENES framework and it is parameter-
ized in XML configuration files that define node resources, peripherals and transceivers.
WISENES SDL node model implements an OS type interface to applications and com-
munication protocols for resource management and execution control.

4.2 Surveillance WSN Design

In WSN design with WISENES, the initial selection of the communication protocols
and their parameters is made by the designer. It is our belief that hands-on knowledge
and past experiences always result to a sophisticated selection for a starting point.

WISENES Model Design. WSN design in WISENES starts with the definition of
models. The environment model is defined in XML. For the indoor surveillance WSN
case, it specifies a slightly error-prone communication environment, stationary node
locations, typical average values for phenomena, and few target objects with random
mobility patterns. A node model is implemented for TUTWSN PIC node by describing
its physical characteristics in XML configuration files. The main functionality for the
designed WSN is defined in application and communication models.

The application model consists of the three tasks. Their parameters are given in XML
configuration files. Fig. 4a shows configuration parameters for the motion detection
task. The functionality of tasks is implemented as SDL statecharts. WISENES imple-
mentation of the motion detection task is depicted in Fig. 4b. The task is activated by
two events; a motion detection event from a PIR-sensor and a timer event for PIR-sensor
reactivation. A motion detection event triggers a data transmission and the initialization
of a timeout, while a timer event reactivates the PIR-sensor. Timeout is needed to avoid
continuous alerts. The periodical sensing task initiates a temperature measurement on a
timer event, and sends data and initializes the timer after a sensor event. The sink task
stores received data to a database.

The communication model design for TUTWSN consists of five SDL processes.
TUTWSN API is implemented in a single process, while routing and MAC layers are
divided into two separate processes. In routing layer, topology and route management
are implemented in one process, and data handling in another. In MAC, channel access
is implemented separately from TDMA adaptation control. The processes incorporate
totally 48 states, 372 transitions, and 4937 different execution paths.

The communication model configuration is based on the application requirements.
TUTWSN MAC protocol uses 2 s access cycle to balance energy-efficiency, scalability,
and delay-critical operation. The number of ALOHA slots is set to four and reservation
slots to eight. Bandwidth allocation parameters are explored to obtain the most suitable
configuration. Two different cost functions are defined for routing; a delay optimized
for motion alerts and a network lifetime optimized for temperature measurements.

Simulation Results. The performance of the surveillance WSN with the presented
model implementations is evaluated with WISENES simulations. A network of 150

Tool-Aided Design and Implementation of Indoor Surveillance WSN 403

<application_model>
<task id=”MOTION”>
<interval ms=”0”/>
<priority level=”1”/>
<sensors>

<sensor id=”PIR”/>
</sensors>
<data>

<target task=”SINK”/>
<priority level=”1”/>
<reliable set=”yes”/>
<urgent set=”yes”/>
<opt target=”DELAY”/>

</data>
</task>
<task id=”TEMPERATURE”>
...

</task>
</application_model>

(a)

;FPAR
 IN motionNodeId NodeId_t,
 IN motionEvent ApplicationWaitEvent_t,
 IN/OUT motionParameter ApplicationTaskParameter_t,
 IN/OUT motionInfo ApplicationTaskCommonItem_t;

procedure MotionDetectTask

DCL
 motionTime TIME,
 motionData AppDataUnit_t;

motionEvent

motionTime :=
CALL NodeTimer_Now

SenseDataReq(
 MOTION_TASK,
 PH_MOTION)

motionData :=
CALL MotionDetectMakeAlert(
 motionNodeId,
 motionTime)

ApplicationDataReq(
 SINK_TASK,
 MOTION_DETECT_QOS,
 length(motionData),
 motionData)

motionInfo!wait_event :=
 APPLICATION_WAIT_EVENT_SENSOR;
motionInfo!wait_time := 0;

motionInfo!wait_event :=
 APPLICATION_WAIT_EVENT_TIMER;
motionInfo!wait_time :=
 motionTime + D_CAST * PIR_REACTIVE_TIME_S;

APPLICATION_WAIT_EVENT_SENSOR APPLICATION_WAIT_EVENT_TIMER

ELSE

;FPAR
 IN motionNodeId NodeId_t,
 IN motionEvent ApplicationWaitEvent_t,
 IN/OUT motionParameter ApplicationTaskParameter_t,
 IN/OUT motionInfo ApplicationTaskCommonItem_t;

procedure MotionDetectTask

DCL
 motionTime TIME,
 motionData AppDataUnit_t;

motionEvent

motionTime :=
CALL NodeTimer_Now

SenseDataReq(
 MOTION_TASK,
 PH_MOTION)

motionData :=
CALL MotionDetectMakeAlert(
 motionNodeId,
 motionTime)

ApplicationDataReq(
 SINK_TASK,
 MOTION_DETECT_QOS,
 length(motionData),
 motionData)

motionInfo!wait_event :=
 APPLICATION_WAIT_EVENT_SENSOR;
motionInfo!wait_time := 0;

motionInfo!wait_event :=
 APPLICATION_WAIT_EVENT_TIMER;
motionInfo!wait_time :=
 motionTime + D_CAST * PIR_REACTIVE_TIME_S;

APPLICATION_WAIT_EVENT_SENSOR APPLICATION_WAIT_EVENT_TIMER

ELSE

(b)

Fig. 4. Example WISENES application model (a) XML parameters and (b) SDL implementation
for motion detection task

semi-randomly deployed nodes is simulated for a 24-hour period. 50 nodes include a
PIR-sensor and three operate as a sink, while the rest measure temperature and perform
data routing. Different configurations are evaluated by parameterizing bandwidth allo-
cation algorithm. A default reservation slot interval (r) sets the maximum time between
granted reservation slots for a member node. In simulations r is set to 6 and 12 seconds.

Application requirements are verified by monitoring the delay of motion alerts, and
node power consumption. The delay of temperature measurements is considered for
comparison. Fig. 5a shows the average delays of motion alerts and temperature mea-
surements for different r values as the function of number of hops from a sink node (hop
count). As shown, with a same hop count, the alerts experience slightly smaller delay
than the temperature measurements, because of the delay optimized routing of alerts.
Further, in TUTWSN a delay optimized route has typically less hops, which further
improves the performance compared to temperature measurements. The average power
consumptions of 10 randomly selected headnodes are 650 µW and 635 µW, and of 10
subnodes with PIR-sensor 434 µW and 443 µW for r = 6, and r = 12, respectively.

The simulation results of initial communication model configuration are acceptable.
The configuration with r = 6 obtains a slightly better performance and balances net-
working reactiveness and lifetime. Assuming that 90 % of the battery capacity can be
exploited, with 1600 mAh CR123A battery the simulated power consumptions indicate
lifetimes of 276 and 414 days for TUTWSN headnode and subnode, respectively. By
rotating headnode and subnode roles the network can reach a lifetime of a year.

5 WSN Prototype Implementation

After the design is validated by simulations, the prototype implementation is made.
The application tasks and protocols are implemented manually on top of SensorOS [6]

404 M. Kuorilehto et al.

according to the WISENES application and communication models. SensorOS offers
a congruent programming interface with WISENES, which makes a fluent transition
between phases possible.

5.1 SensorOS

SensorOS is a pre-emptive multi-threading OS targeted for time critical WSN appli-
cations and very resource constrained nodes. The scheduling algorithm of SensorOS
is priority-based, but for less time critical applications SensorOS incorporates an op-
tional more lightweight kernel with a polling run-to-completion scheduler. SensorOS
kernel includes Inter-Process Communication (IPC), timing, memory, and power man-
agement services and drivers for interrupt-driven peripherals. Mutexes are included to
the pre-emptive kernel for the synchronization of thread execution. Application tasks
and communication protocols are implemented as threads on top of SensorOS API.

WISENES interfaces are adopted in SensorOS by message-passing IPC and an event
waiting interface. The message-passing allows a similar communication between
threads as SDL signals. The event waiting interface enables the implementation of a
state-based operation similar to WISENES by offering a single function for the wait-
ing of timeouts, external peripheral events, and IPC messages. Further, the power and
memory management in SensorOS are identical to those of WISENES node model.

5.2 Surveillance WSN Implementation on TUTWSN Prototypes

The prototype implementation of the surveillance WSN is realized in a limited scale
with 28 nodes (10 with PIR-sensors) on a realistic deployment environment. The full
version of SensorOS is used in nodes equipped with PIR-sensors to guarantee reac-
tiveness, while the rest of the nodes have a lightweight kernel that allows longer packet
queues. The topology and environment for the prototyped surveillance WSN is depicted
on a TUTWSN UI screen capture in Fig. 6. Arrows in the figure show the latest route.

Prototype Implementation. Application tasks are implemented as SensorOS threads.
Fig. 7 lists the code of the thread implementing the motion detection task. For

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7

D
el

ay
 (

s)

Number of hops

Temp, r=12
Motion, r=12
Temp, r=6
Motion, r=6

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7

D
el

ay
 (

s)

Number of hops

Temperature
Motion

(b)

Fig. 5. Average (a) simulated and (b) measured (with r=6) delays for motion alerts and tempera-
ture measurements

Tool-Aided Design and Implementation of Indoor Surveillance WSN 405

Fig. 6. A screen capture from TUTWSN UI illustrating the prototyped surveillance WSN opera-
tion

readability, the details of PIR-sensor interfacing and data message construction are left
out. Other application tasks are implemented similarly. The TUTWSN protocol stack
is implemented in four threads. API, data routing, and MAC channel access are imple-
mented as separate threads similarly to WISENES communication model design, but
MAC and routing layer management operations are integrated to a same thread in or-
der to diminish IPC messaging. TUTWSN protocols are parameterized with the values
obtained in WISENES design.

The subnode implementation on TUTWSN PIC node with full feature SensorOS
consumes 38.1 KB of code and 2253 B of data memory. These are 60 % and 57 % of
available memory resources, respectively. The data memory consumption does not in-
clude a heap reserved for dynamic memory. The implementation of temperature mea-
surement application and TUTWSN protocols on top of a lightweight SensorOS kernel
takes 58.2 KB code and 2658 B data memory, which are 91 % and 67 % of available
memory, respectively.

Prototype Results. The same performance metrics gathered from WISENES simula-
tions are evaluated also for the prototype implementation in order to verify the accuracy
of WISENES models and to validate the implementation for final deployment. The de-
lays of motion alerts and temperature measurement data as the function of hop count
are depicted in Fig. 5b. In the prototype implementation r is 6 seconds.

The results correspond closely to those obtained from WISENES, average difference
being 8.9 % for motion alerts and 10.2 % for temperature data. The reason for a slightly
better performance obtained in WISENES is less retransmissions due to a bit optimistic

406 M. Kuorilehto et al.

void motion_detect (void) {
os_eventmask_t event;
os_ipc_message_t *msg;

activate_pir ();
while (1) {

event = os_wait_event (EVENT_ALARM | EVENT_PIR_INTERRUPT);
if (event & EVENT_ALARM) {

activate_pir ();
} else if (event & EVENT_PIR_INTERRUPT) {

msg = make_motion_alert_msg (SINK_TASK);
os_msg_send (API_PID, msg);
os_set_alarm (PIR_REACTIVATE_TIMEOUT_MS);

}
}

}

Fig. 7. The implementation of the motion detection application task as a SensorOS thread

environment model used in simulations. The additional loading due to the larger number
of nodes in WISENES simulations is balanced by three sinks.

The averages of measured power consumptions are 693 µW for a headnode and
467 µW for a subnode equipped with a PIR-sensor. For comparison, the measured power
consumption of a subnode running a lightweight kernel without a PIR-sensor in the
same WSN is 257 µW. These are also analogous with WISENES results, average dif-
ference being 6.2 % for headnodes and 7.0 % for subnodes with PIR-sensor.

6 Conclusions

In this paper, we present the design and implementation of an indoor surveillance WSN
with WISENES and SensorOS. The high abstraction level models are first designed in
graphical environment and then implemented on top of a full feature OS on node plat-
forms. By enabling a realistic evaluation of different configurations during the design
phase, the presented tools hasten the WSN development significantly. Further, the con-
gruent programming models make the implementation of applications and protocols on
top of SensorOS straightforward according to the WISENES models. The surveillance
WSN evaluation proves the accuracy of WISENES simulations and shows the suitabil-
ity of TUTWSN and SensorOS for the application implementation.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40(8), 102–114 (2002)

2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: research challenges.
Elsevier Ad Hoc Networks 2(4), 351–367 (2004)

3. Römer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless Com-
munications 11(6), 54–61 (2004)

4. Bonivento, A., Carloni, L.P., Sangiovanni-Vincentelli, A.: Platform based design for wireless
sensor networks. Mobile Networks and Applications 11(4), 469–485 (2006)

Tool-Aided Design and Implementation of Indoor Surveillance WSN 407

5. Kuorilehto, M., Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: High level design and
implementation framework for wireless sensor networks. In: Proc. Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation, Samos, Greece, pp. 384–393 (2005)

6. Kuorilehto, M., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Sensoros: a new operating
system for time critical wsn applications. In: Proc. Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, Samos, Greece (2007)

7. Suhonen, J., Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Design, implementation,
and experiments on outdoor deployment of wireless sensor network for environmental mon-
itoring. In: Proc. Embedded Computer Systems: Architectures, Modeling, and Simulation,
Samos, Greece, pp. 109–121 (2006)

8. Hill, J., Szewczyk, R., Woo, A., et al.: System architecture directions for networked sen-
sors. In: Proc. 9th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, USA, pp. 94–103 (2000)

9. Gay, D., Levis, P., Behren, R.v., Welsh, M., Brewer, E., Culler, D.: The nesc language: A
holistic approach to networked embedded systems. In: Proc. ACM Conference on Program-
ming Language Design and Implementation, San Diego, CA, USA, pp. 1–11 (2003)

10. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation of en-
tire TinyOS applications. In: Proc. 1st ACM Conference on Embedded Networked Sensor
Systems, Los Angeles, CA, USA, pp. 126–137 (2003)

11. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query
processor for sensor networks. In: Proc. ACM International Conference on Management of
Data, San Diego, CA, USA, pp. 491–502 (2003)

12. Baldwin, P., Kohli, S., Lee, E.A., Liu, X., Zhao, Y.: Modeling of sensor nets in ptolemy
II. In: Proc. 3rd International Symposium on Information Processing in Sensor Networks,
Berkeley, CA, USA, pp. 359–368 (2004)

13. Völgyesi, P., Lèdeczi, À.: Component-based development of networked embedded applica-
tions. In: Proc. 28th Euromicro Conference, Dortmund, Germany, pp. 68–73 (2002)

14. Dietterle, D., Ryman, J., Dombrowski, K., Kraemer, R.: Mapping of high-level sdl models
to efficient implementations for tinyos. In: Proc. Euromicro Symposium on Digital System
Design, Rennes, France, pp. 402–406 (2004)

15. Simon, G., Völgyesi, P., Maròti, M., Lèdeczi, À.: Simulation-based optimization of commu-
nication protocols for large-scale wireless sensor networks. In: Proc. 2003 IEEE Aerospace
Conference. vol. 3., Big Sky, MT, USA pp. 1339–1346 (2003)

16. Bakshi, A., Prasanna, V.K.: Algorithm design and synthesis for wireless sensor networks.
In: Proc, International Conference on Parallel Processing, Montreal, Quebec, Canada pp.
423–430 (2004)

17. Shen, C.C., Badr, C., Kordari, K., Bhattacharyya, S.S., Blankenship, G.L., Goldsman, N.: A
rapid prototyping methodology for application-specific sensor networks. In: Proc. IEEE In-
ternational Workshop on Computer Architecture for Machine Perception and Sensing, Mon-
treal, Quebec, Canada (2006)

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 408–420, 2007.
© Springer-Verlag Berlin Heidelberg 2007

System Architecture Modeling of an UWB Receiver for
Wireless Sensor Network

Aubin Lecointre, Daniela Dragomirescu, and Robert Plana

LAAS-CNRS
University of Toulouse
7, Av du Colonel Roche

31077 Toulouse cedex 4, France
{alecoint, daniela, plana}@laas.fr

Abstract. This paper presents a method for system architecture modeling of an
IR-UWB (Impulse Radio Ultra WideBand) receiver for sensors networks
applications. We expose the way for designing an FPGA (Field Programmable
Gate Array) receiver starting from a previous study based on system modeling
on Matlab. The proposed receiver architecture is first designed and validated on
Matlab, before being implemented, thanks to VHDL language, on a FPGA. Our
study shows the interest and the advantages of co-design Matlab-VHDL. We
will propose here different IR-UWB receiver architecture depending on the
modulation used. We will also introduce in this paper a data-rate and TH-code
reconfigurable receiver. Using co-simulation Matlab-VHDL, we have compared
three kind of IR-UWB receiver: TH-PPM, TH-OOK, TH-BPAM, with respect
to BER/SNR criteria and in the specific context of wireless sensors networks, at
high level (Matlab) and hardware level (FPGA-Xilinx).

1 Introduction

We lead our study in the context of wireless sensors networks (WSN). We define
WSN as systems having a very large number of nodes on a small area. WSN is a
WPAN-like concept (Wireless Personal Area Networks). There are a lot of kinds of
applications for this variety of networks; such as: monitoring, military applications,
house automation, civil safety applications, etc … By considering these applications,
we could deduce easily that there are some intrinsic constraints for WSN, which are:
low cost, low power, simplicity and tiny nodes. Indeed, without theses characteristics
none networks could be a viable WSN. Thus all along this paper we keep in mind this
context in order to design and compare in an appropriate way the UWB receivers.

The Federal Communications Commission (FCC) defines a radio system to be an
UWB system if the -10 dB bandwidth of the signal is at least 500 MHz or the
fractional bandwidth is greater than 20% [1].

IR-UWB is a very promising technology for the WSN applications. Let us quote
these advantages: 7,5 GHz of free spectrum which could permit to reach high data
rate, extremely low transmission energy, extremely difficult to intercept, multi-path
immunity, low cost (mostly digital architecture), “Moore’s Law Radio”
(performances, size, data rate, cost follow Moore’s Law), simple CMOS transmitter at

 System Architecture Modeling of an UWB Receiver for Wireless Sensor Network 409

very low power [2]. Among the various families within UWB, we focus on family IR-
UWB, Impulse Radio UWB which is appropriate for our context of application:
wireless sensor network. The principal modulation techniques we will use are: Time
Hopping – Pulse Position Modulation (TH-PPM), Time Hopping – On Off Keying
(TH-OOK), and Time Hopping – Binary Pulse Amplitude Modulation (TH-BPAM).

We will study these three major IR-UWB techniques: TH-PPM, TH-OOK, and
TH-BPAM [1]. For each of them we will propose one or more schemes of receivers.
We will present theirs design and co-simulation using Matlab and ModelSim. Our
goal is to develop and validate, at first, the receiver architecture at a high level using
MATLAB. Then, we would reach the low-level of hardware simulation and
implementation, i.e. the FPGA development.

Finally, we would compare theses different systems, including data rate and TH-
code reconfigurable receiver, according to the BER (Bit Error Rate) versus SNR
(Signal Noise Ratio) criteria and with respect to the WSN constraints.

This paper is organized as follows: Section II presents the principle of TH-OOK,
TH-PPM, and TH-BPAM, as well as theirs high level modeling on Matlab. Section III
describes the design and the implementation of the UWB receiver on the FPGA. We
will compare TH-PPM, TH-OOK, TH-BPAM architectures and performances in
section IV, before conclusion in the section V.

2 High Level Modeling of UWB Transceivers

2.1 Principle of Pulse Modulation for Time Hopping IR-UWB

TH looks like a dynamic TDMA [3]. TH consists of the sharing of the medium in the
frame. Each frame is divided in time slots. TH allows making multi user
communications. The repartition of information depends of the time hopping code
which is associated with each user. Once slots are defined, we could apply the pulse
modulation either PPM or OOK or BPAM.

Fig. 1. IR-UWB Modulation: PPM, OOK, BPAM

For the PPM, bits are differed by a time shift in each time slot selected by the TH
code. Concerning the OOK, we send a pulse in the slot for transmitting a binary one.
The binary zero will correspond to an absence of impulsion. For the BPAM, the

410 A. Lecointre, D. Dragomirescu, and R. Plana

binary one and the binary zero differ by the phase of the pulse. Thus, the binary zero
is represented by the binary one pulse multiplied by minus one (-1 180°) (Fig. 1).

2.2 High Level Modeling on Matlab for TH IR-UWB Emitters

The implementation of these three TH systems on Matlab is based on a high-level
modeling. We have developed a complete link, from emitter to receiver including
channel model. Our Matlab model is parametric, so we can select the kind of IR-
UWB we want to study among TH-PPM, TH-OOK, and TH-BPAM. This choice will
impact both end (emitter and receiver) of the IR-UWB link.

Thanks to the time domain approach of IR-UWB, emitters are very simple. Indeed,
it is enough to implement an UWB pulse generator which is commanded by a binary
signal where binary one and binary zero have a specific meaning according to the IR-
UWB modulation considered. They impose, for example, the amplitude, or the
position of modulated pulse.

At the output of these receivers, the IR-UWB signal is sent over a channel. This
latter could be an AWGN (Additive White Gaussian Noise) channel or the IEEE
802.15.4a UWB channel [4], [5]. Receivers follow the channel. There are different
receivers in function of the IR-UWB technique employed.

2.3 High Level Modeling on Matlab for TH IR-UWB Receivers

For TH-OOK, we propose a non-coherent receiver described in figure 2 [6]. This non
coherent architecture is composed of four blocks: a filter on the considered band, a
square bloc, an integrator bloc, and a decision bloc. Its principle is energy detection.
The received signal is squared before being integrate. Consequently there is no need
of synchronization mechanism; this confers the simplicity advantage at this
architecture [6]. That’s why this receiver is less expensive, simpler, less greedy in
power consumption, and it has smaller overall dimensions than the TH-PPM receiver.

Fig. 2. Non coherent OOK receiver

As described on figure 3, the TH-PPM coherent receiver is based on the
correlation, with a template waveform, principle. The receiver generates a pulse
whose form must be as far as possible like the received pulse. This should allow
reaching better performances. The nearer the template waveform looks like the
received pulse, the better the performances are. Once the template is generated, the
correlation between the template and the received pulse is carried out. The concept is
to compare the received pulse with the expected pulse corresponding to a “one” or a
“zero”. The higher the resemblance with a “one” template is, the probability that the
received pulse is a one logic, is more important. At the output of the two correlation

 System Architecture Modeling of an UWB Receiver for Wireless Sensor Network 411

blocs (one and zero logic), it is enough to place a comparator with two inputs to
distinguish, according to the amplitude, one logic from zero logic.

A synchronization bloc is also necessary, in order to provide a synchronous
correlation between the received pulse and the template waveform. This function is
carried out by a matched filter defined on a known (emitter and receiver side)
sequence of pulse [7]. This sequence has a good autocorrelation property. This filter
generates a peak in the presence of a synchronization trailer at its input. Thus, we
detect the peak, thanks to a comparator, and we have the time arrival of the pulse. As
the result we are able to synchronize the receiver. This synchronization is difficult,
because of the pulse duration (< 1 ns) and should be the most precise possible,
otherwise the correlation output will be always at zero, and so the received bit will be
also always at zero.

Fig. 3. TH-PPM coherent receiver and TH-BPAM coherent receiver

Figure 3 and 4 illustrate the TH-BPAM receiver. Its concept is very similar to the
TH-PPM receiver. Indeed, the correlation principle is employed in order to determine
the state of received data. As correlation is used, synchronization mechanism is also
required.

For TH-BPAM receiver, we propose to use only one correlation with template,
instead of two correlation proposed in TH-PPM receiver [1]. Since the BPAM pulse
representing the binary one is the inverse of the pulse for the binary zero, if we use
only one correlation block, we will have at its output, either a positive squared
impulse or a negative squared impulse. This simplifies the decision, because at the
output of the correlation block binary one and binary zero could be distinguished by
the polarity of the signal.

Compare to TH-PPM and TH-OOK architecture, this one seems to be an
intermediate solution. Indeed, thanks to the use of only one correlation block, a
simpler decision, this receiver is simpler, cheaper, smaller and have a lower energy
consummation than TH-PPM receiver. Nevertheless, the TH-OOK receiver remains

A
W

G
N

C
hannel

Template generator for
« 1 » logic

Correlation

001010

Template generator for
« 0 » logic

Correlation

Received signal

D
E

C
IS

IO
N

Synchronization
Filter

TH-PPM

A
W

G
N

C
hannel

Template generator for
« 1 » logic

Correlation
 Received signal

001010

D
E

C
ISIO

N

Synchronization
Filter

TH-BPAM

412 A. Lecointre, D. Dragomirescu, and R. Plana

the reference concerning the principal WSN constraints (cf. table 1). We will decide,
in the next part, between these receivers, according the BER versus SNR criteria.

2.4 Comparative Analysis

Table 1 summarizes the behavior of each IR-UWB proposition in the WSN context.

Table 1. Comparative analysis of IR-UWB architectures

Classification WSN Constraints

IR-UWB for WSN Power Cost Simplicity Size BER vs SNR

TH-PPM 3 3 2 3 1
TH-BPAM 2 2 2 2 2
TH-OOK 1 1 1 1 3

We could note that size, cost, and power constraint seems to be linked. This is
logic, since the increase in components number will increase the cost and the energy
needs.

So, we have three possibilities: TH-PPM, TH-BPAM, TH-OOK in order to answer
WSN context. The most adequate, without taking into account the BER performances,
is TH-OOK, followed by TH-BPAM, and then TH-PPM.

The final decision should be taken considering, the BER versus SNR criteria.
There is a compromise between respect of the WSN constraints and BER
performances.

In order to use the BER versus SNR criteria, we have used an AWGN channel
model in our Matlab modeling. The figure 6 shows this BER comparison [8].

This curve illustrates the classification of the last column of the table 1. We could
observe that the TH-PPM propose better performances, a gain of about 6 dB, than the
TH-BPAM and 8 dB than TH-OOK. This allows us to notice that there is a trade-off
between BER performances and WSN constraints criteria.

Figure 4 proves also that IR-UWB techniques offer better performances than
continuous wave (CW) modulation (FSK, PSK QAM). Indeed, figure 6 permits us to
quantify the gain when we use IR-UWB systems instead of CW techniques; its value
is about 40 dB.

Fig. 4. IR-UWB versus continuous wave, according to BER/SNR criteria, on AWGN channel

 System Architecture Modeling of an UWB Receiver for Wireless Sensor Network 413

In order to conclude, we can say that our high level modeling with Matlab shows:

− on one hand that IR-UWB is very interesting in the WSN context, because of its
adaptability to the four WSN constraints and its better BER performance than
classical CW techniques.

− on the other, our Matlab modeling validates the different architectures in terms of
viability for WSN.

As a result, after this essential phase, we could begin the FPGA implementation and
simulation, i.e. the hardware-level study.

3 FPGA Design of an UWB Receiver

3.1 The Low-Level Modeling Context

For implementing an IR-UWB receiver we have decided to use Xilinx Spartan III
FPGA, because it is a cheaper and a optimized signal processing solution. We have
chosen Xilinx software solution for designing and simulating our receiver.
Nevertheless, since we won’t set up the emitter on the FPGA, we will use Matlab in
order to emulate the comportment of the channel and of the emitter. Moreover we use
also the platform to simulate the MAC (Medium Access Control) layer, that is to say
the layer which is responsible for piloting the receiver at the PHY (PHYsical) level.
Before exposing our low level developing platform, note that we don’t consider the
RF stage at hardware level. The RF stage, as well as the channel, will be simulated by
MATLAB. Thus, as we can see on the figure 7, each element is designed in baseband,
behind the ADC for the receiver.

Figure 5 shows the collaboration work between the computer and the FPGA. The
computer allow us to develop and program the FPGA, then it is used for emitter plus
channel emulation, and finally, it permit to estimate the BER, thanks to received data
which come from the FPGA.

Fig. 5. Co-simulation and co-performances analysis Matlab Xilinx Platform

IR-UWB baseband received signal

MATLAB

Xilinx Software
VHDL Development

And Simulation Co-design Matlab Xilinx platform

Channel
IR-UWB
emitter ADC

BER versus SNR
calculation

MATLAB
Data received

FPGA programming

414 A. Lecointre, D. Dragomirescu, and R. Plana

3.2 FPGA Implementation with VHDL

VHDL (Very-high-speed integrated circuit Hardware Description Language) is the
design programming language we use for digital circuits. We designed our three
receivers (TH-OOK, TH-PPM, TH-BPAM) in VHDL according to a modular
concept. We designed each of the elementary blocs in charge of elementary receiver
function such as multiplication, TH-discrimination, TH code management, decision…

Using this kind of modular design, we can propose easily different versions of each
kind of receiver. For each IR-UWB receiver, i.e. TH-PPM, TH-OOK, TH-BPAM, we
have created different solutions in order to answer to the four WSN constraints at
different levels. For example, one version could be greedier in energy consumption
but in return it should have, for example, better BER performance or an additional
function. As the opposite, we could imagine some light versions, which could have as
goals to offer correct BER performance but especially optimize the four other
constraints: power, size, cost, simplicity. Thus we have distinct receiver versions
more or less complex, more or less performing, more or less greedy in energy, etc …

Our panel of receivers is configurable according to four main parameters:

− number of bits used for representing IR-UWB signal,
− number of TH logic channel implemented,
− the presence or not of the localization module,
− the fact that receiver properties are static, or reconfigurable.

Note that we will discuss in the next section (§ 3.3) on the concept of static and
reconfigurable properties.

3.2.1 TH-OOK Receivers
We have seen in the section II that TH-OOK is the low power, low cost, smallest, and
simplest solution among TH-PPM and TH-BPAM. Thus, it seems to be logic to
propose an optimized TH-OOK receiver. That’s why we have implement on our
FPGA a simple solution, whose characteristic are: mono channel reception, absence
of localization mechanism, static properties, and 64 bits processing. Let us call this
version TH-OOK-v1.

TH-OOK-v2 consists of practically TH-OOK-v1 except that this second version
work on 32 bits. Figure 6 exposes the architecture of TH-OOK-v1 and TH-OOK-v2.
We can consider that TH-OOK-v2 is an optimized receiver for ultra low cost, ultra
low power, ultra small and ultra simple WSN applications.

Fig. 6. FPGA implementation of TH-OOK receiver

Let us benefit from this illustration (figure 6) to explain the concept of TH-
discrimination. Previously, we have introduced the TH concept, by recalling that the
channel was divided in frame and time slot. One TH-code is allotted per user or per

0|1|0

TH-Code
001|001|010|

ENERGY DETECTION
 Received

signal

DECISION TH-DISCRIMINATION

32 / 64 bits

AWGN Channel

TH-OOK- v1 & v2

 System Architecture Modeling of an UWB Receiver for Wireless Sensor Network 415

communication. TH-code defines which time slot will be used by the user or the
associated communication. As a result, TH-discrimination consists in extracting the
information corresponding to the considerate TH-code among the multi TH-code
signal. So, we need a TH-code for the discrimination.

Thanks to this TH-discrimination notion, we could apprehend the mono channel or
double channel receiver. Some WSN need an information data channel and a control
data channel, or also, multi-user channel. Thus WSN receivers must be able to deal
with several “channels”. This implies they must be able to extract several TH-
channels from a multi-channel flow; so TH discrimination bloc should have as many
TH-code entries as there are channels to receive.

3.2.2 TH-BPAM Receivers
TH-BPAM receiver versions, TH-BPAM-v1 and TH-BPAM-v2, are represented on
figure 7. These two versions allow us to analyze the importance of the blocs’ position.

Fig. 7. FPGA implementation of TH-BPAM-v1 and TH-BPAM-v2 receiver

Indeed, we have changed the position of the TH-discrimination bloc in the second
version in comparison with the first one. Note that we could easily invert the blocs’
positions, thanks to the modularity conception principle. These TH-BPAM receivers,
based on the simple correlation concept, are mono channel, static, and work with 32
bits. They don’t implement distance estimation and localization.

3.2.3 TH-PPM Receivers
We have implemented the distance estimation in one of the TH-PPM FPGA receiver
versions. Theirs architectures follow the figure 5, i.e. the Matlab TH-PPM double
correlation coherent receiver. We will use four versions:

− TH-PPM-v1: mono channel, static properties, 32 bits, without distance estimation.
− TH-PPM-v2: mono channel, static properties, 32 bits, with distance estimation.
− TH-PPM-v3: mono channel, reconfigurable, 64 bits, without distance estimation.
− TH-PPM-v4: double channel, reconfigurable, 64 bits, without distance estimation.

We have chosen these four versions in order to be able to examine the impact of:
size of sample, reconfigurability, distance estimation, and multi channel aspect, on the
IR-UWB receiver according to the WSN constraints.

Fig. 8 presents the TH-PPM-v2 receiver architecture with localization mechanism.
Some WSN applications want to be able to geo-localize each node reciprocally to

optimize the network routing. To estimate the position of the emitter, the receiver

0100

Received signal

TH-Code

A
W

G
N

 C
hannel

SIMPLE
CORRELATION

DECISION

TH-DISCRIMINATION

TH-BPAM- v2

Correlation Template
Management

0100

TH-Code

001010A
W

G
N

 C
hannel

SIMPLE
CORRELATION

Received signal
DECISION

TH-BPAM-v1

Correlation Template
Management

TH-DISCRIMINATION

416 A. Lecointre, D. Dragomirescu, and R. Plana

Fig. 8. FPGA implementation of TH-PPM-v2 receiver with distance estimation mechanism

must be able to evaluate the time of arrival of the received pulse. Using this
information, the receiver could determine the distance separating the emitter from the
receiver, since the celerity of the pulse over the air is known. For obtaining this arrival
time, we use at the entrance of the receiver, a matched filter (figure 10). Its output is
maximal when we are at the time arrival of the pulse [9]. Thus we have just to add a
threshold comparator to detect this maximum, for determining the arrival time and
consequently the distance.

As the opposite of TH-OOK-v2 receiver, we can say that TH-PPM-v4 is a suitable
receiver for the most of WSN applications while offering good BER/SNR
performances. Nevertheless it couldn’t be considered as a WSN constraints full
optimized receiver.

Further, we will establish low level BER/SNR performances in order to confirm
the high level modeling results obtained with Matlab.

By proposing different versions of our IR-UWB receivers, we would like to expose
our two reflexion way as response for WSN problematic:

− either we create an optimized radio interface for each main category of WSN;
− or we will direct ourselves toward a kind of absolute solution, whose the goal

would be to adapt to any WSN applications needs.

This second way is the most innovative way, and it proposes the implementation of
reconfigurablity concept inspired from software-defined radio [10].

3.3 Data Rate and Time Hopping Code Reconfigurable Receiver

In this part, we will present the reconfigurable aspect of our system. We consider two
type of properties receiver reconfigurability

− Static properties: absence of reconfigurability. Receiver characteristics values, such
as the TH-frame duration, number of time slots per TH-frame, TH-code, TH-time
slot duration, etc … are registered in hard in the VHDL code. Thus for adapting
our reception system, we modify the code, and re-download it in the FPGA.

− Reconfigurable properties: it is the most accomplished of our receiver according to
the radio reconfigurability concept. Receiver characteristics values are modifiable
without re-program the FPGA. We implement that in TH-PPM-v3 and v4 receivers
by means of MAC-layer entries. This kind of reconfigurable receiver has many
applications in self-organizing WSN where the data rate can be very variable.

Modifying the Time Hopping properties, (number of slot per frame, frame
duration, time slot duration), leads to data rate change. Since the data rate, on the
whole Time Hopping link (considering all the possible TH-code), depend on the

TH-PPM Receiver

Data: 001010 Distance Estimation Bloc

Matched Filter Threshold
Comparator

AWGN Channel
Distance Information

 System Architecture Modeling of an UWB Receiver for Wireless Sensor Network 417

frame duration (Tf), the time slot duration (Tc), and the number of time slot per frame
(Nc).

Dtotal(bits/s) = Nc / Tf = Nc / (Nc x Tc) = 1 / Tc . (1)

The TH-PPM-v4, mentioned previously, is a data rate reconfigurable receiver.
During a transmission between two nodes of a WSN, one of them decides to

change its data rate; the second is able to modify also its data rate, in order to continue
the communication. This possibility of data rate modification is an advantage in the
concurrent context of channel access in WSN. We will note that it is upper layer
protocol, such as MAC layer and applications layers, which are responsible for
selecting the best moment to commute the data rate.

Furthermore, in our reconfigurable receiver, we have also implement TH-code
reconfiguration. It consists of being able to change the TH-code reception during the
communication and consequently the received channel.

In order to set up this reconfiguration concept, we have implanted the
reconfigurable parameters as MAC layer entries (fig. 9). The MAC layer emulated by
the computer thanks to Matlab, or Xilinx software, is in charge of:

− sending the configurable parameters to the FPGA
− start the reconfiguration by sending a signal, called “reconfiguration signal”.

As MAC layer is an intelligent organ we could make the supposition that it sends
the “reconfigurable signal” only after correctly place reconfigurable parameters at
entries.

Fig. 9. PHY and MAC Layer interface

Our radio reconfigurability design has some limitations. Indeed, as we use VHDL
entity entries for reconfigurability, we undergo theirs limitations. In our example, we
choose 8 bits to implement each reconfigurable parameter. It implies that we couldn’t
reach any kind of data rate in the reconfiguration (without re-programmed the FPGA).
Nevertheless, this is true only if we don’t take into account the RF limitations (due to
RF circuits). In fact, it is this one, which will limit the data rate. Consequently, the
VHDL entries limitations sizes (when FPGA is programmed) is not a limit but rather
a dimensioning preoccupation. Since, once the FPGA is programmed we would be
limited by the defined maximum value of your distinct entries. This dimensioning is

R
econfiguration Signal

M
A

C

FPGA Receiver

U
pper L

ayers

Computer with Matlab, Xilinx ISE, Xilinx
Modelsim

PH
Y

T
f

N
c

T
c

T
H

-C
ode

Layer to Layer Communication

418 A. Lecointre, D. Dragomirescu, and R. Plana

important because the number of bits allocated impact the size and consumption of
the receiver, which are two important constraints in our WSN context.

In the following part, we will make a comparative analysis of our receivers; we
will demonstrate the relation between the number of bits used and the size of the
receiver.

3.4 FPGA Receiver Performance

In this part, we will compare eight versions of IR-UWB receiver according to the
BER versus SNR criteria, and the four WSN constraints: energy consumption, size,
cost, and simplicity. Besides, this comparative analysis should highlight the impact of
change in VHDL implementation: number of bits for processing, limit size (in bits)
for the VHDL variable, presence/absence of distance estimation or radio
reconfigurability, and the number of received channel.

Table 2. Receivers’ Characteristics and receivers’ comparison

Table 2 summarizes the receivers’ properties and exposes the architecture receiver
comparison according to the WSN constraints and the BER/SNR performances.

In table 2 we expose size and maximum frequency criteria; thanks to them we are
able to obtain the four WSN constraints (cost, simplicity, size, energy). Indeed, these
four WSN constraints are linked to the size and the maximum frequency of the FPGA
circuit. Small circuits mean low cost and low power consumption circuits. The low
power property depends also by the maximal frequency. Thus with size and frequency
criteria and BER criteria, we could make an interesting classification of receivers.

The “size” column gives us a classification between diverse systems. We will note
that TH-OOK-v2, TH-BPAM-v1, TH-BPAM-v2, and TH-PPM-v1 are the smallest
receivers. Their common point is the simplicity of theirs architecture and the fact that
they use 32 bits for the samples coding. Whereas most of 64 bits architectures TH-
PPM-v3 and TH-PPM-v4 are the most cumbersome receiver, in addition with TH-
PPM-v2, which implements distance estimation mechanism. In order to conclude, size
is function of the complexity (presence of distance estimation, number of channel,
double/simple correlation) and the size sample (32/64 bits) of the architecture.

Concerning the maximum frequency criteria, we could notice the classification is
approximately the same as for the size criteria. The smaller the architecture is, the
faster is. Indeed TH-OOK-v2, TH-BPAM-v1, TH-BPAM-v2, and TH-PPM, which
are the smallest architectures, are also the faster receivers (frequency of the clock),
while, TH-PPM version 2, 3 and 4, are the bigger and the slower architectures. Thus
we could say that use 64 bits sample and set up distance estimation block imply an
increase of the receiver size and a decrease of the maximum frequency acceptable.

 System Architecture Modeling of an UWB Receiver for Wireless Sensor Network 419

We point out your attention on the fact that, in Time Hopping IR-UWB
architecture, the maximum data rate depends on the maximum frequency. We have
demonstrated (1) that data rate is function of the frame duration (Tf) and the time slot
duration (Tc). Consequently, since Tf and Tc are expressed in clock period, data rate
depends on the maximum frequency. The higher the max frequency is, the higher the
data rate is.

The last column of the table 2, summarizes the BER/SNR performance, by
proposing a classification according the BER criteria. We obtained thanks to this low
level design and simulation the same BER results that with high level Matlab
simulation, i.e. TH-PPM proposed a better BER than TH-BPAM, which is better than
TH-OOK.

Now study the impact of the size sample, the number of channel, the distance
estimation, the reconfigurable capability, and the block positioning.

TH-BPAM-v1 and TH-BPAM-v2 allow us to analyze the impact of the block
position. Indeed, in the TH-BPAM version, only the TH-discrimination block position
change. By comparing the capacities of these two architectures, we could note that
they are identical, thus blocks position don’t impact the receiver properties.

Concerning the size sample, thanks to TH-OOK-v1 and TH-OOK-v2, you could
demonstrate that a change in size sample imply a size increase and a clock speed
(consequently data rate) decrease.

TH-PPM version 3 and 4, show that the increase of the channel number on the
receiver leads to a decrease of the maximum frequency and an increase of the size.
We could obtain the same conclusion, thanks to TH-PPM-v1, TH-PPM-v2 and TH-
PPM-v3, relevant to the impact of the reconfigurability and distance estimation
implementation. Nevertheless, distance estimation impact in a higher way the
maximum frequency than the implementation of the reconfigurability or the rise of
the number of channel.

In conclusion, the addition of advanced functionality, such as distance estimation,
double correlation, multi channel capability leads to size increase and consequently
cost and power consumption increase.

This analysis comparative have permitted to deduce some interesting choice in
design to optimize the receiver in the WSN context.

4 Conclusion

High level and low level modeling, co-design and co-simulation of IR-UWB receiver
are presented in this paper. Using Matlab and VHDL software, we could validated,
compared, classified distinct receiver architecture in the WSN networks. First, we
present TH-PPM, TH-OOK, TH-BPAM IR-UWB concept. Second, we have
compared them with respect to the BER versus SNR criteria and WSN constraints at
low and high level each time. In particular, our study proves that TH-PPM offers
better BER performance than TH-BPAM and TH-OOK systems.

The paper exposes also the impact of the design architecture choice on the respect
of the WSN constraints. We introduced the two design way: optimized radio interface
versus reconfigurable radio interface. Among our different receiver architecture

420 A. Lecointre, D. Dragomirescu, and R. Plana

propositions, we have developed data rate reconfigurable, TH-code reconfigurable
and distance estimation capabilities receiver. Each receiver is implemented on FPGA.

The co-design Matlab - VHDL software carried out here, allowed us to propose an
software-defined radio PHYsical layer. We have developed here a platform for
simulation and modeling (before FPGA implantation) at two levels: system level (our
IR-UWB Matlab Model) and PHYsical level. We have shared the work between
Matlab and VHDL simulator in order to design and emulate the distinct layers
(application layer, MAC layer and PHY layer). This platform allows the system co-
design, co-simulation and co-performances analysis.

References

1. Opperman, I., et al.: UWB theory and applications. Wiley, Chichester (2004)
2. Morche, D., et al.: Vue d’ensemble des architecture RF pour l’UWB, LETI, UWB Summer

School, Valence, France à l’ESISAR (October 2006)
3. Win, M.Z., et al.: Impulse radio: how it works. IEEE Communications Letters (1998)
4. Saleh, A., Valenzuela, R.: A statistical model for indoor multipath propagation. IEEE

Journal on selected areas in communications (1987)
5. Molisch, A., et al.: IEEE 802.15.4a channel model – final report, IEEE 802.15.4a.
6. Aubert, L.M.: Ph.D. dissertation: Mise en place d’une couche physique pour les futurs

systèmes de radiocommunications hauts débits UWB, INSA Rennes, France (2005)
7. Di Benedetto, M.G.: (UWB)2: Uncoordinated, Wireless, Baseborn Medium Access for

UWB Communication Networks. Mobile Networks and Applications 10 (2005
8. Lecointre, A.: IR-UWB Receiver Architectures Performances on AWGN Channel for

Sensor Network Applications, Master dissertation, University of Toulouse (September
2006)

9. Gezici, S., et al.: Localization via UWB radios. IEEE Signal Processing (2005)
10. Mitola III, J.: Software radio architecture. Wiley, Chichester (2000)

An Embedded Platform with Duty-Cycled Radio and
Processing Subsystems for Wireless Sensor Networks

Zhong-Yi Jin1, Curt Schurgers2, and Rajesh Gupta3

1 UCSD Dept. of Computer Science & Eng
zhjin@cs.ucsd.edu

2 UCSD Dept. of Electrical & Computer Eng
curts@ece.ucsd.edu

3 UCSD Dept. of Computer Science & Eng
rgupta@cs.ucsd.edu

Abstract. Wireless sensor nodes are increasingly being tasked with computation
and communication intensive functions while still subject to constraints related
to energy availability. On these embedded platforms, once all low power design
techniques have been explored, duty-cycling the various subsystems remains the
primary option to meet the energy and power constraints. This requires the ability
to provide spurts of high MIPS and high bandwidth connections. However, due to
the large overheads associated with duty-cycling the computation and communi-
cation subsystems, existing high performance sensor platforms are not efficient in
supporting such an option. In this paper, we present the design and optimizations
taken in a wireless gateway node (WGN) that bridges data from wireless sensor
networks to Wi-Fi networks in an on-demand basis. We discuss our strategies to
reduce duty-cycling related costs by partitioning the system and by reducing the
amount of time required to activate or deactivate the high-powered components.
We compare the design choices and performance parameters with those made in
the Intel Stargate platform to show the effectiveness of duty-cycling on our plat-
form. We have built a working prototype, and the experimental results with two
different power management schemes show significant reductions in latency and
average power consumption compared to the Stargate.

1 Introduction

A wireless sensor network (WSN) consists of a collection of wireless sensor nodes
which are small embedded devices with on-board sensors and wireless radios. Without
wires, sensor nodes either rely on limited energy supply from batteries or harvested
energy from intermittent sources like solar or wind. To ensure long lifetimes demanded
by the application and deployment scenarios, the sensor nodes have to be very energy
efficient. Popular sensor nodes such as the Berkeley Mote [1] address this issue using
low power hardware as well as aggressive power management techniques. However,
their design choices also make these nodes useful only to applications requiring limited
processing power, short communication range and low network bandwidth.

A common WSN architectural solution to these constraints is to deploy within the
sensor network a small number of high performance nodes equipped with high pow-
ered components like fast processors or high bandwidth radios. As high performance

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 421–430, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

422 Z. Jin, C. Schurgers, and R. Gupta

sensor nodes are usually placed in the same environment as regular sensor nodes, they
also rely on limited energy sources. Therefore, energy-efficiency is critical for the high
performance nodes to last as long as the rest of the sensor nodes.

There are two observations that we can explore to improve the energy-efficiency of
high performance nodes. Firstly, as a general fact, using components with high peak
power consumption doesn’t necessarily imply high energy consumption. Studies have
shown that when a sufficient amount of data need to be processed or transmitted, high
performance processors or radios that consume more power than their sensor node
counterparts may complete the same amount of work faster and therefore end up using
less energy [2,3]. Secondly, in the specific case of sensor networks, those high pow-
ered components are not required to be active all the time as sensor networks usually
do not generate large amounts of data until certain triggering events are detected. In
other words, the node or its components needs to be active only a fraction of the time
to achieve application goals. Therefore, duty-cycling based power management tech-
niques such as selectively enabling or disabling components are important in reducing
energy consumption for high performance nodes.

A platform needs to meet two requirements to support efficient duty-cycling. One
is that it needs to consume very little (or no) power when there are no ongoing activi-
ties. While general purpose high performance nodes such as the Stargate [4] provide a
good balance of performance and power consumption, they are not designed to support
efficient power management via duty-cycling. For example, the lowest power consump-
tion of a Stargate is 16.2mW in its inactive suspended state [5]. In contrast, a typical
sensor node such as the Telos Mote uses only about 10µW in a similar state [6]. This
high standby power consumption significantly limits the effectiveness of duty cycling,
making the Stargate less energy efficient for very low duty cycle sensor network ap-
plications such as environmental monitoring. The other requirement is that a platform
needs to be able to activate or deactivate various subsystems with very little overheads
according to runtime demands. Existing high performance nodes built around 32-bit
embedded processors and embedded versions of traditional desktop Operating Systems
(OS), both old [4] and new [7,3], generally take a long time to transit in and out of the
suspend or power off states, bringing significant energy and performance overheads to
duty-cycling [5,7,3].

In this paper, we describe the design, implementation and evaluation of a wireless
gateway node (WGN) that enables efficient power management through duty-cycling.
Gateway nodes are often intrinsic parts of sensor networks and are required to bridge
data between sensor networks and servers/devices in other networks. Without gateway
nodes, data collected by a sensor network are only local to that sensor network and
therefore no remote monitoring or interactions can be achieved. The low and bursty
traffic load of sensor networks makes the WGN an ideal application of our low power
design.

Specifically, we focus on using Wi-Fi (802.11b) radios to interface sensor nodes
with devices in other networks because Wi-Fi radios offer higher bandwidth and con-
sume less energy per bit than most existing sensor node radios [8], making them a
useful air interface for many sensor network applications. Although our focus is on the
gateway nodes, the basic design and techniques can also be applied to any other high

An Embedded Platform with Duty-Cycled Radio and Processing Subsystems 423

performance nodes or used in the context of wakeup radios [9] or any other multiple ra-
dio hierarchies [10] to reduce switching overheads with respect to energy and latencies.

2 Related Work

To energy efficient design, the importance of separating real-time monitoring functions
that have to be optimized for low power from functions invoked with light duty-cycles
is first unveiled in the development of the WINS nodes [11]. The WINS node enables
continuous sensing over an extend period of time by partitioning the system into a low
powered event-detection subsystem and a high powered processing subsystem which
can be enabled or disabled on demand.

Our work is directly comparable to the emerging Micro-servers that are being ex-
plored to solve a large body of sensor network research problems [12,7]. Triage [7]
extends the lifetimes of their Micro-servers by trading latency for power reduction. Its
tiered architecture consists of a slightly modified Stargate computer and a MicaZ mote,
which is used to power on the Stargate only when sufficient amount of data are be-
ing batched for processing. Due to the large latency in powering on/off the Stargate,
their platform is not usable for our gateway application in terms of delay and power
consumption. The LEAP platform [3] faces similar issues as stated in their future work
section. The PASTA platform [13] also uses an Intel PXA255 processor. Since their
demonstrated mode of operation is to keep the processor module in sleep state (7.3mW)
during periods of inactivity to save power, no experiments and latency numbers are re-
ported for activating this module from power-off state.

3 Design Approach

Fig. 1 shows a high-level block diagram of our design. To minimize standby energy
consumption, we exploit the low power operation of a sensor node processor and use
it for subsystem scheduling and power management. A second, more powerful applica-
tion processor is used to provide on demand processing capabilities to subcomponents
such as the Wi-Fi radio, which are physically connected to the application processor.
Power to each individual subcomponent is either controlled directly by the sensor node
processor or indirectly by the application processor through the sensor node processor.

Power

Wi-Fi Radio

Serial
Interface

Other Devices

Application
Processor

Wireless
Sensor
Node

S
up

po
rt

ed
 in

te
rf

ac
e

Fig. 1. WGN Block Diagram

Prism 3.0 802.11b Radio

IP2022

DPAC

PIC18F452 SPI

External Memory Interface

Prism 802.11b Radio

IP2022
(Sensor Node

Processor)

SPI

External Memory Interface

Power

(Application
Processor)

Fig. 2. WGN Architecture

424 Z. Jin, C. Schurgers, and R. Gupta

We use a serial interface for inter-processor communication because it is supported in
various forms by most of the existing sensor node processors.

Unlike the PASTA platform [13] where multiple microcontrollers are used to regulate
power to the modules, we have the sensor node processor acting as the “master” device
for power management. Our approach simplifies the design while also taking advantage
of the fact that the sensor node processor is almost always on for sensing or networking
purposes. This enhances the efficiency of running the power management itself. Besides
supporting the low-power sleep mode as described in the PASTA paper, we also want to
be able put the application processor in and out of power-off mode without introducing
significant energy and latency overheads.

In contrast to the low-power sleep mode where a certain amount of power is still
consumed by the application processor running in power saving modes, a processor
uses no power at all while in power-off mode. However, it generally takes less time
to resume a program from low-power mode when the program is either suspended or
running at a slower speed than to reload the entire program by powering the application
processor back on from power-off mode. While it is clear that having minimal standby
power consumption would extend the operation time, some real time applications also
have time constraints, as they need to complete certain tasks within a fixed amount of
time. Instead of making the power and latency trade off at design time, the sensor node
processor needs to be able to put the application processor into either low-power mode
or power-off mode at runtime based on application requirements.

To reduce the energy and latency overheads in activating the application processor
from power-off mode, we found it is critical to minimize both hardware and software
startup time. On the hardware side, commercial microcontrollers for embedded devices
are usually designed to support fast startup. On the software side, it is important to
minimize the amount of the code that needs to be loaded and executed every time during
boot up. This include both OS and application specific code.

For our specific WGN application, we use the power saving mode of the 802.11b
protocol [14] to lower the latencies in switching the Wi-Fi radio in and out of low-
power mode. We develop techniques to take advantage of certain features of the power
saving mode of the 802.11b protocol [14] to further reduce communication and syn-
chronization overheads in terms of energy and latency.

4 Platform Implementation

The hardware architecture of our WGN is illustrated in Fig. 2. As explained in the intro-
duction, our main contributions are on the level of the architectural design approach (see
also section 3). To illustrate these ideas and perform experiments, we have to make spe-
cific design choices for our test bed platform. Our approach, however, is not restricted
to these specific choices alone.

We use the Ubicom IP2022 processor [15] as our application processor. With a
maximum clock speed of 120MHz (approximately 120MIPS), this 8-bit processor is
less powerful than the 400MHz (480MIPS, Dhrystone 2.1) PXA255 on the Stargate.
However, it is significantly faster than the microcontrollers on most existing sensor
nodes and provides sufficient processing capability to our gateway application. With its

An Embedded Platform with Duty-Cycled Radio and Processing Subsystems 425

integrated flash memory and RAM, this processor doesn’t need complex external hard-
ware support and thus doesn’t incur extra energy and latency overheads. We also find
the IP2022 a convenient choice as it is used in the DPAC module [16] with a Wi-Fi
radio.

Because of a clear separation of the master (sensor node processor) and the rest of the
system on our platform, we can select any existing sensor nodes such as the Berkeley
Mote [1] for our power management purposes. Our design only requires that the sensor
node processor and the application processor can communicate and wake each other up
as necessary. This is easier to implement than those that require external logics or chip-
set supports as in PC platforms. Commonly used serial interfaces such as the UART,
I2C or SPI are sufficient to meet these requirements. We select the SPI as it supports
duplex data transfers at a rate of more than 11Mbps, sufficient to sustain the throughput
of the Wi-Fi radios.

For evaluation purposes, we use for power management a home grown sensor node
equipped with a PIC18F452 microcontroller that consumes about 8mW (3.3V) in full
power mode (10MIPS). The hardware SPI on the PIC is still available. The power to
the DPAC module is managed by the PIC through a MOSFET switch. Alternatively, we
can use an I2C power switch to control additional components. We use Ubicom IPOS,
a lightweight OS for the IP2022. The IPOS provides the very basic OS functions and
gets compiled with the target application. Our entire gateway application is about 60
Kbytes in uncompressed form.

5 Power Management Schemes

We experiment with two different power management schemes for our gateway ap-
plication to evaluate the platform as well as to understand the power versus latency
tradeoffs. We refer to these two schemes broadly as power-gating and power-saving
modes. In the former, the emphasis is on subsystem shutdown for both communica-
tion and processing, while the latter seeks to exploit various slowdown modes. In the
following subsections, we describe the design choices behind the two schemes.

5.1 Power-Gating Scheme

Our power-gating scheme saves power by putting the system into power-gating mode
according to online demands. While in the power-gating mode, the Wi-Fi radio and
the application processor are powered off and no packets can be sent or received. A
successful use of the power-gating scheme requires participating gateway nodes and
devices in other networks to coordinate their active periods while minimizing the total
amount of energy required for such synchronizations [17]. We measure the overheads
of such protocols when used with our WGN. The overheads are quantified either as time
in seconds or energy in Joules calculated by integrating power over time.

5.2 Power-Saving Scheme

Our power-saving scheme reduces power consumption by putting the radio in the
802.11b power saving mode [14] while keeping the application processor in various

426 Z. Jin, C. Schurgers, and R. Gupta

low power modes. Since most Wi-Fi radios natively support the 802.11b power saving
mode, it is significantly faster to put the radio in and out of the power saving mode
than to suspend and resume the entire radio in each duty cycle. Although the speedup is
hardware dependent, it is reported in one case that it is almost 86 times faster to resume
from power saving mode than from suspended mode [10].

One challenge in supporting such a scheme is to synchronize power saving states
across the processors, the radio and the access point. In the 802.11b power saving mode,
a radio wakes up periodically to check for any incoming packets buffered at the AP (Ac-
cess Point) and the sleep duration is determined by the listen interval. A listen interval
is established during the association process and is fixed until new association attempts
are made. Since the re-association process involves multiple packet exchanges between
the station and the AP, it is expensive to change the listen interval frequently. However,
a fixed listen interval is not ideal for most sensor network applications as events oc-
cur randomly. Long listen intervals introduce large communication delays while short
listen intervals waste energy if there are no events or data to send or receive. Thus, the
choice of the listen interval is a matter of design tradeoff between energy savings and la-
tency incurred. Instead of listening at a fixed interval, we use an event-driven approach
to transition in and out of the power saving mode as explained in its implementation
below.

Our strategy is based on the 802.11b standard [14] that after a station exits power
saving mode, the AP should send all buffered packets to that station as if they just ar-
rived. Therefore, if the listen interval is set to an arbitrary large value (up to 216 beacon
intervals), one can eliminate its effects and dynamically control the packet receiving
time by forcing the station out of the 802.11b power saving mode. Although a success-
ful packet exchange is required between the station and the AP to enable or disable the
802.11b power saving mode, this can by done by simply changing the power manage-
ment bit in the frame control field of any outgoing packets. A potential benefit of this
strategy is that with some buffering, sending and receiving can be performed within the
same active periods and therefore reduces the total amount of time the radio and the ap-
plication processor need to be awake. We experiment with this approach on our WGN
by sending and receiving 1024 bytes of data in an UDP packet every 6 seconds for a
period of 30 minutes and observe no packet loss. We also verify this technique on a
Linux laptop with a Netgear WG511 Wireless PC card (V1.0) and latest hostAP driver
(V0.5.1) and observe similar results. Note that to avoid overrunning the buffer of the
AP, a small packet should be sent to instruct the receiving device running our scheme
to wakeup more frequently before transmitting a large amount of data.

5.3 Measurements

Power consumption is measured as the product of voltage and current. Our WGN is
directly powered by a DC power supply of 3.3V. To measure current, a resistor of 1Ohm
is connected in series with the DC power supply. The voltage drop across the resistor
is sampled using a National Instrument DAQPad-6020E (12Bit, 100KS/S) and stored
in Lab-View spreadsheet format. For simplicity, sensor data are randomly generated by
the PIC processor rather than from real sensors or other sensor nodes.

An Embedded Platform with Duty-Cycled Radio and Processing Subsystems 427

Table 1. Latencies and Power consumption

Stargate Our WGN
Suspend
Wi-Fi
scheme

Suspend
system
scheme

Always
on
scheme

Power
gating
scheme

Power
saving
scheme

Enable Latency 0.485s 3.329s - 0.28s 0.03s
Enable Power 0.751w 0.155w - 0.545w 0.693w
Active Power 2.009w 2.009w 1.419w 1.419w 1.419w
Disable Latency 0.313s 0.757s - 0s 0.003s
Disable Power 1.62w 1.11w - 1.419w 1.32w
Sleep Power 0.751w 0.054w - 5.13mw 0.495w

6 Experimental Results and Analysis

Average system power consumption is calculated1 based on the amount of energy con-
sumed in one working-period, which is defined as the period from the beginning of one
active period to the beginning of the next active period. A power managed working-
period can be further divided into four sub-periods: a period to enable the system, a
period of doing the real work, a period to disable the system and a sleep period. A
duty-cycle is calculated as the percentage of the time that a system does real work over
an entire working-period. It does not include time spent in enabling or disabling the
system. Note that we can maintain a fixed duty cycle by proportionally changing the
working time and the duration of the working-period.

Table 1 lists the durations of these periods as well as the corresponding power con-
sumptions in these periods for both the Stargate and our system running different power
management schemes. We choose to compare our platform with the Stargate because
it is one of a few gateway nodes commonly used in sensor networks. Other gateway
nodes, such as those based on the Soekris board [18], share similar architecture as the
Stargate.

For our WGN, the enable-power of the power-gating scheme is less than that of the
power-saving scheme because not all components are powered up at the same time. The
high sleep-power of our power-saving scheme is caused by the limitations of the Intersil
chip as reported in [19]. The Stargate has very high sleep-power because its PXA255
processor is in charge of power management and can not be powered off completely.

In the remainder of this section, we compare the performance of our power manage-
ment schemes using the WGN with the performance of the following two commonly
used schemes on the Stargate:

1. Suspend-Wi-Fi Scheme: Suspend the Wi-Fi radio only.
2. Suspend-System Scheme: Suspend both the Wi-Fi radio and the Stargate computer.

The Stargate data are based on measurements from [5]. We combine the latencies
that are reported separately for the Wi-Fi radio and the PXA255 and compute the av-
erage power consumption. Similar to our approach, the authors in [5] measure data

1 Average System Power = Total energy consumed in one working−period
Duration o f the working−period

428 Z. Jin, C. Schurgers, and R. Gupta

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35
Working-Period (s)

A
ve

ra
g

e
S

ys
te

m
 P

ow
er

C

on
su

m
p

tio
n

(W
at

ts
)

Stargate Suspend Wi-Fi Stargate Suspend System

Our Always On Our Power-Gating Scheme

Our Power-Saving Scheme

Fig. 3. Average system power consump-
tion under various working-periods and at
a fixed 1% duty cycle

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000
Working-Period (s)

Li
fe

tim
es

 (h
ou

rs
)

Stargate Suspend Wi-Fi Stargate Suspend System

Our Always On Our Power-Gating Scheme

Our Power-Saving Scheme

Fig. 4. Lifetimes under various working-
periods and at a fixed 1% duty cycle (2200
mAh at 3 volts)

0

0.5

1

1.5

2

2.5

3

3.5

Stargate
suspend Wi-Fi

scheme

Stargate
suspend
system
scheme

Our power-
gating scheme

Our power-
saving

scheme

E
na

bl
e

la
te

nc
ie

s
(s

)

Fig. 5. System response time

without sensors attached. Accordingly, we use the “Processor Core Idle” data for the
Suspend-Wi-Fi scheme and the “Proc./Radio Core Sleep” data for the Suspend-System
scheme. The active power consumption in the active period is based on 50% TX and
50% RX. For our own schemes, the power consumed by the entire WGN is reported.
The load on the 1Ohm resistor is included to simulate a real sensor. Our always-on
scheme simply keeps the system in maximum power all the time and is used to serve as
a baseline. The sleep-power of our power-gating scheme is the same as the sleep-power
of the attached sensor node.

Fig. 3 shows the average system power consumption of the five schemes running
under various working-periods and at a fixed 1% duty cycle, which is very common for
sensor networks. With a fixed duty cycle, the time spent doing real work increases in
proportion to the duration of the working-period, and therefore the average amount of
real work per unit time remains constant. Large duty-cycle latencies mean less sleep
time. The WGN running our power-gating scheme performs about 6 times better than
the Stargate running the suspend-system scheme for large working-periods where the
active power dominates. For short working-periods where the transition (enable/disable)
power becomes dominant, we perform up to 7 times better. This is partially due to the
small transition latencies that result from applying the 802.11b based power saving
techniques described in section 5.2.

An Embedded Platform with Duty-Cycled Radio and Processing Subsystems 429

Fig. 4 shows the lifetimes of our WGN and the Stargate running the five schemes
under various working-periods and at a fixed 1% duty cycle. They are computed based
on a power supply of 2200 mAh at 3 volts from a pair of AA batteries. The WGN could
last longer with smaller duty cycles because of the extremely low sleep-power.

Although it is possible with some hardware modifications to eliminate the sleep
power of the Stargate processor by powering it off and to reduce the active-power of
the Stargate processor by dynamic voltage scaling (DVS) [7,3], our WGN would still
perform better because of lower duty-cycle latencies. This is a direct result of the new
architecture we propose.

While it seems that the enable/disable latencies are not important in terms of average
system power consumption for applications that are dominated either by active or sleep
power, they are critical in determining the responsiveness of a system. A large latency
in activating a subsystem from low-power or power-off mode would be prohibitive for
many sensor network applications to employ duty-cycling, not to mention the energy
overhead associated with the delay. Smaller latencies also provide additional space for
applications to trade latencies for energy savings. Fig. 5 shows the system response time
under different power management schemes. When running power-gating scheme, our
WGN is about 12 times better than the Stargate running the suspend-system scheme.
The WGN running the power-saving scheme is about 16 times better than the Stargate
running the suspend-Wi-Fi scheme.

7 Conclusions and Future Work

In this paper, we present the design and optimizations of a low power wireless gateway
node. By introducing a dual-processor hardware architecture and a choice of appropri-
ate duty-cycling of the processing and radio subsystems, we successfully reduce the
standby power consumption while also providing support for spurts of high MIPS and
high bandwidth connections. We are also able to improve the performance of duty-
cycling with respect to energy and latencies by reducing software and networking pro-
tocol related overheads and through careful system integration. The result is a platform
that supports efficient power management through duty-cycling. We believe our archi-
tecture can be useful for building other types of high performance nodes or the emerging
Micro-servers.

In our ongoing work, we are exploring ways to optimize the performance of our
WGN in sensor networks running various low power MAC protocols or wakeup proto-
cols. We are also planning to replace our PIC based sensor nodes with Telos motes [6]
in these experiments for compatibility with existing sensor network applications and
for evaluation purposes.

References

1. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor net-
works. In: SenSys ’04. Proceedings of the 2nd international conference on Embedded net-
worked sensor systems, pp. 95–107. ACM Press, New York, NY, USA (2004)

430 Z. Jin, C. Schurgers, and R. Gupta

2. Jejurikar, R., Gupta, R.: Dynamic voltage scaling for systemwide energy minimization in
real-time embedded systems. In: ISLPED ’04. Proceedings of the 2004 international sym-
posium on Low power electronics and design, pp. 78–81. ACM Press, New York, NY, USA
(2004)

3. McIntire, D., Ho, K., Yip, B., Singh, A., Wu, W., Kaiser, W.J.: The low power energy aware
processing (leap)embedded networked sensor system. In: the Fifth International Conference
on Information Processing in Sensor Networks, Nashville, Tennessee, pp. 449–457. ACM
Press, New York 1127846 (2006)

4. Stargate: http://www.xbow.com
5. Margi, C.B., Petkov, V., Obraczka, K., Manduchi, R.: Characterizing energy consumption

in a visual sensor network testbed. In: 2nd International IEEE/Create-Net Conference on
Testbeds and Research Infrastructures for the Development of Networks and Communities
(2006)

6. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low power wireless research. In:
The Fourth International Conference on Information Processing in Sensor Networks (2005)

7. Banerjee, N., Sorber, J., Corner, M.D., Rollins, S., Ganesan, D.: Triage: A power-
aware software architecture for tiered microservers. Technical Report 05-22, University of
Massachusetts-Amherst (April 2005)

8. Raghunathan, V., Pering, T., Want, R., Nguyen, A., Jensen, P.: Experience with a low power
wireless mobile computing platform. In: The 2004 international symposium on Low power
electronics and design, Newport Beach, California, pp. 363–368. ACM Press, New York
1013322 (2004)

9. Gu, L., Stankovic, J.: Radio-triggered wake-up capability for sensor networks. In: RTAS
2004. Real-Time and Embedded Technology and Applications Symposium, May 25-28,
2004, pp. 27–36. IEEE Computer Society Press, Los Alamitos (2004)

10. Agarwal, Y., Schurgers, C., Gupta, R.: Dynamic power management using on demand paging
for networked embedded systems. In: Asia South Pacific Design Automation Conference
(ASP-DAC’05), China, pp. 755–759 (2005)

11. Pottie, G.J., Kaiser, W.J.: Wireless integrated network sensors. Commun. ACM 43(5), 51–58,
332838 (2000)

12. Rahimi, M., Baer, R., Iroezi, O.I., Garcia, J.C., Warrior, J., Estrin, D., Srivastava, M.: Cy-
clops: in situ image sensing and interpretation in wireless sensor networks. In: SenSys ’05.
Proceedings of the 3rd international conference on Embedded networked sensor systems, pp.
192–204. ACM Press, New York, NY, USA (2005)

13. Schott, B., Bajura, M., Czarnaski, J., Flidr, J., Tho, T., Wang, L.: A modular power-aware
microsensor with >1000x dynamic power range. In: IPSN ’05. Proceedings of the 4th inter-
national symposium on Information processing in sensor networks, Piscataway, NJ, USA, p.
66. IEEE Press, New York (2005)

14. 802.11b Spec. 1999 edition: http://grouper.ieee.org/groups/802/11
15. Ubicom IP2022: http://www.ubicom.com
16. DPAC WWW.dpac.com
17. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless sensor net-

works. In: Infocom ’02, New York, NY, pp. 1567–1576 (2002)
18. Hartung, C., Han, R., Seielstad, C., Holbrook, S.: Firewxnet: a multi-tiered portable wireless

system for monitoring weather conditions in wildland fire environments. In: MobiSys 2006.
Proceedings of the 4th international conference on Mobile systems, applications and services,
pp. 28–41. ACM Press, New York, NY, USA (2006)

19. Pering, T., Raghunathan, V., Want, R.: Exploiting radio hierarchies for power-efficient wireless
device discovery and connection setup. In: VLSID ’05. Proceedings of the 18th International
Conference on VLSI Design held jointly with 4th International Conference on Embedded Sys-
tems Design, Washington, DC, pp. 774–779. IEEE Computer Society, Los Alamitos (2005)

http://www.xbow.com
http://grouper.ieee.org/groups/802/11
http://www.ubicom.com
WWW.dpac.com

SensorOS: A New Operating System for Time Critical
WSN Applications

Mauri Kuorilehto1, Timo Alho 2, Marko Hännikäinen1, and Timo D. Hämäläinen1

1 Tampere University of Technology, Institute of Digital and Computer Systems
P.O. Box 553, FI-33101 Tampere, Finland

{mauri.kuorilehto, marko.hannikainen, timo.d.hamalainen}@tut.fi
2 Nokia Technology Platforms, Tampere, Finland

timo.a.alho@nokia.com

Abstract. This paper presents design and implementation of a multi-threading
Operating System (OS), SensorOS, for resource constrained Wireless Sensor Net-
work (WSN) nodes. Compared to event-handler kernels, such as TinyOS, Sen-
sorOS enables coexistence of multiple time critical application tasks. SensorOS
supports preemptive priority-based scheduling, very fine-granularity timing, and
message passing inter-process communication. SensorOS has been implemented
for resource constrained Tampere University of Technology WSN (TUTWSN)
nodes. In TUTWSN node platform with 2 MIPS PIC micro-controller unit, Sen-
sorOS kernel uses 6964 B code and 115 B data memory. The context swap time
is 92 µs and the variance of timing accuracy for a high priority thread less than
5 µs. The results show that the realtime coordination of WSN applications and
protocols can be managed by a versatile OS even on resource constrained nodes.

1 Introduction

Wireless Sensor Networks (WSN) consists of a large number of randomly deployed
nodes that self-organize and operate autonomously. A WSN node is characterized by
restricted resources in terms of memory, energy, and processing capacity, and by unreli-
able wireless link with limited bandwidth. While advances in manufacturing technolo-
gies have resulted in smaller and cheaper platforms suitable for WSN realizations, the
resource constraints persist as the environments become more demanding. Simultane-
ously, the complexity and number of tasks of WSN applications increases [1].

The key functionalities for the layered WSN protocol stack are the controlling of
channel access, network topology creation and maintenance, and route formation. The
protocols together with multiple applications comprise an extremely complex system
that must be fitted to resource constrained WSN nodes. Further, due to the tight inter-
action with the real world, realtime requirements are strict. Therefore, realtime com-
munication and coordination are required in both single node and network level [2].
At a single node level, resource usage, timeliness, and peripheral access are managed
by an Operating System (OS) [3]. The network level control in WSNs is handled by
middleware architectures that perform task allocation and network control [2,4]

This paper presents the design and implementation of SensorOS, a preemptive multi-
threading kernel for resources constrained TUTWSN (Tampere University of Tech-
nology WSN) nodes [5]. The time sliced Medium Access Control (MAC) protocol of

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 431–442, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

432 M. Kuorilehto et al.

TUTWSN requires timing accuracy and efficient use of power saving modes. SensorOS
guarantees timing with a priority-based realtime scheduler. The evaluation proves Sen-
sorOS suitability for WSNs, and shows the feasibility of the simple POSIX-like Appli-
cation Programming Interface (API). A network level coordination can be incorporated
into SensorOS by a distributing middleware for task allocation [6].

1.1 Related Work

Embedded Realtime OSs (RTOS), such as OSE, QNX Neutrino, and VxWorks are
widely used in industrial and telecommunication systems. However, their memory con-
sumption even in the smallest configurations is too large for resource constrained WSN
nodes. Small memory footprint RTOSs, such as FreeRTOS, have a general purpose ap-
proach and do not meet the strict timing and energy saving requirements of WSNs.

The most widely known OS for WSNs is TinyOS [7] that uses a component-based
event-driven approach for task scheduling. Each component has a separate command
handler for upper layer requests and an event handler for lower layer events. The pro-
cessing is done in an atomic task. SOS [8] adopts the component model from TinyOS
but allows dynamic runtime loading and unloading of components. Similar approach
without relation to TinyOS is taken in BerthaOS [9]. Event handler kernel of Contiki
[10] supports dynamic loading and can be complemented with a library for preemp-
tive multi-threading. In CORMOS [11], all system and application modules consist of
handlers that communicate seamlessly with local and remote modules using events.

Preemptive multi-threading for sensor nodes with POSIX API is implemented in
MOS [12] and nano-RK [13]. Both support priority-based scheduling and have inte-
grated networking stack and power management features.

Due to run to completion semantics, event handler OSs, such as TinyOS, are poorly
suitable for applications with lengthy computation, e.g. cryptographical algorithms.
Further, compared to traditional preemptive kernels, their programming paradigm can
be difficult to understand. The drawback of preemptive schedulers is the increased data
memory consumption as a separate stack is needed for each thread. While Contiki par-
tially solves this, it faces the problems of event-driven OS if multi-threading is not used.

The approach in SensorOS is similar to MOS and nano-RK. Features that put Sen-
sorOS apart from these two are very accurate time modeling and energy efficiency. The
energy efficiency results from the sophisticated use of advanced power saving modes.

1.2 Contents of the Paper

The architecture and design of SensorOS are discussed in Section 2. Section 3 presents
TUTWSN platform and environment. The implementation of SensorOS on target plat-
form is presented in Section 4 and evaluation results in Section 5. Finally, conclusions
are given in Section 6.

2 SensorOS Design

SensorOS design objective is a realtime kernel that supports features required by WSN
protocols and applications. WSN protocol and application tasks are executed as separate

SensorOS: A New Operating System for Time Critical WSN Applications 433

threads communicating with SensorOS Inter-Process Communication (IPC) methods.
The composition of threads implementing protocols and applications is not restricted.

In this paper, a task is a functional entity, whereas a thread is the OS context, in
which a task is executed. A task can be divided into multiple threads, but on the other
hand several tasks can be executed within a single thread.

2.1 Design Requirements

A WSN protocol stack consists of several functional entities that require cross layer in-
teraction for controlling network operation. Typically, the energy efficiency of a WSN
results from the accuracy of MAC protocol timing. Accurate timing allows longer sleep
periods since the wake-up can be done just before the active period. In addition, a tight
relation to the real world requires reactiveness from applications. As a result, the pro-
gramming of complex protocols and applications, and the managing of their communi-
cation and synchronization are extremely challenging and tedious without OS control.

The requirements for SensorOS derive from the characteristics of WSNs. The main
functional requirements are seamless coexistence of multiple tasks, realtime capability,
and timing accuracy. Due to limited WSN node capabilities, efficient usage of resources
is essential. Portability is required to deal with heterogeneous WSN node platforms.
Memory management is needed to allow as many tasks as possible to be located in a
node and power management to maximize the lifetime of battery-powered nodes.

More abstract requirements for SensorOS relate to the ease of use and the integration
of a distributing middleware. A simple API facilitates application development. The
middleware integration is alleviated by using a message passing IPC that can be easily
abstracted to network packets.

2.2 SensorOS Architecture

The architecture of SensorOS is divided into components as depicted in Fig. 1. Tasks
access OS services through API. The main components in the kernel are scheduler, mes-
sage passing IPC, timer, synchronization, memory and power management. Interrupt-
driven device drivers (UART and Analog-to-Digital Converter (ADC) in Fig. 1) are
integrated into the kernel, whereas context-related drivers (I2C, radio) are executed in
the context of a calling thread without a relation to the OS kernel. In general, devices
accessed by a single thread are context-related, while shared devices are included in the
kernel. Hardware resources are accessed through a Hardware Abstraction Layer (HAL).

Each thread in SensorOS has a Thread Control Block (TCB) for per threadL infor-
mation. A thread can be in three different states. When a thread is executed on MCU
it is running. The state of a thread is ready when it is ready for execution but another
thread is running, and wait when it needs an event to occur before execution.

A thread can be waiting for multiple different type of events in SensorOS. The rela-
tion between a running thread, a ready queue, and different wait queues are depicted in
Fig. 2. When a thread is created it is put to the ready queue, and it can explicitly exit
when running. Threads waiting for a timeout are in timer queues and those waiting for
IPC in message set. Synchronization is waited in per mutex queues and a completion of
peripheral operation in a peripheral specific item.

434 M. Kuorilehto et al.

Kernel

Scheduler

IPC

Timer Power management

Task 1API

Interrupt-
driven drivers

UART

ADC

Context-
related drivers

Memory management

Hardware abstraction layer

I2C

Radio

Task 2 Task nTask 3 . . .

Synchronization

Kernel

Scheduler

IPC

Timer Power management

Task 1API

Interrupt-
driven drivers

UART

ADC

Context-
related drivers

Memory management

Hardware abstraction layer

I2C

Radio

Task 2 Task nTask 3 . . .

Synchronization

Fig. 1. Overview of SensorOS architecture

Ready queue Running

Timer queues

create exit

Message set

Mutex queues

Peripheral items

timer wait

message wait

mutex wait

peripheral wait

timeout

message
received

mutex
acquired

peripheral
event

dispatchReady queue Running

Timer queues

create exit

Message set

Mutex queues

Peripheral items

timer wait

message wait

mutex wait

peripheral wait

timeout

message
received

mutex
acquired

peripheral
event

dispatch

Fig. 2. Thread queues and events moving a thread from a queue to another

2.3 SensorOS Components

SensorOS components maintain TCBs of threads accessing their services. The inter-
relations between components are kept in minimum, but clearly scheduler is dependent
on other components.

Scheduler – SensorOS incorporates a priority-based preemptive scheduling algorithm.
Thus, the highest priority thread ready for execution is always running. Threads at the
same priority level are scheduled by a round robin algorithm without a support for time-
slicing.

When an event changes a thread to the ready state, the scheduler checks whether
it should be dispatched. If it has a higher priority than the running thread, contexts are
switched. When the running thread enters to a wait state, the highest priority thread from
the ready queue is dispatched. If the ready queue is empty, power saving is activated.

Timer – Timer component implements timeout functionality. The local time in Sen-
sorOS is microseconds since system reset. Timing is divided into two separate ap-
proaches that have their own timer queues. A fine granularity timing provides
microsecond accuracy for applications and communication protocols that need exact

SensorOS: A New Operating System for Time Critical WSN Applications 435

timestamps. The coarse timing is for tasks that tolerate timeout variations in order of
millisecond.

IPC – The method for communication between tasks in SensorOS is message-passing
IPC. A thread allocates a message envelope and fills it, after which it is sent to the
recipient. The message must always be assigned to a certain thread. Broadcast messages
can be implemented using multiple unicast messages.

Synchronization – Synchronization controls the flow of execution between tasks and
access to peripheral devices and other hardware resources. The synchronization is im-
plemented with binary mutexes. A mutex can be waited by several threads, of which the
highest priority thread acquires it when released. Each mutex has its own wait queue.
Avoiding of priority inversion is not considered but it is left to programmers [3].

Memory Management – In SensorOS, dynamic memory management is incorporated
for message envelopes and for temporary buffers occasionally needed by tasks. A thread
allocates and frees previously reserved blocks from a memory pool.

Power Management – Since the activity of WSN nodes is in order of few per cents,
power management is crucial. In SensorOS, the power management of peripherals is
implemented in the device drivers. The power saving activation of context-related de-
vices is left to the task that controls the device, because the task is aware of the device
activation patterns. Instead, the power modes of MCU and integrated peripherals are
managed by OS. When there are no threads to schedule, MCU is set to platform depen-
dent power saving mode, of which it is woken up by an external event.

Peripherals – The interrupt-driven device drivers integrate peripherals, such as ADC
and UART, tightly to SensorOS kernel. They have separate functions for open, close,
control, read, and write operations. The read and write operations are controlled by in-
terrupts. A thread can block its execution on such peripheral until the specified number
of bytes has been transferred. The context-related device drivers are either non-blocking
or can use an external interrupt source for controlling read and write operations.

3 TUTWSN Platforms and Protocols

SensorOS is primarily targeted to TUTWSN node platforms and protocols. TUTWSN
is an energy efficient WSN framework targeted mainly for monitoring applications.
TUTWSN incorporates several different types of node platforms, a configurable proto-
col stack, and user interfaces for network monitoring and application visualization.

3.1 TUTWSN Node Platform

Several different types of node platforms are used in TUTWSN. An outdoor tempera-
ture sensing node platform illustrated in Fig. 3 is built from off-the-shelf components.
The main component is PIC18LF4620 MCU, which contains a 10-bit integrated ADC
and 1 KB of EEPROM as a non-volatile data storage. The power unit consists of a
MAX1725 regulator with 2.4 V output voltage and a 3 V CR123A lithium battery. In
addition, a DS620 digital thermometer is integrated to the platform. The radio interface

436 M. Kuorilehto et al.

Fig. 3. TUTWSN PIC node platform

Table 1. TUTWSN PIC node power consumption in different states

MCU Radio Power (mW)

active receive 60.39
active transmit (0 dBm) 39.90
active transmit (-20 dBm) 26.73
active active 3.68
active off 3.29
idle off 1.27
sleep off 0.031

on the platform is a 2.4 GHz nRF2401A transceiver unit that supports 1 Mbit/s data rate
and transmit power between -20. . .0 dBm.

MCU has a 64 KB Flash as code memory, each instruction word taking two bytes.
Internal SRAM data memory is limited to 3986 B. With internal oscillator the MCU
frequency can be either 4 MHz or 8 MHz resulting in 1 MIPS and 2 MIPS, respectively.
For power saving, PIC supports idle and sleep modes. The measured power consump-
tions of TUTWSN node platform in PIC MCU power modes with 4 MHz frequency
and different radio activation states are depicted in Table 1. The power consumptions
of other, application dependent, peripherals are typically in order of hundreds of µWs.
The radio power consumption on receive and transmit is dominant.

3.2 TUTWSN Protocols

The main protocols in TUTWSN stack are Time Division Multiple Access (TDMA)
MAC and gradient-based routing. The MAC protocol creates a clustered network topol-
ogy and controls wireless channel access. The coordination between clusters is done on
a dedicated signaling channel, while each cluster operates on its own frequency chan-
nel. The routing protocol creates routes from cluster headnodes to a sink based on the
cost gradient of the route.

The cluster headnode maintains its access cycle by periodic beacons. Neighbor
headnodes and subnodes associate to the cluster for data communication. The objec-
tive of TDMA MAC is to minimize power-hungry radio idle listening, which requires
accurate time synchronization among nodes.

4 SensorOS Implementation

SensorOS is implemented on TUTWSN PIC nodes. The implementation follows the
architecture presented in Section 2. Common functionality is implemented separately,

SensorOS: A New Operating System for Time Critical WSN Applications 437

whereas hardware dependent parts are included in HAL in order to facilitate portability.
The common functionalities and most of HAL are implemented in ANSI C. Only a
small portion of the lowest level HAL, e.g. context switch, is implemented in assembly.

4.1 Implementation of Hardware Abstraction Layer

Lowest level context switching, power saving, timer, and peripheral access are detached
from SensorOS kernel to the HAL implementation. Internal registers that need to be
saved at context switch are MCU dependent. Also power saving modes need low level
register access. Each peripheral has a HAL component that implements interface to
dedicated I/O ports and interrupt handlers.

Each MCU has an own set of hardware timers and their control registers. HAL timer
implementation consists of time concept, interrupt handlers, and time management rou-
tines. SensorOS utilizes two different time concepts implemented by HAL; a microsec-
ond resolution timer for accurate timing and a millisecond resolution timer for timeouts.
The interrupt handlers update internal time and when a time limit expires indicate this
to the OS timer through a callback function. The time management routines are for get-
ting and manipulating internal time, setting of timeout triggers, and atomic spinwait for
meeting an exact timeline.

4.2 Implementation of SensorOS Components

SensorOS API consists of system calls listed in Table 2. Peripheral system calls are
for character devices (e.g. UART) while context-related devices have dedicated inter-
faces. SensorOS is initialized in main -function, which issues user_main -function after
OS components have been initialized. In user_main, threads for application tasks and
required mutexes are initialized. After the user_main returns, scheduling is started.

Scheduler – A thread is created with os_thread_create that takes the stack and Process
IDentifier (PID) as parameters. This simplifies the implementation but prevents run-
time creation and deletion of threads. The modification of the kernel for such a support
is straightforward. When a thread is created it is inserted to the ready queue but the
scheduler is not invoked until the running thread releases processor.

Instead of a completely modular approach, the scheduling decisions are distributed
to kernel components. This complicates the changing of scheduling algorithm but im-
proves context switching performance. When an event moves thread(s) to the ready
queue, the OS component checks whether one of the threads has a higher priority than
the running one. If true, an OS service for swapping threads’ contexts is invoked. The
context of a thread is stored in its stack. A running thread can release processor with
os_yield or it can permanently exit. When there are no threads to schedule, an idle
thread is scheduled for activating MCU sleep mode through HAL.

Event waiting in SensorOS is implemented by a single interface that allows a thread
to wait simultaneously for multiple events. The events include timeout, message re-
ceived, character device read and write, peripheral device, and user generated events.
Function os_poll_event loops actively while os_wait_event blocks the thread until any
of the events occur. When an event for a thread is raised, the scheduler checks whether
the thread waits for the event and if it does performs scheduling.

438 M. Kuorilehto et al.

Timer – Timer operation is mainly implemented in HAL but API and scheduling on
timeouts are provided by the OS component. The system time is obtained with the func-
tion os_get_time. Accurate timestamps for events are set with os_get_entryperiod,
which returns the internal time at the moment of the function call. Both utilize mi-
crosecond resolution timer.

The accurate microsecond resolution wait is implemented by os_wait_until. The
thread is blocked until a threshold before the deadline. The atomic spinwait in HAL is
used to suspend the operation until the timestamp. In the current implementation, only
one thread can issue os_wait_until at a time to guarantee accurate timing.

Table 2. SensorOS system call interface, categorized by components

Thread and scheduler management system calls

void os_thread_create(os_proc_t *p, os_pid_t pid, os_priority_t pri,
char *stack, size_t stackSize, prog_counter_t entry)

void os_yield(void)
os_eventmask_t os_wait_event(os_eventmask_t events)
os_eventmask_t os_poll_event(os_eventmask_t events)

Timer system calls

uint32_t os_get_time(void)
os_uperiod_t os_get_entryperiod(void)
int8_t os_wait_until(os_uperiod_t event)
void os_set_alarm(uint16_t timeout)

IPC system calls

os_status_t os_msg_send(os_pid_t receiver, os_ipc_msg_t *msg)
os_ipc_msg_t* os_msg_recv(void)
int8_t os_msg_check(void)

Synchronization system calls

void os_mutex_init(os_mutex_t *m)
void os_mutex_acquire(os_mutex_t *m)
void os_mutex_release(os_mutex_t *m)

Memory management system calls

void* os_mem_alloc(size_t nbytes)
void os_mem_free(void *ptr)

Character device system calls

os_status_t os_open(os_cdev_t dev)
void os_close(os_cdev_t dev)
int8_t os_write(os_cdev_t dev, const char *buf, uint8_t count)
int8_t os_read(os_cdev_t dev, char *buf, uint8_t count)
void os_close(os_cdev_t dev)

SensorOS: A New Operating System for Time Critical WSN Applications 439

To initialize a millisecond resolution wait, a thread issues os_set_alarm. The thread
is put to the timer queue that is sorted according to the timeouts. The first item in
the queue is passed to HAL in order to trigger a callback function when the timeout
expires. The callback function sets the timer event for the first thread in the queue. A
zero timeout period can be used with os_wait_event to check a status of other events.

IPC – The memory allocation for message envelopes and the contents of messages
are left to the application. A message is sent with os_msg_send that inserts the mes-
sage to the recipient’s queue and sets the message received event. Each thread has an
own message queue in its TCB. A thread can check whether its queue is empty with
os_msg_check. A message is removed from the queue by calling os_msg_recv.

Synchronization – When a mutex is created with os_mutex_init, its wait queue and
owner are cleared. If the mutex is blocked by another thread when os_mutex_acquire
is issued, the calling thread is inserted to the wait queue of the mutex. Otherwise the
caller becomes the owner of the mutex. When the owner calls os_mutex_release and
the wait queue is not empty, the highest priority thread is moved to the ready queue, or
scheduled immediately if its priority is higher than that of the running thread.

Memory Management – Currently, there are two alternatives for memory management.
A binary buddy algorithm allows the allocation of different sized blocks, while a more
lightweight alternative uses static sized blocks and is mainly targeted to message en-
velopes. Memory is allocated with os_mem_alloc and released with os_mem_free.

Peripherals – The interrupt-driven character device drivers are opened and closed by
os_open and os_close, respectively. The device handle contains the owner, type, and
event information and defines the HAL routines and data pipe for communication be-
tween HAL and OS. Data to the device is sent with os_write and received with os_read.
Both return the number of bytes handled. The completion of a pending operation can
be waited either by os_flush or os_wait_event.

5 Evaluation

The objectives of SensorOS evaluation are the verification of correct functionality and
the measuring of OS resource consumption and performance. A test application, which
consisting of three tasks and emulates WSN protocol stack and an application, is im-
plemented for evaluation. Task1 models TDMA-based WSN MAC protocol, task2 a
routing protocol, and task3 an WSN application with periodic sensing and processing.

The highest priority thread (task1) is activated periodically with a hard deadline.
It executes for a short period and sends a message to the next highest priority thread
(task2) on every tenth activation. Task2 waits for message and processes it when re-
ceived. Then it sends a message to the lowest priority thread (task3). Task3 is activated
periodically and if it has a message it performs lengthy processing.

5.1 Resource Usage

The portable implementation in ANSI C results slightly more inefficient use of re-
sources than an assembly optimized one. The code and static data memory consumption

440 M. Kuorilehto et al.

of each OS component are depicted in Table 3. Help routines include implementations
for internal OS lists and a small set of library functions.

The code memory usage of SensorOS with static block memory management is
6964 B and with binary buddy 7724 B, which are 10.6 % and 11.8 % of the available
memory, respectively. These do not include an optional I/O library that implements
printf type routines. Static data memory used by SensorOS is 115 B or 118 B, depend-
ing on the used memory management. These do not include thread stacks and TCBs. A
thread context takes 36 B on average but in interrupts additional 35 B is stored. Since
the context is kept in the thread’s stack, a typical stack size is 128 B. The size of TCB
is 17 B. Thus, over 20 threads can be active simultaneously in TUTWSN PIC platform.

5.2 Context Switch Performance

The performance of SensorOS is evaluated by measuring the context switch overhead
and the executions times of main kernel operations. These are given in Table 4 with
timing accuracy results. MCU is run at 8 MHz and loaded by five threads that have
averagely 2 ms activation interval. The results are gathered over 50000 iterations.

Context swap time includes the storing of an old and restoring of a new thread to
MCU. The initialization of os_wait_until sets a trigger to HAL. The thread is woken
up 2 ms before the deadline and after a scheduling delay the rest of the time is spent in
spinwait. The time in os_set_alarm is consumed in timer queue handling and a trigger
setting. The os_wait_event time is the delay from a timer interrupt to the scheduling
of the thread. The IPC delay is measured from the sending of a message from a lower
priority thread to its processing in a higher priority one.

The os_wait_until is evaluated by measured the absolute error between the resulted
timing and the real world time. The maximum inaccuracy is below 5 µs and typically the
error is less than 2 µs. The variance is caused by thread atomicity consideration when
returning from the spinwait, thus it is affected by MCU clock frequency.

Table 3. Code and data memory usage of different SensorOS components

OS component Code memory (B) Data memory (B)

Scheduler 728 38
Thread 184 0
Event handling 384 1
Timer 646 6
IPC 248 0
Mutex 428 0
Binary buddy memory management 1048 5
Static block memory management 288 2
Character device 414 0
HAL 2266 68
Help routines 1378 0
I/O library 862 16

SensorOS: A New Operating System for Time Critical WSN Applications 441

Table 4. SensorOS kernel operation times and timing accuracy

Operation
Time (µs)

Min Mean Max

HAL context swap 92 92 92
os_wait_until timeout initialization 125 125 125
os_wait_until spinwait time after thread wakeup 1) 680 1110 1310
os_set_alarm timeout initialization 1) 222 270 324
os_wait_event context switch from timer interrupt 1) 486 532 558
IPC from lower priority thread to higher one 346 346 346

os_wait_until timing absolute error 0.0 1.8 4.2
1) The results may vary slightly depending on the number of threads.

kernel / systemcalls
interrupts (timer)

idle thread
task 3
task 2
task 1

preempt system calls (os_mem_alloc, os_msg_send)

timer interrupt
(os_wait_event)

timer interrupt & spinwait
(os_wait_until)

kernel / systemcalls
interrupts (timer)

idle thread
task 3
task 2
task 1

preempt system calls (os_mem_alloc, os_msg_send)

timer interrupt
(os_wait_event)

timer interrupt & spinwait
(os_wait_until)

Fig. 4. Task and kernel activation in SensorOS

5.3 Test Application Operation

The scheduling of tasks and kernel components in the test application is depicted in
Fig. 4. MCU preemption on periodic scheduling of task1 is clearly visible. Kernel is
activated when system calls are done for timer wait, messaging, and memory allocation.
The idle thread is scheduled to activate power saving when other tasks are inactive.

The lengths of timer interrupt periods show the difference between os_wait_until
and os_wait_event triggered by os_set_alarm. As the latter can return immediately
after the timeout interrupt, the delay is considerably shorter than in os_wait_until.

6 Conclusions and Future Work

This paper presents a full functionality OS for resource constrained WSN nodes. Com-
pared to existing WSN OSs, SensorOS implements more accurate time concept and
sophisticated power management routines, which are needed by energy efficient and
time critical WSN protocols and applications. The portability and conventional API
facilitate the implementation of large WSN scenarios with multiple applications. The
evaluation shows that SensorOS obtains excellent performance with minimal resources.

442 M. Kuorilehto et al.

Our future work concentrates on implementation and integration of the distributing
middleware to OS. Further, we are exploring methods for lightweight dynamic linking
of new application threads transferred over wireless link.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks.
IEEE Communications Magazine 40(8), 102–114 (2002)

2. Stankovic, J.A., Abdelzaher, T.F., Lu, C., et al.: Real-time communication and coordination
in embedded sensor networks. Proceedings of the IEEE 91(7) (2003) 1002–1022

3. Stallings, W.: Operating systems internals and design principles, 5th edn. Prentice-Hall, En-
glewood Cliffs (2005)

4. Kuorilehto, M., Hännikäinen, M., Hämäläinen, T.D.: A survey of application distribution
in wireless sensor networks. EURASIP Journal on Wireless Communications and Network-
ing (5), 774–788, Special Issue on Ad Hoc Networks: Cross-Layer Issues (2005)

5. Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Ultra low energy wireless temperature
sensor network implementation. In: Proc. 16th Annual IEEE International Symposium on
Personal Indoor and Mobile Radio Communications, Berlin, Germany, pp. 801–805. IEEE
Computer Society Press, Los Alamitos (2005)

6. Kuorilehto, M., Hännikäinen, M., Hämäläinen, T.D.: A middleware for task allocation in
wireless sensor networks. In: Proc. 16th Annual IEEE International Symposium on Personal
Indoor and Mobile Radio Communications, Berlin, Germany, pp. 821–826. IEEE Computer
Society Press, Los Alamitos (2005)

7. Hill, J., Szewczyk, R., Woo, A., et al.: System architecture directions for networked sen-
sors. In: Proc. 9th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Cambridge, MA, USA, pp. 94–103 (2000)

8. Han, C.C., Kumar, R., Shea, R., et al.: A dynamic operating system for sensor nodes. In:
Proc. 3rd International Conference on Mobile Systems, Applications, and Services, Seattle,
WA, USA, pp. 163–176 (2005)

9. Lifton, J., Seetharam, D., Broxton, M., Paradiso, J.: Pushpin computing system overview: a
platform for distributed, embedded, ubiquitous sensor networks. In: Proc. 1st International
Conference on Pervasive Computing, Zurich, Switzerland, pp. 139–151 (2002)

10. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating system
for tiny networked sensors. In: Proc. 29th Annual IEEE International Conference on Local
Computer Networks, Tampa, FL, USA, pp. 455–462. IEEE Computer Society Press, Los
Alamitos (2004)

11. Yannakopoulos, J., Bilas, A.: Cormos: a communication-oriented runtime system for sensor
networks. In: Proc. 2nd European Workshop on Wireless Sensor Networks, Istanbul, Turkey,
pp. 342–353 (2005)

12. Bhatti, S., Carlson, J., Dai, H.: Mantis os: An embedded multithreaded operating system for
wireless micro sensor platforms. Mobile Networks and Applications 10(4), 563–579 (2005)

13. Eswaran, A., Rowe, A., Rajkumar, R.: Nano-rk: An energy-aware resource-centric rtos for
sensor networks. In: 26th IEEE International Real-Time Systems Symposium, Miami, FL,
pp. 256–265. IEEE Computer Society Press, Los Alamitos (2005)

Review of Hardware Architectures for Advanced
Encryption Standard Implementations Considering

Wireless Sensor Networks

Panu Hämäläinen1, Marko Hännikäinen2, and Timo D. Hämäläinen2

1 Nokia Technology Platforms, WiWLAN SF
Visiokatu 3, FI-33720 Tampere, Finland

panu.hamalainen@nokia.com
2 Tampere University of Technology, Institute of Digital and Computer Systems

P.O.Box 553, FI-33101 Tampere, Finland
marko.hannikainen@tut.fi, timo.d.hamalainen@tut.fi

http://www.tkt.cs.tut.fi/research/daci

Abstract. Wireless Sensor Networks (WSN) are seen as attractive solutions for
various monitoring and controlling applications, a large part of which require
cryptographic protection. Due to the strict cost and power consumption require-
ments, their cryptographic implementations should be compact and energy-effi-
cient. In this paper, we survey hardware architectures proposed for Advanced
Encryption Standard (AES) implementations in low-cost and low-power devices.
The survey considers both dedicated hardware and specialized processor designs.
According to our review, currently 8-bit dedicated hardware designs seem to be
the most feasible solutions for embedded, low-power WSN nodes. Alternatively,
compact special functional units can be used for extending the instruction sets of
WSN node processors for efficient AES execution.

1 Introduction

Cryptographic algorithms are utilized for security services in various environments in
which low cost and low power consumption are key requirements. Wireless Sensor Net-
works (WSN) [1] constructed of embedded, low-cost, and low-power wireless nodes
fall into the class of such technologies [2], ZigBee [3] and TUTWSN [4] as examples.
Nodes themselves are independent of each other but they collaborate to serve the ap-
plication tasks of WSNs by sensing, processing, and exchanging data as well as acting
according to the data content [1]. WSNs are envisioned as cost-effective and intelligent
solutions for various applications in automation, health care, environmental monitor-
ing, safety, and security. A large part of the applications require protection for the data
transfer as well as for the WSN nodes themselves [5]. Even though WSNs can contain
devices with varying capabilities, in this paper the term node refers to an embedded,
highly resource-constrained, low-cost, and low-power WSN device.

Compared to software, significantly higher performance and lower power consump-
tion can be achieved with dedicated hardware and specialized processor architectures

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 443–453, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

444 P. Hämäläinen, M. Hännikäinen, and T.D. Hämäläinen

tuned for the execution of security procedures in WSN nodes. A software implementa-
tion on a general-purpose processor always contains overhead due to instruction fetch
and decode, memory access, and possibly due to an unsuitable instruction set and word
size. As Advanced Encryption Standard (AES) [6] is a standardized encryption algo-
rithm and considered secure, it has become the default choice in numerous applications,
including the standard WSN technologies IEEE 802.15.4 [7] and ZigBee [3].

In this paper, we review and compare hardware architectures that are potentially suit-
able for AES implementations in WSN nodes. We have selected the architectures from
more than 150 examined research papers, including both dedicated hardware as well as
specialized cryptographic processor designs. We believe that the paper is comprehen-
sive as well as valuable for designers evaluating and developing AES implementations
for embedded, low-cost, and low-power WSN nodes. The survey focuses on academic
research papers as publicly available information on commercial implementations is
typically very limited. However, we believe that the reviewed designs comprehensively
cover the utilized design choices and trade-offs suited for WSN node implementations.

The paper is organized as follows. Section 2 presents an overview of the AES algo-
rithm, discusses high-level architectural alternatives for its hardware implementation,
and argues their suitability for WSN nodes. In Section 3, we survey existing low-cost
and potentially low-power AES hardware designs. Section 4 reviews specialized pro-
cessor architectures proposed for efficient AES implementations in low-cost wireless
devices. In this paper, a specialized processor architecture refers to a design that in-
cludes support for AES but the design can be capable of executing other tasks as well.
A dedicated hardware implementation can only be used for executing AES.

2 Overview of AES Algorithm

AES [6] is a symmetric cipher that processes data in 128-bit blocks. It supports key sizes
of 128, 192, and 256 bits and consists of 10, 12, or 14 iteration rounds, respectively.
Each round mixes the data with a roundkey, which is generated from the encryption
key.

The encryption round operations are presented in Fig. 1. The cipher maintains an
internal, 4-by-4 matrix of bytes, called State, on which the operations are performed.
Initially State is filled with the input data block and XOR-ed with the encryption key.
Regular rounds consist of operations called SubBytes, ShiftRows, MixColumns, and Ad-
dRoundKey. The last round bypasses MixColumns. Decryption requires inverting these
operations.

SubBytes is an invertible, nonlinear transformation. It uses 16 identical 256-byte sub-
stitution tables (S-box) for independently mapping each byte of State into another byte.
S-box entries are generated by computing multiplicative inverses in Galois Field GF(28)
and applying an affine transformation. SubBytes can be implemented either by com-
puting the substitution [8,9,10,11,12] or using table lookups [10,13,14]. ShiftRows is a
cyclic left shift of the second, third, and fourth row of State by one, two, and three bytes,
respectively. MixColumns performs a modular polynomial multiplication in GF(28) on
each column. Instead of computing separately, SubBytes and MixColumns can also be
combined into large Look-Up-Tables (LUT), called T-boxes [9,15]. During each round,

Review of Hardware Architectures for AES Implementations 445

0

Data block

12840
13951
141062
151173

State
S S S S
S S S S
S S S S
S S S S

SubBytes ShiftRows

12840
11395
621410

117315

AddRoundKey

1284
1139
6214

1173

0
5

10
15

roundkey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
5

10
15

a(x)

MixColumns

Encryption key
0

Data block

12840
13951
141062
151173

12840
13951
141062
151173

State
S S S S
S S S S
S S S S
S S S S

S S S S
S S S S
S S S S
S S S S

SubBytes ShiftRows

12840
11395
621410

117315

AddRoundKey

1284
1139
6214

1173

0
5

10
15

1284
1139
6214

1173

0
5

10
15

0
5

10
15

roundkeyroundkey

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
5

10
15

0
5

10
15

a(x)

MixColumns

Encryption key

Fig. 1. Round operations of AES encryption

AddRoundKey performs XOR with State and the roundkey. Roundkey generation (key
expansion) includes S-box substitutions, word rotations, and XOR operations performed
on the encryption key. For more details on the AES algorithm and its inversion, we refer
to [6].

2.1 Design Choices for AES Support in Hardware

The basic techniques for implementing a block cipher with rounds, such as AES, are
iterated, pipelined, and loop-unrolled architectures [16]. The more advanced structures
include partial pipelining and sub-pipelining combined with these basic techniques. The
architectures are illustrated in Fig. 2.

The iterated architecture leads to the smallest implementations as it consists of one
round component which is fed with its own output until the required number of rounds
has been performed. The pipelined architecture contains all the rounds as separate com-
ponents with registers in between. As a result, it is the fastest (in terms of throughput)
and the largest of the basic structures. The loop-unrolled architectures perform two or
more rounds per clock cycle and the execution of the cipher is iterated. In a pipelined
architecture, unrolling can only decrease the latency of outputting the first block. In
sub-pipelining, registers are placed inside the round component in order to increase the
maximum clock frequency. In the partial pipelining scheme, the pipeline contains e.g.
the half of the rounds with registers in between.

Although pipelined and loop-unrolled architectures enable very high-speed AES im-
plementations, they also imply large area and high power consumption, which makes
them unattractive for WSN nodes. Furthermore, they cannot be fully exploited in feed-
back modes of operation [9,14]. Feedback modes are often used for security reasons
in encryption and for Message Authentication Code (MAC) generation, e.g. as in the

446 P. Hämäläinen, M. Hännikäinen, and T.D. Hämäläinen

Round

(a)

Round

Round

Round

Round

(b)

Round

Round

(c)

Round

Round

(d)

Fig. 2. Hardware architectures for round-based block cipher implementations: (a) iterated, (b)
pipelined, (c) loop-unrolled, and (d) the combination of partial pipelining and sub-pipelining.
The exemplar full cipher consists of four rounds.

security schemes of the standard WSN technologies [7,3]. Iterative architectures enable
low-resource implementations with full-speed utilization also in feedback modes. The
width of the AES data path can be further reduced to decrease logic area and power
[8,9,10,11,12,13,14]. Hence, the review of this paper focuses on AES designs utilizing
iterated structures.

In addition to the architectural choices, the design of AES enables a large number
of algorithm-specific hardware trade-offs. The trade-offs consist of choosing between
memory-based LUTs and combinatorial logic, decreasing the amount of parallelism,
transferring the GF computations into another arithmetic domain, choosing between
precomputed and on-the-fly key expansion, and sharing resources between encryption,
decryption, and key expansion data paths. These aspects and their effects are discussed
in the review of the following sections.

3 Hardware Implementations of AES

Since the ratification of AES in 2001, a large number of its hardware implementations
has appeared. We surveyed more than 100 papers for the review of this section. Ac-
cording to the survey, most AES designs have been targeted at and implemented in
Field Programmable Gate Array (FPGA) technologies. Whereas earlier AES designs
mainly focused on intensively pipelined, high-speed implementations, the more recent
work has concentrated on compactness and lower power consumption. Of all the de-
signs, Table 1 lists the proposals which we have considered to have achieved the most
significant results and which are possibly suitable for highly resource-constrained WSN
nodes. The table is organized according to the time of publication of the designs, in or-
der to reflect also the evolution in the field. A more comprehensive table, containing the

Review of Hardware Architectures for AES Implementations 447

Table 1. Compact hardware implementations of AES

Design Tech. Data E/D Mode Keys S-box Cells Mem Lat Clk Tp
width (1) (2) (3) (4) (5) (6) (7) [MHz] [Mbit/s]

Ref. [16] Xilinx 128 E ECB n/a logic 3528 0 11 25 294
Xilinx 128 E ECB n/a logic 3061 0 21 40 492

Ref. [18] Altera 16 E ECB n/a ROM 1693 3 80 n/a 32
Altera 16 ED ECB n/a ROM 3324 3 80 n/a 24

Ref. [19] Altera 32 E ECB n/a ROM 824 10 44 n/a 115
Altera 32 ED ECB n/a ROM 1213 10 44 n/a 115

Ref. [8] .11 µm 32 ED ECB 128 logic 5400 0 54 131 311
.11 µm 32 ED ECB 128 logic 6300 0 44 138 400
.11 µm 64 ED ECB 128 logic 8000 0 32 137 549
.11 µm 128 ED ECB 128 logic 12500 0 11 145 1691

Ref. [13] Xilinx 32 ED ECB 128 ROM 222 3 46 60 166
Ref. [15] Xilinx 32 ED ECB 128 ROM 146 3 46 123 358
Ref. [10] .60 µm 32 ED CBC all logic 8500 0 92 50 70

Xilinx mix ED CBC all ROM 1125 0 n/a 161 215
Ref. [11] .35 µm 8 E ECB 128 logic 3600 0 1016 100 13
Ref. [14] Altera 32 E ECB 128 ROM 512 7 55 116 270

Altera 32 ED CCM 128 ROM 1434 11 112 78 90
Ref. [9] Xilinx 8 ED ECB 128 logic 124 2 n/a 67 2
Ref. [12] .35 µm 8 ED ECB 128 logic 3400 0 1032 80 10
Ref. [20] .13 µm 8 E ECB 128 logic 3100 0 160 152 121

(1) Encryption (E) or decryption (D) or both (ED) supported for the mode in (2).
(2) Supported mode of operation by the design.
(3) ’n/a’ means no key expansion included, a value refers to the supported keys sizes.
(4) Specifies the technique used for the SybBytes implementation. ’ROM’ means memory-based
table-lookups and ’logic’ combinatorial logic.
(5) Resource consumption of the design. ASICs in gate-equivalents and FPGAs as general-
purpose programmable resources: Xilinx slices or Altera Logic Elements (LE).
(6) Dedicated memory components used from the specific FPGA of the reference.
(7) The number of clock cycles for encrypting a block of data. Latencies caused by precomputed
key expansion not included.
’Tp’ refers to the encryption throughput in the mode of (2). Latencies caused by precomputed
key expansion not included.

highest-speed pipelined implementations as well, can be found in [17]. For the details
of Xilinx and Altera FPGA devices, the readers are referred to their specific data sheets.

The references [16,18,19] are included in the table mainly for historical reasons as
AES implementations that are better suited for WSNs have appeared later. However,
those references were the first most comprehensive implementation studies that pro-
posed compact AES designs as well. Ref. [16] presents a thorough study of AES en-
cryption data path implementations with the different architectural choices described in
Section 2.1 but lacks decryption and key expansion logic. The functionalities are also
lacking from [18,19]. Nevertheless, [18,19] have been the first to propose folded AES

448 P. Hämäläinen, M. Hännikäinen, and T.D. Hämäläinen

designs [13], in which the data path width has been decreased from its native width
(128 bits). Later on, folding has successfully been utilized in the most compact and
low-power AES implementations discussed below. Direct comparison between [16] and
[18,19] is not possible as different FPGA and SubBytes implementation technologies
have been used (logic vs. ROM). A Xilinx slice roughly equals to two Altera LEs. As
[16] uses the native data width, its latency is lower and throughput higher than in [18,19].
Since [19] utilizes the T-box method, its LE count is lower than that of [18], despite of
the wider data path. On the other hand, the method requires larger amount of memory
for the LUTs. The folding factor increases the latency as more clock cycles are needed
for processing a 128-bit block of data.

A number of iterative Application Specific Integrated Circuit (ASIC) designs with
varying data path widths have been reported in [8]. The designs are based on an efficient
S-box architecture and include en/decryption for 128-bit keys. Roundkeys are generated
on-the-fly, either by sharing S-boxes with the main data path or by dedicating separate
S-boxes for key expansion. The smallest version is a 32-bit AES architecture with four
shared S-boxes. The results of [8] are still currently relevant: even though the gate
counts are not the lowest, according to our knowledge the implementations offer the
best area-throughput ratios of existing compact AES implementations.

A 32-bit AES architecture with a precomputed key expansion is developed for FP-
GAs in [13]. The design takes advantage of the dedicated memory blocks of FPGAs by
implementing S-box as a LUT. The paper proposes a method for arranging the bytes of
State so that it can efficiently be stored into memory components or shift registers. The
arrangement allows performing ShiftRows with addressing logic. The same method is
proposed again in [10]. For decreasing the amount of storage space as well as support-
ing various data path widths, we have developed the idea further in [21] without an
implementation. In [14], we removed the decryption functionality of [13] and used the
core for implementing the security processing of IEEE 802.15.4 [7] and ZigBee [3] in
a low-cost FPGA. Ref. [15] improves the FPGA resource consumption of [13] with the
T-box method. The design requires equal amount of memory components in the FPGA
but uses them more efficiently.

A resource-efficient ASIC design supporting en/decryption is presented in [10]. The
on-the-fly roundkey generation shares S-boxes with the main data path. The design is
based on a regular architecture that can be scaled for different speed and area require-
ments. The smallest ASIC version contains a 32-bit data path. The FPGA design uses
varying data widths for different phases of the algorithm. Support for the Cipher Block
Chaining (CBC) encryption mode is also included. Compared to the 32-bit implementa-
tions of [8], the throughput of the ASIC implementation is lower and area larger. Ref. [10]
also uses an older ASIC technology which prevents absolute area comparisons. However,
the latencies of [8] are lower, which indicates that its designs are more efficient.

A low-power and compact ASIC core for 128-bit-key AES encryption is reported in
[11]. The 8-bit data path is used for the round operations as well as for the on-the-fly
key expansion. The data path contains one S-box implemented as combinatorial logic.
State and the current roundkey are stored in a 32×8-bit RAM, which has been imple-
mented with registers and multiplexers. The memory is intensively used by cycling each
intermediate result through the RAM, increasing the total cycle count of the design. For

Review of Hardware Architectures for AES Implementations 449

MixColumns, the design uses a shift-register-based approach, which is capable of com-
puting the operation in 28 cycles. Decryption functionality is added to the design in
[12], which also reports results from a manufactured chip. As stated, an increase in the
folding factor increases latency and thus decreases throughput from the designs with
wider data paths.

A 8-bit AES processor for FPGAs is designed in [9], capable of 128-bit-key encryp-
tion and decryption. The data path consists of an S-box and a GF multiplier/accumu-
lator. The execution is controlled with a program stored in ROM. RAM is used as data
memory. The design is fairly inefficient as the cycle count is significantly higher than
e.g. in [15] with not much lower FPGA resource consumption.

According to our knowledge, our encryption-only core presented in [20] is the most
efficient one of reported 8-bit AES implementations in terms of area-throughput ratio.
This is due to the novel data path architecture that is based on the 8-bit permutation
structure proposed in [21]. In [9,11,12], the AES round operations as well as the round-
key generation operations are performed sequentially. In our design, the operations are
performed in parallel (for different 8-bit pieces of data/key), which considerably de-
creases the total cycle count and increases the throughput. Still, we succeeded in main-
taining the hardware area and the power consumption low. The gate area is at the same
level with [11,12]. The achieved cycle count of 160 can be seen as the minimum for
an iterated 8-bit AES implementation. We have estimated that including the decryption
functionality would add about 25% to the total area.

Only [12,20] of the ASIC references include power consumption measures. For [12]
the power consumption is 45 µW/MHz and for the area-optimized implementation of
[20] 37 µW/MHz. In [12], the power has been measured from a manufactured chip.
However, the higher throughput of [20] potentially results in considerably lower energy
consumption per processed block. For achieving equal throughputs, [20] can be run at
considerably lower clock frequency.

3.1 WSN Suitability of Dedicated Hardware Implementations

According to the survey, the best suited approaches for the hardware implementation
of AES in WSN nodes seem to be the 8-bit designs [12,20]. They result in the lowest
hardware area (i.e. cost). Their power consumptions are presumably also among the
lowest even though power has not been reported for the other designs. Even though
[20] includes only encryption functionality, it is still usable in real WSNs: decryption
functionality of the AES core itself is not often required in commonly used security
processing schemes. For example, this is the case in the standardized WSN technologies
[7,3].

In addition to these two 8-bit designs, the 32-bit implementations of [8] can also be
suitable for WSN nodes. The hardware areas are low and the area-throughput ratios
high. The 32-bit cores can be combined with the encryption-mode wrapper of [14] for
efficient security processing in the standard WSN technologies. Considering FPGAs,
the T-box method of [13] seems to be the best approach for resource-efficient imple-
mentations. However, FPGA technologies are currently not feasible solutions for WSN
nodes due to their high power consumption.

450 P. Hämäläinen, M. Hännikäinen, and T.D. Hämäläinen

4 Specialized Processor Architectures for AES

An effective performance-area trade-off between dedicated hardware implementations
and general-purpose processors can be achieved with programmable specialized proces-
sors. Such Application Specific Instruction set Processors (ASIP) are typically general-
purpose but they have also been tailored to support a specific application domain or
task. A large part of the proposals in the cryptographic domain have concentrated on
maximizing performance and programmability [17], which often results in high power
consumption and cost and thus makes the proposals unsuited for WSN nodes. In this
section we review processor architectures proposed for efficient AES execution in low-
cost devices, shown in Table 2.

The ASIP implementation reported in [22] uses the Xtensa configurable processor
architecture from Tensilica. In the paper, the execution of cryptographic algorithms,
including AES, is accelerated by extending the instruction set of the processor with
algorithm-specific instructions. As a result, the performance is improved by several ten-
folds from the original (however, the original implementations are poor). The achieved
throughput for AES is 17 Mbit/s at 188 MHz in a 0.18 µm ASIC technology. Area or
power figures have not been reported.

An ASIP architecture based on the 32-bit MIPS processor architecture has been pub-
lished in [23]. A special unit supporting fast LUT functionality is included for accel-
erating the RC4 and AES algorithms. The unit consists of two 1024×32-bit RAMs
implying large area. For accelerating Data Encryption Standard (DES), [23] proposes a
very large configurable permutation unit consisting of 512 32×1-bit multiplexers. The
achieved throughput for AES is around 64 Mbit/s at 100 MHz. The size of the processor
core is 6.25 mm2 in a 0.18 µm ASIC technology. The power is approximately 90 mW.

In [26], an instruction set extension has been developed for accelerating AES in 32-
bit processors. The custom instruction performs the SubBytes (or its inverse) operation
using a special functional unit. The unit has been integrated into a LEON-2 processor
prototyped in an FPGA. The resulting encryption speedup is up to 1.43 and the code
size reduction 30–40%. The area of the unit is 400 gates in a 0.35 µm ASIC technology.
The absolute value for the throughput and the complete processor size in the ASIC
technology have not been reported.

We have utilized a processor architecture called Transport Triggered Architecture
(TTA) to develop an area-efficient ASIP design for accelerating the execution of RC4
and AES in [24]. In addition to the standard functional units, the processor includes four
256×8-bit RAM-based LUT units, a 32-bit unit for converting between byte and word

Table 2. Specialized processor architectures for AES execution

Design Technology Area Clock Throughput Power
[MHz] [Mbit/s] [mW/MHz]

Ref. [22] .18 µm n/a 188 17 n/a
Ref. [23] .18 µm 6.25 mm2 100 64 0.90
Ref. [24] .13 µm 70 kgates 100 68 n/a
Ref. [25] .18 µm 2.25 mm2 14 1.8 1.2

Review of Hardware Architectures for AES Implementations 451

representations of the AES State, and a unit for performing a combined 32-bit Mix-
Columns and AddRoundKey operation in a single clock cycle. The LUT units eliminate
main memory accesses in the same way as the custom instruction of [26]. The size of
our TTA processor that supports AES and RC4 is 69.4 kgates in a 0.13 µm ASIC tech-
nology. The throughput is 68.5 Mbit/s for AES using precomputed roundkeys at 100
MHz. Power consumption was not evaluated in this study.

A microcoded cryptoprocessor designed for executing DES, AES, and Elliptic Curve
Cryptography (ECC) has been published in [25]. The data path contains an expan-
sion/permutation unit, a shifter, four memory-based LUTs, two logic units, and a regis-
ter file consisting of sixteen 256-bit registers. The processor can be reconfigured by
modifying the microcoded program and the contents of the LUTs. The encryption
throughput for AES is 1.83 Mbit/s at 13.56 MHz with on-the-fly key expansion. The
hardware area in a 0.18 µm technology is 2.25 mm2 and the power consumption for
AES is 16.3 mW.

4.1 WSN Suitability of Specialized Processor Architectures

Compared to the most compact AES hardware implementations of Section 3, the re-
viewed specialized processor architectures result in significantly larger areas, lower
performances, and higher power consumptions. Their benefits are in programmabil-
ity and/or reconfigurability compared to dedicated hardware and in performance when
compared to general-purpose processors of the same application domain.

The cost of the processor presented in [23] is high and thus it is poorly suited for
WSN nodes. On the contrary, the special operation units presented in [24,26] can be
used for increasing the performances of the main processors in WSN nodes. Whereas
[26] dedicates its unit for AES only, the LUT unit of [24] is suited for other tasks as well.
The performance results in these two papers are considerably better than in [22]. If a
32-bit general-purpose processor is considered to be used in a WSN node, the complete
processor design of [24] with its special support for AES is a feasible solution. Even
though the AES performance of [25] is lower than e.g. in [24], the processor can be
suitable for WSN nodes which frequently need to perform also ECC computations.

5 Conclusions

A large part of WSN applications require cryptographic protection. Due to the con-
straints of WSN nodes, their cryptographic implementations should be low-cost and
energy-efficient. In this paper, we reviewed hardware architectures proposed for AES
implementations in such environments. The survey considered both dedicated hardware
and specialized processor designs. According to our survey, currently 8-bit dedicated
hardware designs seem to be the most feasible solutions for WSN nodes. Alternatively,
compact special functional units can be used for extending the instruction sets of WSN
node processors for efficient AES execution. The reviewed designs often offer signifi-
cantly higher throughput at their maximum clock speed than what is actually required
for WSN communications. Hence, considerable power savings can be achieved by de-
creasing the clock speed from its maximum without affecting the wireless data rates

452 P. Hämäläinen, M. Hännikäinen, and T.D. Hämäläinen

of nodes. We believe that the review presented in this paper is valuable for designers
evaluating and developing AES implementations for environments in which low cost
and low power consumption are key requirements, beyond WSNs as well.

References

1. Stankovic, J.A., Abdelzaher, T.F., Lu, C., Sha, L., Hou, J.C.: Real-time communication
and coordination in embedded sensor networks. Proceedings of the IEEE 91(7), 1002–1022
(2003)

2. Hämäläinen, P., Kuorilehto, M., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Security in
wireless sensor networks: Considerations and experiments. In: Proc. Embedded Computer
Systems: Architectures, Modelling, and Simulation (SAMOS VI) Workshop–Special Session
on Wireless Sensor Networks, Samos, Greece, pp. 167–177 (July 17-20, 2006)

3. ZigBee Alliance: ZigBee Specification Version 1.0 (December 2004)
4. Suhonen, J., Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Design, implementation,

and experiments on outdoor deployment of wireless sensor network for environmental mon-
itoring. In: Proc. Embedded Computer Systems: Architectures, Modelling, and Simulation
(SAMOS VI) Workshop–Special Session on Wireless Sensor Networks, Samos, Greece, pp.
109–121 (July 17-20, 2006)

5. Avancha, S., Undercoffer, J., Joshi, A., Pinkston, J.: Security for Wireless Sensor Networks.
In: Wireless Sensor Networks, 1st edn. pp. 253–275. Springer, Heidelberg (2004)

6. National Institute of Standards and Technology (NIST): Advanced Encryption Standard
(AES), FIPS-197 (2001)

7. IEEE: IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (LR-WPAN), IEEE Std 802.15.4 (2003)

8. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware architecture
with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–
254. Springer, Heidelberg (2001)

9. Good, T., Benaissa, M.: AES on FPGA from the fastest to the smallest. In: Rao, J.R., Sunar,
B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 427–440. Springer, Heidelberg (2005)

10. Pramstaller, N., Mangard, S., Dominikus, S., Wolkerstorfer, J.: Efficient AES implementa-
tions on ASICs and FPGAs. In: Proc. 4th Conf. on the Advanced Encryption Standard (AES
2004), Bonn, Germany, May 10-12, 2005, pp. 98–112 (2005)

11. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems
using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 357–370. Springer, Heidelberg (2004)

12. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. IEE
Proc. Inf. Secur. 152(1), 13–20 (2005)

13. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algorithm. In:
D.Walter, C., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 319–333.
Springer, Heidelberg (2003)

14. Hämäläinen, P., Hännikäinen, M., Hämäläinen, T.: Efficient hardware implementation of se-
curity processing for IEEE 802.15.4 wireless networks. In: Proc. 48th IEEE Int. Midwest
Symp. on Circuits and Systems (MWSCAS 2005), Cincinnati, OH, USA, August 7-10, 2005,
pp. 484–487 (2005)

15. Rouvroy, G., Standaert, F.X., Quisquater, J.J., Legat, J.D.: Compact and efficient encryp-
tion/decryption module for FPGA implementation of the AES Rijndael very well suited for
small embedded applications. In: Proc. IEEE Int. Conf. on Inf. Tech.: Coding and Computing
(ITCC 2004), Las Vegas, NV, USA, April 4-6, 2004, vol. 2, pp. 583–587 (2004)

Review of Hardware Architectures for AES Implementations 453

16. Elbirt, A.J., Yip, W., Chetwynd, B., Paar, C.: An FPGA implementation and performance
evaluation of the AES block cipher candidate algorithm finalists. In: Proc. 3rd AES Candidate
Conf. (AES3), New York, NY, USA, April 13-14, 2000 (2000)

17. Hämäläinen, P.: Cryptographic Security Designs and Hardware Ar-
chitectures for Wireless Local Area Networks. PhD thesis, Tampere
Univ. of Tech. Tampere, Finland, (December 2006), Available online:
http://www.tkt.cs.tut.fi/research/daci/phd_hamalainenp_thesis.html

18. Fischer, V.: Realization of the round 2 AES candidates using Altera FPGA. In: Proc. 3rd
AES Candidate Conf. (AES3), New York, NY, USA, April 13-14, 2000 (2000)

19. Fischer, V., Drutarovsky, M.: Two methods of Rijndael implementation in reconfigurable
hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
77–92. Springer, Heidelberg (2001)

20. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and implementation
of low-area and low-power AES encryption hardware core. In: Proc. 9th Euromicro Conf.
Digital System Design (DSD 2006), Cavtat, Croatia (August 30-September 1, 2006), pp.
577–583 (2006)

21. Järvinen, T., Salmela, P., Hämäläinen, P., Takala, J.: Efficient byte permutation realizations
for compact AES implementations. In: Proc. 13th European Signal Processing Conf. (EU-
SIPCO 2005), Antalya, Turkey, September 4-8, 2005 (2005)

22. Ravi, S., Raghunathan, A., Potlapally, N., Sankaradass, M.: System design methodologies
for a wireless security processing platform. In: Proc. 39th Design Automation Conf. New
Orleans, LA, USA, June 10-14, 2002, pp. 777–782 (2002)

23. Lewis, M., Simmons, S.: A VLSI implementation of a cryptographic processor. In: Proc.
Canadian Conf. Electrical and Computer Engineering (CCECE 2003), Montreal, Canada,
May 4-7, 2003, pp. 821–826 (2003)

24. Hämäläinen, P., Heikkinen, J., Hännikäinen, M., Hämäläinen, T.D.: Design of transport trig-
gered architecture processors for wireless encryption. In: Proc. 8th Euromicro Conf. Digital
System Design (DSD 2005), Porto, Portugal, August 30-September 3, 2005, pp. 144–152
(2005)

25. Eslami, Y., Sheikholeslami, A., Gulak, P.G., Masui, S., Mukaida, K.: An area-efficient univer-
sal cryptography processor for smart cards. IEEE Trans. VLSI Systems 14(1), 43–56 (2006)

26. Tillich, S., Grosschädl, J., Szekely, A.: An instruction set extension for fast and memory-
efficient AES implementation. In: Dittmann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005.
LNCS, vol. 3677, pp. 11–21. Springer, Heidelberg (2005)

http://www.tkt.cs.tut.fi/research/daci/phd_hamalainenp_thesis.html

S. Vassiliadis et al. (Eds.): SAMOS 2007, LNCS 4599, pp. 454–463, 2007.
© Springer-Verlag Berlin Heidelberg 2007

k+ Neigh: An Energy Efficient Topology Control for
Wireless Sensor Networks*

Dong-Min Son and Young-Bae Ko

Graduate School of Information and Communication,
Ajou University, Suwon, Republic of Korea

dongmin@uns.ajou.ac.kr, youngko@ajou.ac.kr

Abstract. For most applications in wireless sensor networks (WSNs), it is often
assumed that the deployment of sensor nodes is unmanaged and random, so the
density of local node may vary throughout the network. In high density areas,
nodes consume more energy due to frequent packet collisions and
retransmissions. One of the ways to alleviate this problem is to adjust the
transmission power of each sensor node by means of efficient topology control
mechanisms. In this paper, we propose an efficient topology control for energy
conservation, named “k+ Neigh.” In our scheme, each sensor node reduces its
transmission power so that it has minimum number of k neighbor nodes. Later,
we will show that the preferred value of the k is 2 by simulation. In the
performance evaluation, the proposed scheme can make significant energy
saving with such a topology structure, while the network connectivity is
guaranteed.

1 Introduction

Wireless sensor networks (WSNs) consist of a number of sensors that have
responsibility for informing any sensed event to a centralized node (often, called a
“sink”) via multi-hop wireless transmissions. In general, sensor nodes are randomly
deployed, so the local density of each node may vary according to their locations. In
highly dense areas, sensor nodes may suffer from more contentions among
themselves and a severe interference with their local neighbors. It is not difficult to
expect that a high contention increases the possibility of packet collisions and hence
retransmissions, resulting in faster energy depletion of sensor nodes. Moreover, it will
increase the end-to-end latency of packet transmissions.

One of the solutions to alleviate this problem is to manage the network topology by
adjusting a transmission power of each sensor node. An optimally adjusted
transmission range of each node can decrease the frequency of packet collisions and
improve the network performance with the effect of spatial reuse. However, it is not
easy to get this optimal value because the connectivity from the whole network’s
point of view should be guaranteed, while keeping the transmission range of each

* This research was supported by the MIC(Ministry of Information and Communication),

Korea, under the ITRC(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology Advancement)" (IITA-2006-
(C1090-0602-0011)).

 k+ Neigh: An Energy Efficient Topology Control for Wireless Sensor Networks 455

node as small as possible. In this paper, we propose an efficient topology control
algorithm for energy conservation, named “k+ Neigh.” In the proposed scheme, a
sensor node tries to reduce its transmission power based on the value of k which
represents the number of local neighbors of each node that can guarantee the network
connectivity as well as energy efficiency. We argue that such a value of k can be
utilized for the nodes to control their transmission power (i.e., to adjust its
transmission range as optimal as possible). The transmission power control is possible
in the real world sensor network. The Mica Mote, which is famous sensor node, can
adjust its transmitting power in 255 different levels (e.g., from 0x01 to 0xff) [9]. Mica
Mote has been developed at U.C. Berkeley and is now commercially available from
Crossbow Inc. It is equipped with a low-power micro processor, 128K of program
memory, 4 K of SRAM, and low power transceiver for wireless communication.

The rest of the paper is organized as follows. Related works on topology control
schemes are presented in Section 2. Section 3 introduces our proposed scheme
followed by simulation results in Section 4. We conclude our paper in Section 5.

2 Motivation and Related Work

Our k+ Neigh protocol can be said to be motivated from the existing k-NEIGH
topology control scheme [3]. The authors of [3] argue that some optimal form of
topology can be created by having every node keep their number of neighbors below
a specific value of k. The value k is chosen in such a way that the entire network is
connected with high probability. The k-NEIGH topology control produces a
symmetrically connected graph by addressing technical machinery of [4]. They show
that setting k to 9 produces the optimal topology with high connectivity. They also
argue this value of k can be minimized to 6 if applications accept weakly connected
network topologies.

Now, we want to point out that these values of k (either 6 or 9) in the k-NEIGH
protocol look too large to minimize energy consumption and interference among
neighboring nodes in WSNs. In addition, we believe that k-NEIGH protocol can
cause a severe problem of network partition in some cases. Therefore, we need to
develop a better scheme for topology control both in terms of energy efficiency and
network connectivity.

In order to guarantee complete network connectivity, each node should guarantee
one more link towards the sink. To get the link, we use an Interest Message of the
Directed Diffusion [5] with slight modification. The Interest Message has been
proposed for data-centric paradigm. In WSNs, every sensing data is always reported
to the monitoring terminal (e.g., sink). To make such procedure efficiently, sink
names and diffuses its interest, each sensor node then collects and reports the named
sensing data. The important feature is that the Interest Message is periodically
diffused from the sink to the entire network. The Interest Message contains named
task description such as data type, report interval, and task duration. Other than these
task descriptions, we will add topology control information on the Interest Message.

One more thing that we consult from Directed Diffusion is data aggregation. The
early model of Directed Diffusion provides in-network data aggregation as
opportunistic aggregation at intermediate nodes along the established paths. However,

456 D.-M. Son and Y.-B. Ko

the opportunistic path selection only provides chance of aggregation. Therefore
greedy aggregation is proposed in [6]. In the greedy approach, path sharing
mechanism improves early shared and merged path by using a greedy incremental
cost. Similar to the greedy aggregation, we will also use a similar kind of information,
named Cost-to-Sink (i.e., cost to reach the sink), to guarantee the path to sink.

3 Proposed Scheme: k+ Neigh Topology Control

The ultimate goal of our work is to minimize energy consumption and radio
interference while maintaining connectivity in wireless sensor networks. To
accomplish this goal, we propose to adjust the number of neighbors per node into
some optimal value. Such an approach can be thought to be similar to the existing k-
NEIGH protocol in [3]. However, we propose a better solution here to resolve some
limitations of the k-NEIGH which are already described in the previous section. Thus,
we present a novel neighbor-based solution which guarantees the network
connectivity with any value of k -- in section 4 we will show setting k to 2 is the
optimal choice in terms of energy cost and spatial reuse. The proposed solution for
energy efficient topology control is called as “k+ Neigh”, and consists of two phases:
Neighbor Discovery with MAC-level Beaconing, and Topology Control with Interest
Message Exchange. Note that the messages in both phases are periodically issued.
The periodic MAC-level Beaconing allows to detect node failure, while the periodic
Interest Message enables reconstruction of the topology without link failure. More
details of each phase are described in the following subsections.

3.1 Neighbor Discovery Phase

In this phase, each sensor node discovers its neighbors by maintaining a neighbor
table that is updated with periodic MAC-level Beaconing of Hello messages. Note
that we assume sensor nodes have no or minimal mobility. Each node broadcasts its
Hello message, which contains its identification (i.e., each node’s ID information).
The neighboring nodes obtain this message, and store the identification and the
estimated distance to each of their neighbor table. The storing process is done in order
of the distance. We assume that several techniques such as Received Signal Strength
Intensity (RSSI) [7] or Time of Arrival (ToA) [8] can be used to estimate the distance
between each sensor node. These techniques do leave room for criticism, but they can
be effective in that they take lower cost than using the Global Position System (GPS).
Although, in this paper, we present our scheme by using the distance information, the
distance information can be substituted by other routing metrics such as signal
strength or air-time cost. Therefore the problems when the distance information is
utilized (e.g., multipath propagation, bit error rate) can be relieved by using these
metric. For example, the signal strength reveals the radio interference (i.e., the radio
interfered node is the actual neighbor node).

3.2 Topology Control Phase

After the end of the Neighbor Discovery phase, each sensor node will obtain a sorted
neighbor table that contains the ID and the distance information of all of its physical

 k+ Neigh: An Energy Efficient Topology Control for Wireless Sensor Networks 457

neighbors. To reduce the medium access contention and the transmitting power of the
nodes, each node logically adjusts the number of its local neighbors by selecting k
smallest distanced entries from the original neighbor table. We call this logically
selected list as k-Neighbor List (k-NL for short). The k-NL is included in the Interest
Message that is initially issued by the sink, and it is later continuously modified and
forwarded by the intermediate nodes. (We illustrate how an Interest Message looks
like, and how it is used for topology control later in this subsection). Based on the
information of k-NL, each node can verify which neighbors are symmetric to it. Here,
a symmetric neighbor means that any two nodes are included in each other’s k-NL
that they can have a symmetric link between them. However the verification
mechanism causes a problem. A node can have no symmetric neighbor because all of
its neighbors may not include this node as their symmetric neighbor. In this case, that
node is isolated from the network.

To resolve this problem, we devise the concept of special neighbor node for
guaranteeing a link towards the sink. We call this special neighbor node as Node-to-
Sink. Once a node sets another node as the Node-to-Sink, the node set as the Node-to-
Sink should include that node even if it has more than k symmetric neighbors. To
make an energy efficient topology, a node selects Node-to-Sink, which is the shortest
distanced neighbor among which that is closer to the sink than the node. The distance
from a node to its neighbors can be obtained by using the neighbor list, but the
distance from a sink to the node cannot be known.

So we add one more information named Cost-to-Sink. The Cost-to-Sink is the
accumulated value of the distance from the sink to the current node with the Interest
Message. To get the appropriate accumulated value, the diffusion (message
forwarding) sequence of the Interest Message is very important. Fundamentally, the
procedure of our Interest Message diffusion is some what similar with the directed
diffusion [5] in that the sending of the Interest Message starts from the sink. However,
it is unique in that it does not use the random back-off forwarding that is used in the
directed diffusion. Instead of the forwarding, we design “Distance-based
Forwarding.” Further description about this mechanism is given below:

Distance-Based Forwarding. Assume that a generic node u sends a message to node
v. To forward the message in ascending order of the estimated distance between node
v and u, the receiving node v should send a message at time Ts within the sending
interval TSI. The time is obtained by using the first received message as the standard.
The equation of Ts is as follows: (Distance between nodes u and v is denoted by duv,
and Maximum transmission range of node is denoted by RMAX)

MAX

uv
SIS R

d
TT ×= (1)

Fig. 1 on the next page shows an example of our k+ neigh topology control where k
is set to 2. Fig. 1(a)-(e) shows the diffusion procedure of Interest Message. In
Fig. 1(a), a sink initially transmits Interest Message with three types of information.
To fill in the 2-Neighbor List, the sink picks out nodes A and C from its neighbor list.
The Cost-to-Sink and Node-to-Sink attributes are set to 0 and none, respectively, as
the node itself is the sink. When receiving this Interest Message from the sink, the

458 D.-M. Son and Y.-B. Ko

neighboring nodes A, B, and C are required to update their Cost-to-Sink value. The
Cost-to-Sink will be determined by a summation of the value included in the received
Interest Message from the sink and the distance between the sink and the receiving
node. That is, nodes A, B, and C will set their Cost-to-Sink values into 1, 1.415, and
1, respectively. After this setting, each node then decides when it should forward the
modified Interest Message at the specific time, according to Distance-based
Forwarding. If the sending interval (TSI) is 1 second then node A and C forward the
Interest Message at the time of 0.67 (= 1 × 1 / 1.5). In this case, although the sending
time is same between node A and C, the actual sending time becomes different
because the contention at MAC layer. Consequently, the Interest Message is diffused
in the sequence of [sink, {A, C}, B, D, and E]. By this mechanism, every node can be
assured to obtain the least Cost-to-Sink before forwarding.

Fig. 1(c) and (d) show the construction of the Symmetric Neighbor List (SNL) by
exchanging of 2-Neighbor List attribute. In Fig. 1(d), node D includes nodes B and E
into its 2-Neighbor List. However, in Fig. 1(c), node B did not include node D in its
2-Neighbor List, thus node D realizes that node B is not a symmetric neighbor. If
node D cannot be a neighbor with node B then node D cannot connect to the sink. For
this case, the Node-to-Sink attribute is utilized as illustrated in Fig. 1(d). Node D
decides to set the Node-to-Sink to node B and includes node B in its Symmetric

Fig. 1. Diffusion process of Interest Message for Topology Control. (a) Initially, sink
generates an Interest Message with three types of information, i.e., 2-NL, Cost-to-Sink, and
Node-to-Sink. (b) On receiving the Interest Message from the sink, node A modifies and
rebroadcasts it. (Node C’s transmission is omitted here) (c) After A’s forwarding, node B
forwards the message as it is farther than node A from the sink. (d) Node D also fills out the
three info of Interest Message and forwards it. (e) Finally, node E does the same. (f) Final
topology graph, where each node adjusts its power properly.

 k+ Neigh: An Energy Efficient Topology Control for Wireless Sensor Networks 459

Neighbor List. Once node B gets the message that it has been set as the Node-to-Sink,
then it has to include the node D to its Symmetric Neighbor List.

After the diffusion of the Interest Message, each node sets its transmission power
to the power that is needed to transmit to the farthest node in SNL. Note that we
assume the sensor nodes are able to control their transmitting power. Fig. 1(f) shows
the resulting topology of our 2+ Neigh Topology Control where k is set to 2. At initial
time, the power of every node sets 1.5, so that the total energy cost is 9, but after
topology control, the total energy cost becomes 7.245, thus we can save the energy
amount of 1.755. This example is very simple and uniform. However, in practice, the
topology can be untethered and unattended so the energy can be saved much more
than this example. The further evaluation for energy cost in the random topology is
shown in section 4.

4 Performance Evaluation

In this section, we evaluate k+ Neigh using NS-2 [10] simulator. The ultimate goal of
simulation is to show that our proposed k+ Neigh topology control protocol
contributes to significant improvements of both energy efficiency and network
capacity. For the purpose of a comparison, we consider the following two topology
control algorithms:

• Minimum Spanning Tree (MST): Euclidian MST algorithm produces the
topology which consumes minimum energy in data communication.
Basically, MST can not be used easily in practical because it assumes that
each node knows the global position of all other nodes in the network.

• k-NEIGH: As in the section 2, k-NEIGH algorithm insists that the number of
physical neighbors of every node maintains equal to or slightly below a
specific value k. We set the k to the value of 6, for small network (e.g., where
the total number of nodes is under 100), and generally k is set by 9. We have
considered the result of Phase 1 only (i.e., without pruning).

4.1 Simulation Environment

In our simulation, a total number of nodes n, ranges from 10 to 1000. To decide the
network size, we consider the power control capability of Mica Mote series [9] and
the empirical transmission range for ensuring connectivity (refer to [2] and [3]). In
practice, the Mica Mote is able to adjust the transmission range by at most 150m.
According to [2] and [3], when n is equal to 10 the transmission range should be
empirically larger than 0.86622×r, where r is a network radius. Thus we set the
maximum transmission range to 86m when r is set to 100m. We use the two-ray
ground model as a radio propagation model and an omni-directional antenna which
having homogeneity gain in the simulation. We measure the following metrics:
energy cost, and physical node degree.

We define the energy cost as the equation shown below:

∑
∈

=
Ni

iPAPAc))(()((2)

460 D.-M. Son and Y.-B. Ko

where PA is the power assignment which is adjusted at the end of the Topology
Control Phase.

In our simulation study, we convert the distance to power according to the Friis
free space model [11] and the two-ray ground reflection models [11] that are currently
implemented in the well-known network simulator NS-2. The free space propagation
model assumes the ideal condition, thus it is useful for short distance. On the other
hand, the two-ray ground reflection model considers both the direct path and a ground
reflection path. Therefore we consider the crossover point of two models (If the
distance is less than 86.14m then the Friis model is applied otherwise the two-ray
ground is used [10].)

The physical node degree represents the actual number of interfered neighbors.
This notation can be distinguished from logical node degree because the logical
degree shows only the number of one-hop symmetric neighbors. Therefore physical
node degree is the more meaningful metric than the logical node degree in evaluating
the actual contention at the MAC layer. In addition, the low physical node degree
increases the spatial reuse, so that the network capacity becomes enhanced.

Before explaining more details of the simulation results, we have studied about the
appropriate number of neighbors for energy efficient topology control by means of a
simulation-based evaluation. The number of neighbors is denoted by k and indicates
the intensity of the contention. Therefore the smallest value of k is recommended for
topologies requiring the lowest contention. However if the number of neighbors
becomes too few, it may cause instability of the network and cannot work on rigorous
environments. Consequently, when adjusting the value of k, the energy cost and
physical degree should be carefully considered.

To see the effect of the value k, we measure the energy cost and the physical
degree by varying it from 0 to 10. 100 nodes are distributed randomly in the network.
In the first experiment, the result of energy cost is shown in Fig. 2(a). The interesting
point is that the energy cost is almost the same when k=0 and 1. When k=0, each node
can have no symmetric neighbor with an empty k-Neighbor List (i.e., 0-NL), so that a
node purely relies on Node-to-Sink to create the symmetric neighbor. The symmetric

 k

0 1 2 3 4 5 6 7 8 9 10

E
ne

rg
y

C
os

t

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

 k

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 P
hy

si
ca

l N
od

e
D

eg
re

e

2

3

4

5

6

7

8

9

10

(a) (b)

Fig. 2. The performance results of k+ Neigh for different values of the number of neighbors
(a) Energy cost according to k. (b) Average physical node degree according to k.

 k+ Neigh: An Energy Efficient Topology Control for Wireless Sensor Networks 461

neighbor from Node-to-Sink guarantees a path towards a sink. Likewise, it is difficult
to make the symmetric neighbor for the 1+ Neigh because it is rare to have each other
as 1-NL of two nodes. So 1+ Neigh also relies on Node-to-Sink and the result of 1+
Neigh is similar with that of 0+ Neigh. The 0+ Neigh or 1+ Neigh can be thought as
good for extremely energy sensitive network environments. One more thing to
observe is the energy cost of 2+ Neigh is almost same as 0+ Neigh. As previously
stated, the large value of k makes the network stable. Therefore 2+ Neigh is
recommendable for energy efficient networks. Besides, the MST, which is considered
as the optimal network topology scheme, tries to maintain its number of neighbors as
two. This is made clearer by Fig. 2(b), which the physical degree values for k=0 and
k=3 are shown to be similar. This means, when k is 2 or 3, a topology becomes
energy efficient with a low contention while having more stable number of neighbors.
Larger values over 4 may be suitable for applications requiring highly stable network
environments, but at the cost of energy consumption.

4.2 Simulation Results

Performance results of 2+ Neigh are reported in Fig. 3 compared with k-NEIGH, and
MST. In Fig. 3(a), we show the energy cost which is normalized with respect to the
cost of the MST. We can see the energy cost of 2+ Neigh is significantly less than k-
NEIGH and quite close to that of MST. This result is very meaningful because our
scheme requires only 2n message where n is the number of nodes. Moreover the half
of the required messages are relatively low cost MAC-level beaconing. We recall that
the MST requires global position of every node so that n2 messages should be
exchanged. The average physical node degree of 2+ Neigh topology control protocol
is also reported in Fig. 3(b). The figure shows an evident result that the upper bound
(k) of k-NEIGH is still large to reduce the number of physical neighbors. Our protocol
achieves 30% lower average physical degree compared to k-NEIGH. For the
proposed 2+ Neigh protocol, we emphasize that the spatial reuse, which is represented

Energy Cost

Total number of nodes

10 100 250 500 750 1000

E
ne

rg
y

C
os

t
(N

or
m

al
iz

ed
 w

ith
 r

es
pe

ct
 to

 th
e

co
st

 o
f t

he
 M

S
T

)

0

1

2

3

4

5

6

7

8

2-Neighbors
k-NEIGH
MST

Physical Degree

Total Number of Nodes

10 100 250 500 750 1000

A
ve

ra
ge

 P
hy

si
ca

l N
od

e
D

eg
re

e

2

3

4

5

6

7

8

9

2-Neighbors
k-NEIGH
MST

(a) (b)

Fig. 3. The performance results of 2-Neighbors compared with k-NEIGH and MST. (a)
Energy cost according to the network size. The energy cost is normalized with respect to
the cost of the MST. (b) Average physical degree according to the network size.

462 D.-M. Son and Y.-B. Ko

by the physical node degree, is approximated to the sparsest possible topology (MST)
while the cost of topology construction is tremendously reduced.

To compare the visual network topologies of k+ Neigh, MST, and k-NEIGH, we
use the graph drawing software called Himmeli [12]. The sample topologies
generated by the various protocols for n=100 are shown in Fig. 4 on next page. In k+
Neigh Topology Control, we set the value of k to 2, as recommend in section 4.1.
Unlike our scheme, in k-NEIGH, the value of k is set to 6 and 9 as suggested in [3].
We recall that our scheme guarantees network connectivity even when k is set to 2.
On the other hand, the k-NEIGH causes a severe problem of network partition if k is
set to 2. Fig. 4 also shows that our 2+ Neigh scheme significantly removes the number
of over-connected links from k-NEIGH. Not only the topology of 2+ Neigh looks
similar to the MST (See Fig. 4(a) and (b), respectively), but 2+ Neigh also has some
more number of links for connection towards a sink (located in a center of all the
figures). In result, our scheme is proved to be efficient in terms of energy cost and to
be robust in terms of the available number of paths towards a sink.

(a) 2+Neigh (b) MST

(c) k-NEIGH (k=6) (d) k-NEIGH (k=9)

Fig. 4. Sample topologies produced by k+Neighbors, MST, and k-NEIGH Topology
Control when n=100. We call the k+Neighbors where k=2 as “2+ Neigh.” Note that k is set
to 6 or 9 for the k-NEIGH in (c) and (d) above.

 k+ Neigh: An Energy Efficient Topology Control for Wireless Sensor Networks 463

5 Conclusion

Topology control has been proved to be an efficient method in improving both energy
conservation and network capacity [1]. However, previous researches on topology
control do not take into account the untethered and unattended sensor networks. For
this reason, we proposed a novel topology control for sensor networks.

Our proposed scheme, named k+ Neigh, tries to maintain k number of neighbors.
This approach seems a bit like k-NEIGH [3] but the possible value of k is different.
The k-NEIGH can not prevent network connectivity at a small k value. In contrast,
the k+ Neigh is connected by any value of the k. Among the values of the k, setting k
to 2 is suggested for energy efficiency and network capacity. The k+ Neigh defines
two phases: Neighbor Discovery and Topology Control. In the Neighbor Discovery
phase, each node sends Hello messages periodically and obtains the neighbor entries.
In the Topology Control phase, the sink diffuses the Interest Message which contains
information for creating the topology. Since the Interest Message is periodically sent,
our k+ Neigh topology network can recover and maintain network connectivity.

For further researches, we plan to study the sink mobility issues on the sparsest
possible topology and the data aggregation method which can relieve traffic
bottleneck. These investigations are expected to enhance k+ Neigh Topology Control.
We shall also implement our scheme on Mica Mote platform to show that this scheme
is effective in the real sensor world.

References

[1] Santi, P.: Topology Control in Wireless Ad Hoc and Sensor Networks. ACM Comp.
Surveys 37(2), 164–194 (2005)

[2] Santi, P., Blough, D.M.: The Critical Transmitting Range for Connectivity in Sparse
Wireless Ad Hoc Networks. IEEE Trans. 2(1), 1–15 (2003)

[3] Blough, D.M., Leoncini, M., Resta, G., Santi, P.: The k-Neighbors Approach to
Interference Bounded and Symmetric Topology Control in Ad Hoc Networks. IEEE
Trans. on Mobile Computing 5(9), 1267–1282 (2006)

[4] Xue, F., Kumar, P.R.: The Number of Neighbors Needed for Connectivity of Wireless
Networks. Wireless Networks 10(2), 169–181 (2004)

[5] Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust
communication paradigm for sensor networks. In: Proc. of the ACM International Conference
on Mobile Computing and Networking (MOBICOM), ACM Press, New York (2000)

[6] Intanagoniwawat, C., Estrin, D., Govindan, R., Heidemann, J.: Impact of Network
Density on Data Aggregation in Wireless Sensor Networks. In: Proc. of the International
Conference on Distributed Computing Systems (ICDCS) (July 2002)

[7] Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and tracking
system. Proc. of the IEEE Infocom 2000 2, 775–784 (2000)

[8] Girod, L., Estrin, D.: Robust Range Estimation Using Acoustic and Multimodal Sensing. In:
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2001)

[9] MPR/MIB User’s Manual, Document 7430-0021-03, (August 2003), http://www. xbow.com/
[10] ns-2 network simulator: http://www.isi.edu/nsnam/ns
[11] Pahlavan, K., et al.: Principles of Wireless Networks. Prentice Hall, Englewood Cliffs (2002)
[12] http://www.artemis.kll.helsinki.fi/himmeli/himmeli.html

Author Index

Agarwal, Nainesh 294
Alho, Timo 431
Anderson, Willie 1
Ayguadé, Eduard 107

Baek, Seungjae 46
Batsuuri, Tseesuren 365
Benjamin, Michael G. 149
Berekovic, Mladen 385
Bernard, Thomas A.M. 127
Bertels, Koen 283
Bonzini, Paolo 304
Boubekeur, Menouer 34
Bougard, Bruno 322
Bouwens, Frank 385

Calderón, Humberto 251
Carlomagno F., José O. 86
Carpenter, Paul 107
Carvalho, Felipe G. 13
Catthoor, Francky 322
Chakrabarti, Chaitali 343
Chen, Chao 55
Cho, Kyoung-Rok 200, 365
Cho, Young-Shin 200
Choi, Jongmoo 46
Christiaens, Mark 169
Corsonello, Pasquale 159

de Langen, Pepijn 75
De Nil, Michael 385
Devos, Harald 169
Dimopoulos, Nikitas J. 294
dos Santos, Luiz C.V. 86
Dragomirescu, Daniela 408

Eeckhaut, Hendrik 169
Esser, Norbert 96

Faes, Philippe 169
Fedeli, Andrea 34
Fettweis, Gerhard 117
Flatt, Holger 241
Flautner, Krisztian 343
Flügel, Sebastian 241
Furtado, Olinto J.V. 13

Galuzzi, Carlo 251, 283
Gaydadjiev, Georgi 251
Glossner, John 313
Gupta, Rajesh 421
Guzma, Vladimı́r 233

Ha, Soonhoi 3
Hämäläinen, Panu 443
Hämäläinen, Timo D. 179, 396, 431, 443
Hännikäinen, Marko 396, 431, 443
Harmanci, Dilek 304
Hesselbarth, Sebastian 241
Huisken, Jos 2, 385

Iancu, Daniel 313

Jääskeläinen, Pekka 233
Jacobs, Jan 139
Jeong, Hong 55
Jeschke, Hartwig 190
Jesshope, Chris R. 127
Jin, Zhong-Yi 421
Juurlink, Ben 75

Kaeli, David 149
Khan, Md. Zafar Ali 375
Kim, Seok-Man 200
Knijnenburg, Peter M.W. 127
Ko, Young-Bae 454
Kulmala, Ari 179
Kuorilehto, Mauri 396, 431
Kuper, Jan 139

Lanuzza, Marco 159
Lecointre, Aubin 408
Lee, Chia-han 355
Lee, Donghee 46
Lee, Hyunseok 343
Lee, Je-Hoon 200, 365
Lin, Yuan 343
Liu, Dake 333

Mahlke, Scott 343
Mäkinen, Risto 273
Man, Ka Lok 34
Martorell, Xavier 107

466 Author Index

Mendonça, Alexandre K.I. 13
Mercaldi, Michele 34
Milojevic, Dragomir 211
Mische, Jörg 263
Mittal, Shashank 375
Moudgill, Mayan 313
Mudge, Trevor 343

Nilsson, Anders 333
Noh, Sam H. 46
Novo, David 322

Oh, Taewook 3

Park, Sangsoo 24
Park, Sungchan 55
Partanen, Tero 65
Perri, Stefania 159
Pimentel, Andy D. 222
Pirsch, Peter 241
Pitkänen, Teemu 65, 273
Plana, Robert 408
Pozzi, Laura 304
Priewasser, Robert 322

Raghavan, Praveen 322
Ramirez, Alex 107
Richard, Alienor 211
Ristau, Bastian 117
Robert, Frederic 211
Rodenas, David 107

Salminen, Erno 179
Santos, Luiz C.V. 13
Santos, Luiz F.P. 86

Schellekens, Michel 34
Schulte, Michael 313
Schultz, Max R. de O. 13
Schurgers, Curt 421
Schuster, Thomas 322
Seo, Sangwon 343
Shin, Heonshik 24
Smit, Gerard J.M. 139
Son, Dong-Min 454
Srinivas, M.B. 375
Stroobandt, Dirk 169
Suhonen, Jukka 396
Sundararajan, Renga 96

Takala, Jarmo 65, 233, 273
Tanskanen, Jarno K. 273
Thompson, Mark 222
Trescher, Joachim 96

Uhrig, Sascha 263
Ungerer, Theo 263

van Engelen, Leroy 139
Van Meerbergen, Jef 385
Vander Biest, Alexis 211
Van der Perre, Liesbet 322
Vassiliadis, Stamatis 251, 283, 313

Woh, Mark 343
Wolf, Wayne 355

Yi, Youngmin 3
Yseboodt, Lennart 385

Zhao, Qin 385

	Title Page
	Memo
	Preface
	Organization
	Table of Contents
	Software Is the Answer But What Is the Question?
	Integrating VLIW Processors with a Network on Chip
	Communication Architecture Simulation on the Virtual Synchronization Framework
	Introduction
	Related Work
	Virtual Synchronization Technique
	Communication Architecture Simulation Using SystemC with Virtual Synchronization
	Communication Architecture Simulation Using C Model with Virtual Synchronization
	Experimental Results
	Comparing Lock-Step Approach and Virtual Synchronization Technique Applied to SystemC Based Simulation Environment
	Comparing C Model and SystemC Model for Communication Architecture Simulation

	Conclusion
	References

	A Model-Driven Automatically-Retargetable Debug Tool for Embedded Systems
	Introduction
	Related Work
	Manually Retargetable Tools
	Automatically Retargetable Tools

	Processor Model
	Implementation
	Generation of Library Opcodes
	Generation of Library BFD
	Target-Specific Disassembler Library
	Target-Specific Debugger Library

	Experimental Results
	Validation of Disassembling Tools
	Validation of Debugging Tools
	Tool Efficiency

	Conclusions
	References

	Performance Evaluation of Memory Management Configurations in Linux for an OS-Level Design Space Exploration
	Introduction
	Memory Management Configurations
	VM (Virtual Memory)
	VM+KMT (VM & Kernel-Mode Thread)
	FM (Flat Memory)
	FM+KMT (FM & Kernel-Mode Thread)

	Performance Evaluation
	Experimental Environment
	Execution Time
	Memory Performance
	System Call Overhead

	Conclusions
	References

	SC2SCFL: Automated SystemC to SystemCFLTranslation
	Introduction
	SystemC$FL^$
	Data Types
	Syntax
	Formal Semantics

	SystemC to SystemCFL Translation
	Simplifications and Restrictions
	SystemC Module
	Translation Procedure
	Translation Rules
	$SystemC^FL$ Constructor

	Architectures of SC2SCFL
	Case Study: Scalable Synchronous Bus Arbiter
	Translation of the Scalable Arbiter Using SC2SCFL

	Verification of $ SystemC^FL$ Specification Using NuSMV
	Conclusions and Future Work
	References

	Model and Validation of Block Cleaning Cost for Flash Memory
	Introduction
	Flash Memory and Block Cleaning
	Block Cleaning Cost
	Performance Parameters

	Model Validation
	Platform and Workload
	Validation Results

	Related Works
	Conclusion
	References

	VLSI Architecture for MRF Based Stereo Matching
	Introduction
	Background
	Fast Belief Propagation Structure
	Architecture
	Array Architecture
	Architecture of Processing Element (PE)
	Memory and Time Complexities

	Experimental Results
	Conclusions
	References

	Low-Power Twiddle Factor Unit for FFT Computation
	Introduction
	FFT Algorithms
	Twiddle Factor Access
	Scaling
	Permutation
	Lookup Table Index
	Memory Reduction

	Experiments
	Conclusions
	References

	Trade-Offs Between Voltage Scaling and Processor Shutdown for Low-Energy Embedded Multiprocessors
	Introduction
	Related Work
	Preliminaries
	Scheduling for Energy Minimization
	Experimental Evaluation
	Conclusions and Future Work
	References

	An Automatically-Retargetable Time-Constraint-Driven Instruction Scheduler for Post-compiling Optimization of Embedded Code
	Introduction
	Related Work
	Time-Constraint Analysis
	Automatically Retargetable Tools
	Bridging the Gap

	Unified Modeling of Constraints
	The Retargetable Scheduling Engine
	Engine Structure
	Algorithms

	Experimental Results
	Time-Constraint Feasibility Analysis
	Runtime Efficiency
	The Impact of the Optimization

	Conclusions and Future Work
	References

	Improving TriMedia Cache Performance by Profile Guided Code Reordering
	Introduction
	Previous Work
	TriMedia TM3271
	TM3271 Architecture
	TM3271 Instruction Cache Architecture

	Algorithms
	Execution Count
	Sequential Locality
	Closest Is Best

	Methodology
	Results
	Conclusions
	Future Work
	References

	A Streaming Machine Description and Programming Model
	Introduction
	Stream Programming Model
	Directives
	Graph Optimization

	Abstract Streaming Machine
	Program Description
	Machine Description
	System Description

	Experiments
	Related Work
	Conclusions
	References

	Mapping and Performance Evaluation for Heterogeneous MP-SoCs Via Packing
	Introduction
	Methodology
	Mapping Tasks and Transfers
	Mapping Variables

	Results
	Results for Mapping Tasks
	Results for Mapping Variables
	Utilizing Results for Performance Evaluation and System Refinement

	Conclusion
	References

	Strategies for Compiling μTC to Novel Chip Multiprocessors�
	Introduction
	Problem and Motivation
	The Microthreading Model
	Microthreaded Architecture
	Overview
	Synchronizing Memory: Hardware Perspective

	μTC Language�
	Introduction to the Language
	New Keywords
	Synchronizing Memory: Language Perspective

	μTC Compiler Strategies�
	Challenges for Compiling$μTC$�
	Initial Results
	Conclusions and Further Research
	References

	Image Quantisation on a Massively Parallel Embedded Processor
	Introduction
	Background
	Image Model for Quantisation
	Associative Processing

	Specification of the Algorithm
	Implementation Restrictions and Choices
	Results and Discussion
	Conclusions and Recommendations
	References

	Stream Image Processing on a Dual-Core Embedded System
	Introduction
	Stream Computing Paradigm
	Stream Applications, Languages, and Compilers
	Stream Architectures

	Blackfin Processor
	Implementation
	Assembly Optimizations
	Dual-Core Utilization
	Memory Hierarchy Utilization

	Results
	Conclusion
	References

	MORA: A New Coarse-Grain Reconfigurable Array for High Throughput Multimedia Processing
	Introduction
	Overview of the Proposed Architecture
	The Reconfigurable Cell
	The Interconnections Topology

	The Computational Model
	Application Mapping Results
	Conclusions
	References

	FPGA Design Methodology for a Wavelet-Based Scalable Video Decoder
	Introduction
	System Overview and Specifications
	Implementation
	Methodology
	Architecture
	Control Software
	Trade-Offs
	Clocking Scheme

	Testing
	Design Automation Tools
	Implementation Results
	Conclusions
	References

	Evaluating Large System-on-Chip on Multi-FPGA Platform
	Introduction
	SoC Architecture Design Method
	Studied Example Hardware Architecture
	HIBI Bridge

	Results
	MPEG-4 Video Encoder
	Detailed Analysis of the Communication
	Area Utilization

	Conclusions
	References

	Efficiency Measures for Multimedia SOCs
	Introduction
	Specification of Efficiency Measures
	$AT-Product$ and Its Extensions
	Weighted Sum
	Fuzzy Multicriteria Analysis (MCA)

	Equivalence of the Different Efficiency Measures
	Extension of the Multicriteria Analysis with a Flexibility Criterion
	Conclusion
	References

	On-Chip Bus Modeling for Power and Performance Estimation
	Introduction
	Bus Modeling Environment
	Latency Model for an On-Chip Bus
	The Proposed Power Model
	Simulation Results
	Conclusion
	References

	A Framework Introducing Model Reversibility in SoC Design Space Exploration
	Introduction
	State of the Art
	Model Taxonomy and Definition
	Modeling with GTX

	Framework Description
	Hierarchy
	Generic Rules
	Relations
	Behaviours

	Implementation Choices
	XML Model Grammar
	Framework Engine

	Conclusions
	References

	Towards Multi-application Workload Modeling in Sesame for System-Level Design Space Exploration
	Introduction
	Sesame
	Multi-application Workload Modeling
	Synthetic Multi-application Workload Modeling
	Realistic Multi-application Workload Modeling
	Modeling Reactive Behavior

	A Preliminary Case Study
	Related Work
	Conclusions
	References

	Resource Conflict Detection in Simulation of Function Unit Pipelines
	Introduction
	Related Work
	Structural Hazard Detection in Simulation
	Resource Vectors
	Finite State Automata

	Test Setup
	Results
	Conclusion
	References

	A Modular Coprocessor Architecture for Embedded Real-Time Image and Video Signal Processing
	Introduction
	Embedded Coprocessor Architecture
	Communication Approach
	Architecture Overview
	Module Interconnect Bus (MIB)

	Processing Element Design
	PE Example Application
	SSD Data Path Architecture

	Verification and Results
	Conclusion
	References

	High-Bandwidth Address Generation Unit
	Introduction
	Background
	AGEN Unit Design
	Memory-Interleaving Mechanism
	The AGEN Design

	Experimental Results Analysis
	Conclusions
	References

	An IP Core for Embedded Java Systems
	Introduction
	State-of-the-Art Embedded Java System Design
	Hardware Design and Software Tool Chain
	Hardware Design
	Software Tool Chain

	Architecture of the Processor Core
	JVM Implementation
	Evaluation
	Conclusions and Future Work
	References

	Parallel Memory Architecture for TTA Processor
	Introduction
	TTA Processor Architecture
	Parallel Memory
	Parallel Memory in a System
	Conflict Resolving Parallel Memory Architecture
	Scalable Hardware Modules
	Pipelining

	Experiments
	Conclusion
	References

	A Linear Complexity Algorithm for the Generation of Multiple Input Single Output Instructions of Variable Size
	Introduction
	Background and Related Works
	Theoretical Background
	MISO and MIMO Graphs
	MAXMISO and SUBMAXMISO

	The Algorithm for MISO Instruction Generation
	Application

	Conclusions
	References

	Automated Power Gating of Registers Using CoDeL and FSM Branch Prediction
	Introduction
	Power Gating
	Gating Methods
	Time-Based Power Gating
	CoDeL Initiated Power Gating
	CoDeL Assisted Time-Based Power Gating

	FSM Branch Prediction
	Evaluation Framework
	Results
	Conclusion
	References

	A Study of Energy Saving in Customizable Processors
	Introduction
	Related Work
	Methodology
	Experimental Setup
	Experimental Results
	Conclusion
	References

	Trends in Low Power Handset Software Defined Radio
	Introduction
	Processor Design
	Software Design
	Conclusions
	References

	Design of a Low Power Pre-synchronization ASIP for Multimode SDR Terminals
	Introduction
	Architecture Definition
	Instruction-Set Selection
	Parallel Processing
	Clustered Registerfiles and Interconnect
	Memory and I/O
	Pipeline Model

	Implementation
	Instruction-Set Architecture Modelling
	Logic Synthesis and Power Estimation
	Backend Experiment

	Conclusion
	References

	Area Efficient Fully Programmable Baseband Processors
	Introduction
	Baseband Properties
	Task Level Pipelines

	SIMT Architecture
	Instruction Set
	SIMT - Instruction Issue
	SIMD Processing Clusters
	Memory System and On-Chip Network

	The BBP2 Processor
	SIMD Execution Units and Accelerators
	Benchmarking

	Implementation
	Cell Area of Individual Components
	Clock and Power Gating

	Software
	Conclusion
	References

	The Next Generation Challenge for Software Defined Radio
	Introduction
	4G Physical Layer
	OFDMA
	MIMO
	Channel Encoder/Decoder

	Computational Analysis
	Baseline Architecture
	Workload Profile
	Computational Patterns

	Architectural Implications
	Conclusion
	References

	Design Methodology for Software Radio Systems
	Introduction
	Software Radio Systems and the Challenges
	RF Front-End Architectures
	ADC
	Baseband Architectures

	Optimization
	Methodology
	Design Process and Constraints
	Front-End Model
	Baseband Processor Model
	Design Optimization by Performance and Power Evaluation

	Design Example
	Front-End Model Example
	Baseband Model Example
	Example of Optimization Problem

	Conclusions and Future Works
	References

	Power Efficient Co-simulation Framework for a Wireless Application Using Platform Based SoC
	Introduction
	Proposed Co-simulation Environment
	Case Study
	Conclusion
	References

	A Comparative Study of Different FFT Architectures for Software Defined Radio
	Introduction
	Basic FFT Computation Algorithm
	Bruun's FFT Algorithm
	Comparison of Different FFT Architectures for Software Defined Radio
	NSR
	Hardware Complexity
	Comparison Between Hardware Complexity of Different FFT Architectures for Same NSR
	Timing Complexity

	Hardware Implementation Results for Different FFT Architectures and Comparisons
	Conclusion
	References

	Design of 100 μW Wireless Sensor Nodes on Energy Scavengers for Biomedical Monitoring
	Introduction
	System Level Architecture
	Application
	Optimization DSP
	Reference Core
	Reduce Idle Mode Dissipation
	Reducing Leakage

	System Level Optimization
	Power Down the Core
	Results

	Conclusion
	References

	Tool-Aided Design and Implementation of Indoor Surveillance Wireless Sensor Network
	Introduction
	Related Work
	Indoor Surveillance WSN
	Surveillance WSN Requirements
	TUTWSN Protocols
	TUTWSN Prototype Platform

	WSN Design with WISENES
	WISENES Model Abstraction
	Surveillance WSN Design

	WSN Prototype Implementation
	SensorOS
	Surveillance WSN Implementation on TUTWSN Prototypes

	Conclusions
	References

	System Architecture Modeling of an UWB Receiver for Wireless Sensor Network
	Introduction
	High Level Modeling of UWB Transceivers
	Principle of Pulse Modulation for Time Hopping IR-UWB
	High Level Modeling on Matlab for TH IR-UWB Emitters
	High Level Modeling on Matlab for TH IR-UWB Receivers
	Comparative Analysis

	FPGA Design of an UWB Receiver
	The Low-Level Modeling Context
	FPGA Implementation with VHDL
	Data Rate and Time Hopping Code Reconfigurable Receiver
	FPGA Receiver Performance

	Conclusion
	References

	An Embedded Platform with Duty-Cycled Radio and Processing Subsystems for Wireless Sensor Networks
	Introduction
	Related Work
	Design Approach
	Platform Implementation
	Power Management Schemes
	Power-Gating Scheme
	Power-Saving Scheme
	Measurements

	Experimental Results and Analysis
	Conclusions and Future Work
	References

	SensorOS: A New Operating System for Time Critical WSN Applications
	Introduction
	Related Work
	Contents of the Paper

	SensorOS Design
	Design Requirements
	SensorOS Architecture
	SensorOS Components

	TUTWSN Platforms and Protocols
	TUTWSN Node Platform
	TUTWSN Protocols

	SensorOS Implementation
	Implementation of Hardware Abstraction Layer
	Implementation of SensorOS Components

	Evaluation
	Resource Usage
	Context Switch Performance
	Test Application Operation

	Conclusions and Future Work
	References

	Review of Hardware Architectures for Advanced Encryption Standard Implementations Considering Wireless Sensor Networks
	Introduction
	Overview of AES Algorithm
	Design Choices for AES Support in Hardware

	Hardware Implementations of AES
	WSN Suitability of Dedicated Hardware Implementations

	Specialized Processor Architectures for AES
	WSN Suitability of Specialized Processor Architectures

	Conclusions
	References

	$k^+ Neigh$: An Energy Efficient Topology Control for Wireless Sensor Networks
	Introduction
	Motivation and Related Work
	Proposed Scheme:$k^+ Neigh Topology Control$
	Neighbor Discovery Phase
	Topology Control Phase

	Performance Evaluation
	Simulation Environment
	Simulation Results

	Conclusion
	References

	Author Index

